Friday, January 16, 2015

Like a BOSS: How Astronomers are Getting Precise Measurements of the Universe’s Expansion Rate

Like a BOSS: How Astronomers are Getting Precise Measurements of the Universe’s Expansion Rate:

Distribution of galaxies and quasars in a slice of BOSS out to a redshift of 3, or 11 billion years in the past. (Courtesy: SDSS-III.)


Distribution of galaxies and quasars in a slice of BOSS out to a redshift of 3, or 11 billion years in the past. (Courtesy: SDSS-III.)
Astrophysicists studying the expansion of the Universe with the largest galaxy catalogs ever assembled are ushering in an exciting era of precision cosmology. Last week, the Sloan Digital Sky Survey (SDSS) issued its final public data release, and scientists working in its largest program, the Baryon Oscillation Spectroscopic Survey (BOSS) also presented their final results at the American Astronomical Society meeting in Seattle, Washington.

By mapping over 10,000 square degrees — 25% of the sky — BOSS is “measuring our universe’s accelerated expansion with the world’s largest extragalactic redshift survey,” according to SDSS-III Director Daniel Eisenstein of the Harvard-Smithsonian Center for Astrophysics. The BOSS results include new and precise measurements of the universe’s expansion rate (called the “Hubble constant”) and matter density, which includes dark matter, stars, gas, and dust.


BOSS conducted its observations at 2.5-meter Sloan Foundation Telescope at Apache Point Observatory in New Mexico, producing spectra and spatial positions for 1.5 million galaxies and 300,000 quasars in a volume equivalent to a cube with length 8.5 billion light-years on a side (see image above). Astronomers used this rich dataset to map the objects’ distributions and to detect the characteristic scale imprinted by baryon acoustic oscillations in the early universe. Sound waves propagate outward with time, like ripples spreading in a pond, and are indicated by a large-scale clustering signal in the positions of galaxies relative to each other (see illustration below). By analyzing this signal at different times, it is possible to study the behavior of the mysterious “dark energy” causing the accelerating expansion of the universe.

An illustration of the concept of baryon acoustic oscillations, imprinted in the early universe and seen today in galaxy surveys. (courtesy: Chris Blake and Sam Moorfield)


An illustration of the concept of baryon acoustic oscillations, imprinted in the early universe and seen today in galaxy surveys. (courtesy: Chris Blake and Sam Moorfield)
In BOSS’s final results, hundreds of scientists in the international collaboration measured this scale with unprecedented precision. In particular, Ashley Ross from Ohio State University presented results that demonstrated the power of combining an analysis of the transverse and line-of-sight distributions of galaxies. In a paper by Eric Aubourg and collaborators, BOSS astronomers measured the cosmic distance scale of galaxies in the “local” universe and of quasars in the distance universe with impressively small systematic errors—at less than the 1% level—when combined with cosmic microwave background constraints. Their cosmological analysis yields a measurement of the Hubble constant and of the matter density of the universe consistent with a “flat” cold dark matter cosmology with a cosmological constant (see below). Cosmological models including curvature, evolving dark energy, or massive neutrinos are not completely ruled out but are less supported by the data than before. Other results from the collaboration will be submitted for publication in the coming months.

Cosmological constraints on the Hubble parameter h, matter density Ωm, and curvature parameter Ωk from BOSS's baryon acoustic oscillations (BAO) combined with supernovae (SN) and Planck results. (Courtesy: Aubourg et al. 2014)


Cosmological constraints on the Hubble parameter h, matter density Ωm, and curvature parameter Ωk from BOSS’s baryon acoustic oscillations (BAO) combined with supernovae (SN) and Planck results. (Courtesy: Aubourg et al. 2014)
The BOSS dataset “represents the gold standard in mapping out the network of galaxies that comprises the large-scale structure of the Universe…The data enables us to trace, with greater precision than ever before, the presence of dark energy, the behaviour of gravity on cosmic scales, and the effect of massive neutrinos,” says Chris Blake of Swinburne University, not affiliated with the collaboration.

Where will the BOSS team go from here? The collaboration has begun work on SDSS-IV, whose six-year mission includes an ambitious extended BOSS (eBOSS) survey. According to eBOSS Targeting Coordinator Jeremy Tinker of New York University, eBOSS observations of over 700,000 quasars will precisely measure the distance scale “at a much higher redshift regime that is not covered by current large-scale surveys.”

You can read more about BOSS and updates about the three other componenets of the SDSS in our previous article here.
SDSS website

(Full disclosure: Ramin Skibba had been a member of the BOSS collaboration during 2010-2012.)



About 

Ramin Skibba is an Assistant Project Scientist at the Center for Astrophysics and Space Sciences at the University of California, San Diego. He writes about astronomy and science policy news at his blog (http://raminskibba.net) and about his scientific research at his work website (http://cass.ucsd.edu/~rskibba/).

Share this:

Big Asteroid 2004 BL86 Buzzes Earth on January 26: How to See it in Your Telescope

Big Asteroid 2004 BL86 Buzzes Earth on January 26: How to See it in Your Telescope:

Artist view of an asteroid passing Earth. On January 26th, beefy 2004 BL86 passes within 750,000 miles of our planet and will become bright enough to see in small telescopes and large binoculars. Credit: ESA/P.Carril


Artist view of an asteroid passing Earth. On January 26th, beefy 2004 BL86 passes within 3.1 times the distance of the Moon to our planet and become bright enough to see in small telescopes and large binoculars. Credit: ESA/P.Carril
A lot of asteroids pass near Earth every year. Many are the size of a house, make close flybys and zoom out of the headlines. 2004 BL86 is a bit different. On Monday evening January 26th, it will become the largest asteroid to pass closest to Earth until 2027 when 1999 AN10 will approach within one lunar distance.

Big is good. 2004 BL86 checks in at 2,230 feet (680-m) wide or nearly half a mile. Add up its significant size and relatively close approach – 745,000 miles (1.2 million km) – and something wonderful happens. This newsy space rock is expected to reach magnitude +9.0, bright enough to see in a 3-inch telescope or even large binoculars.

This graphic depicts the passage of asteroid 2004 BL86, which will come no closer than about three times the distance from Earth to the moon on Jan. 26, 2015. Due to its orbit around the sun, the asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock's changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech


This graphic depicts the passage of asteroid 2004 BL86, which will safely pass by the Earth on January 26th. Closest approach occurs around 10 a.m (CST) that day. The asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock’s changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech
This is a rare opportunity then to see an Earth-approaching asteroid so easily. All you need is a good map as 2004 BL86 will be zipping along at two arc seconds per second or two degrees (four Moon diameters) per hour. That means you’ll see it move in real time like a slow satellite inching its way across the sky. Cool!

As you can see from its name, 2004 BL86 was discovered 11 years ago in 2004 by the Lincoln Near-Earth Asteroid Research (LINEAR), an MIT Lincoln Laboratory program to track near-Earth objects  funded by the U.S. Air Force and NASA. As of September 15, 2011, the search has swept up 2,423 new asteroids and 279 new comets.

Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. The number at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott's SkyMap program


Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. Numbers at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott’s SkyMap program
All asteroids with well-known orbits receive a number. The first asteroid, 1 Ceres, was discovered in 1801. The 4,150th asteroid, 4150 Starr and named for the Beatles’ Ringo Starr, was found in 1984. 2004 BL86 will likely be the highest-numbered asteroid any of us will ever see. How does 357,439 sound to you?

Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott's SkyMap program


Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott’s SkyMap program
Observers in the Americas, Europe and Africa will have the best seats for viewing the asteroid, which will shine brightest between 7 p.m. and midnight CST from a comfortably high perch in Cancer the Crab not far from Jupiter. The half-moon will also be out but over in the western sky, so shouldn’t get in the way of seeing our speedy celeb.

Not only will 2004 BL86 pass near a few fairly bright stars but the Beehive Cluster (M44) will temporarily gain a new member between 11 p.m. and midnight as the asteroid buzzes across the well-known star cluster.

“Monday, January 26 will be the closest asteroid 2004 BL86 will get to Earth for at least the next 200 years,” said Don Yeomans, who’s retiring as manager of NASA’s Near Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, California, after 16 years in the position.

More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Created with Chris Marriott's SkyMap software


More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Click to get a larger version. Created with Chris Marriott’s SkyMap software
To learn more about the space rock and acquire close-ups of its surface, NASA’s Deep Space Network antenna at Goldstone, California, and the Arecibo Observatory in Puerto Rico will attempt to ping the asteroid with microwaves to create radar-generated images of the asteroid during the days surrounding its closest approach to Earth.

“When we get our radar data back the day after the flyby, we will have the first detailed images,” said radar astronomer Lance Benner of JPL, principal investigator for the Goldstone radar observations of the asteroid. “At present, we know almost nothing about the asteroid, so there are bound to be surprises.”

NASA's Deep Space Network will be watching during 2004 BL86's flyby Monday Jan. 26. Credit: NASA


NASA’s Deep Space Network will be watching during 2004 BL86’s flyby Monday Jan. 26. Credit: NASA
While 2004 BL86 will be brightest Monday night, that’s not the only time amateur astronomers might see it. It comes into view for southern hemisphere observers around magnitude +13 on Jan. 24 and leaves the scene at a similar brightness high in the northeastern sky in the northern hemisphere on the 29th. If you use a star-charting program like Starry Night, Guide, MegaStar and others, you can get updated orbital element packages HERE.  Just select your program and download the Observable Unusual Minor Planets file. Open it in your software and create maps for the entire apparition.

One last observing tip before you go your own way. Close asteroids will sometimes be a little bit off a particular track depending on your location. Not much but enough that I recommend you scan not just the single spot where you expect to see it but also nearby in the field of view. If you see a “star” on the move – that’s it.

Let us know if you see our not-so-little cosmic friend. Good luck!



About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.

Share this:

When Two Supermassive Black Holes Merge, It’s a Galactic Train Wreck

When Two Supermassive Black Holes Merge, It’s a Galactic Train Wreck:

An artist's conception of a black hole binary in a heart of a quasar, with the data showing the periodic variability superposed. Credit: Santiago Lombeyda/Caltech Center for Data-Driven Discovery


An artist’s conception of a black hole binary in a heart of a quasar, with the data showing the periodic variability superposed. Image Credit: Santiago Lombeyda / Caltech Center for Data-Driven Discovery
Most large galaxies harbor central supermassive black holes with masses equivalent to millions, or even billions, of Suns. Some, like the one in the center of the Milky Way Galaxy, lie quiet. Others, known as quasars, chow down on so much gas they outshine their host galaxies and are even visible across the Universe.

Although their brilliant light varies across all wavelengths, it does so randomly — there’s no regularity in the peaks and dips of brightness. Now Matthew Graham from Caltech and his colleagues have found an exception to the rule.

Quasar PG 1302-102 shows an unusual repeating light signature that looks like a sinusoidal curve. Astronomers think hidden behind the light are two supermassive black holes in the final phases of a merger — something theoretically predicted but never before seen. If the theory holds, astronomers might be able to witness two black holes en route to a collision of incredible scale.

The light curve combines data from two CRTS telescopes (CSS and MLS) with historical data from the LINEAR and ASAS surveys, and the literature15, 16 (see Methods for details). The error bars represent one standard deviation errors on the photometry values. The red dashed line indicates a sinusoid with period 1,884 days and amplitude 0.14 mag. The uncertainty in the measured period is 88 days. Note that this does not reflect the expected shape of the periodic waveform, which will depend on the physical properties of the system. MJD, modified Julian day. Image Credit: Graham et al.


The light curve combines data from two CRTS telescopes (CSS and MLS) with historical data from the LINEAR and ASAS surveys. Image Credit: Graham et al.
Graham and his colleagues discovered the unusual quasar on a whim. They were aiming to study quasar variability using the Catalina Real-Time Transient Survey (CRTS), which uses three ground-based telescopes to monitor some 500 million objects strewn across 80 percent of the sky, when 20 or so periodic sources popped up.

Of those 20 periodic quasars, PG 1302-102 was the most promising. It had a strong signal that appeared to repeat every five years or so. But what causes the repeating signal?

The black holes that power quasars do not emit light. Instead the light originates from the hot accretion disk that feeds the black hole. Orbiting clouds of gas, which are heated and ionized by the disk, also contribute in the form of visible emission lines.

“When you look at the emission lines in a spectrum from an object, what you’re really seeing is information about speed — whether something is moving toward you or away from you and how fast. It’s the Doppler effect,” said study coauthor Eilat Glikman from Middlebury College in Vermont, in a news release. “With quasars, you typically have one emission line, and that line is a symmetric curve. But with this quasar, it was necessary to add a second emission line with a slightly different speed than the first one in order to fit the data. That suggests something else, such as a second black hole, is perturbing this system.”

So a tight supermassive black hole binary is the most likely explanation for this oddly periodic quasar.

“Until now, the only known examples of supermassive black holes on their way to a merger have been separated by tens or hundreds of thousands of light years,” said study coauthor Daniel Stern from NASA’s Jet Propulsion Laboratory. “At such vast distances, it would take many millions, or even billions, of years for a collision and merger to occur. In contrast, the black holes in PG 1302-102 are, at most, a few hundredths of a light year apart and could merge in about a million years or less.”

But astronomers remain unsure about what physical mechanism is responsible for the quasar’s repeating light signal. It’s possible that one quasar is funneling material from its accretion disk into jets, which are rotating like beams from a lighthouse. Or perhaps a portion of the accretion disk itself is thicker than the rest, causing light to be blocked at certain spots in its orbit. Or maybe the accretion disk is dumping material onto the black hole in a regular fashion, causing periodic bursts of energy.

“Even though there are a number of viable physical mechanisms behind the periodicity we’re seeing — either the precessing jet, warped accretion disk or periodic dumping — these are all still fundamentally caused by a close binary system,” said Graham.

Astronomers still don’t have a good handle on what happens in the final few light-years of a black hole merger. And of course these two black holes still won’t collide for thousands to millions of years. Even watching for the period to shorten as they spiral inward would dwarf human timescales. But the discovery of a system so late in the game proves promising for future work.

The results have been published in Nature.



About 

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Share this:

Astronomers are Predicting at Least Two More Large Planets in the Solar System

Astronomers are Predicting at Least Two More Large Planets in the Solar System:

1 / 1 At least two unknown planets could exist in our solar system beyond Pluto. / Credit: NASA/JPL-Caltech.


1 / 1
At least two unknown planets could exist in our solar system beyond Pluto. / Credit: NASA/JPL-Caltech.
Could there be another Pluto-like object out in the far reaches of the Solar System? How about two or more?

Earlier this week, we discussed a recent paper from planet-hunter Mike Brown, who said that while there aren’t likely to be any bright, easy-to-find objects, there could be dark ones “lurking far away.” Now, a group of astronomers from the UK and Spain maintain at least two planets must exist beyond Neptune and Pluto in order to explain the orbital behavior of objects that are even farther out, called extreme trans-Neptunian objects (ETNO).


The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)


The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)
We do know that Pluto shares its region Solar System with more than 1500 other tiny, icy worlds along with likely countless smaller and darker ones that have not yet been detected.

In two new paper published this week, scientists at the Complutense University of Madrid and the University of Cambridge noted that the most accepted theory of trans-Neptunian objects is that they should orbit at a distance of about 150 AU, be in an orbital plane – or inclination – similar to the planets in our Solar System, and they should be randomly distributed.

But that differs from what is actually observed. What astronomers see are groupings of objects with widely disperse distances (between 150 AU and 525 AU) and orbital inclinations that vary between 0 to 20 degrees.

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO,” said Carlos de la Fuente Marcos, scientist at UCM and co-author of the study, “ and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto.”

He added that the exact number is uncertain, but given the limited data that is available, their calculations suggest “there are at least two planets, and probably more, within the confines of our solar system.”

In their studies, the team analyzed the effects of what is called the ‘Kozai mechanism,’ which is related to the gravitational perturbation that a large body exerts on the orbit of another much smaller and further away object. They looked at how the highly eccentric comet 96P/Machholz1 is influenced by Jupiter (it will come near the orbit of Mercury in 2017, but it travels as much as 6 AU at aphelion) and it may “provide the key to explain the puzzling clustering of orbits around argument of perihelion close to 0° recently found for the population of ETNOs,” the team wrote in one of their papers.

The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth's perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science


The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth’s perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science
They also looked at the dwarf planet discovered last year called 2012 VP113 in the Oort cloud (its closest approach to the Sun is about 80 astronomical units) and how some researchers say it appears its orbit might be influenced by the possible presence of a dark and icy super-Earth, up to ten times larger than our planet.

“This Sedna-like object has the most distant perihelion of any known minor planet and the value of its argument of perihelion is close to 0°,” the team writes in their second paper. “This property appears to be shared by almost all known asteroids with semimajor axis greater than 150 au and perihelion greater than 30 au (the extreme trans-Neptunian objects or ETNOs), and this fact has been interpreted as evidence for the existence of a super-Earth at 250 au. In this scenario, a population of stable asteroids may be shepherded by a distant, undiscovered planet larger than the Earth that keeps the value of their argument of perihelion librating around 0° as a result of the Kozai mechanism.”

Of course, the theory put forth in two papers published by the team goes against the predictions of current models on the formation of the Solar System, which state that there are no other planets moving in circular orbits beyond Neptune.

But the team pointed to the recent discovery of a planet-forming disk around the star HL Tauri that lies more than 100 astronomical units from the star. HL Tauri is more massive and younger than our Sun and the discovery suggests that planets can form several hundred astronomical units away from the center of the system.

The team based their analysis by studying 13 different objects, so what is needed is more observations of the outer regions of our Solar System to determine what might be hiding out there.

Further reading:
Carlos de la Fuente Marcos, Raúl de la Fuente Marcos, Sverre J. Aarseth. “Flipping minor bodies: what comet 96P/Machholz 1 can tell us about the orbital evolution of extreme trans-Neptunian objects and the production of near-Earth objects on retrograde orbits”. Monthly Notices of the Royal Astronomical Society 446(2):1867-1873, 2015.

C. de la Fuente Marcos, R. de la Fuente Marcos. “Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets? Monthly Notices of the Royal Astronomical Society Letters 443(1): L59-L63, 2014.

SiNC press release

Share this:

Comet Lovejoy Now at its Brightest: Images from Around the World

Comet Lovejoy Now at its Brightest: Images from Around the World:

C/2014 Q2 Lovejoy comet passing over perseus and Taurus molecular cloud forming a triangle with the California Nebula (the red nebula on the left), the M45 Pleaides and Hyades in Taurus. Taken on January 14, 2015 from Pragelato, Turin, Italy. Credit and copyright: Leonardo Orazi.


C/2014 Q2 Lovejoy comet passing over perseus and Taurus molecular cloud forming a triangle with the California Nebula (the red nebula on the left), the M45 Pleaides and Hyades in Taurus. Taken on January 14, 2015 from Pragelato, Turin, Italy. Credit and copyright: Leonardo Orazi.
Last night was the first time I was able to spot Comet Lovejoy with unaided eyes. The latest images from our readers and dedicated astrophotographers confirm that now is a good time to see the comet, which is reaching maximum brightness at his week. Spaceweather.com reports that many experienced observers say the comet is now shining at magnitude +3.8. With clear, dark skies C/2104 Q2 is easily seen with binoculars.

Enjoy this gallery of recent images, and if you’ve taken an image, consider joining our Flickr pool and submitting it. We may use your image in an upcoming article!


Comet Lovejoy C/2104 Q2 cruising past the open star Cluster M45 “Pleiades” or “The Seven Sisters.” Credit and copyright: John Chumack.


Comet Lovejoy C/2104 Q2 cruising past the open star Cluster M45 “Pleiades” or “The Seven Sisters.” Credit and copyright: John Chumack.
Comet Lovejoy taken on January 15, 2015 from Singapore. Credit and copyright: Justin Ng.


Comet Lovejoy taken on January 15, 2015 from Singapore. Credit and copyright: Justin Ng.
Comet C/2014 Q2 Lovejoy in a widefield false color image taken on January 16, 2015 from New Mexico Skies. Credit and copyright Joseph Brimacombe.


Comet C/2014 Q2 Lovejoy in a widefield false color image taken on January 16, 2015 from New Mexico Skies. Credit and copyright Joseph Brimacombe.
Comet Lovejoy, C/2014 Q2, a wide binocular field west of M45, the Pleiades star cluster in Taurus, on January 15, 2015, shot from Silver City, New Mexico. The long blue ion tail stretched back for about 8°. Credit and copyright: Alan Dyer.


Comet Lovejoy, C/2014 Q2, a wide binocular field west of M45, the Pleiades star cluster in Taurus, on January 15, 2015, shot from Silver City, New Mexico. The long blue ion tail stretched back for about 8°. Credit and copyright: Alan Dyer.
Comet Lovejoy photographed from Torrance Barrens Dark-Sky Preserve (30 km from Gravenhurst, Ontario, Canada; 200 km north of Toronto) on January 13, 2015. Credit and copyright: Michael Watson.


Comet Lovejoy photographed from Torrance Barrens Dark-Sky Preserve (30 km from Gravenhurst, Ontario, Canada; 200 km north of Toronto) on January 13, 2015. Credit and copyright: Michael Watson.
Comet Lovejoy as seen from Lahore, Pakistan on January 15, 2014, 10:30 pm local time. 35 single images stacked in DSS. Each 8 seconds, ISO 2000, f/5.6, edited in Photoshop. Credit and copyright: Roshaan Bukhari


Comet Lovejoy as seen from Lahore, Pakistan on January 15, 2014, 10:30 pm local time. 35 single images stacked in DSS. Each 8 seconds, ISO 2000, f/5.6, edited in Photoshop. Credit and copyright: Roshaan Bukhari
High resolution 3 panel mosaic of C/2014 Q2 on January 11, 2015. Field of view is approximately 3.5° x 2° and composed of three fields. Many fine streamers are visible emanating from the nucleus. Credit and copyright: SEN/ Damian Peach.


High resolution 3 panel mosaic of C/2014 Q2 on January 11, 2015. Field of view is approximately 3.5° x 2° and composed of three fields. Many fine streamers are visible emanating from the nucleus. Credit and copyright: SEN/ Damian Peach.
Comet LoveJoy photographed from Kosovo on January 13, 2015. Credit and copyright: Suhel A. Ahmeti.


Comet LoveJoy photographed from Kosovo on January 13, 2015. Credit and copyright: Suhel A. Ahmeti.
C2014 Q2 Lovejoy on January 13, 2015. Credit and copyright: Shahrin Ahmad.


C2014 Q2 Lovejoy on January 13, 2015. Credit and copyright: Shahrin Ahmad.
Comet Lovejoy on January 11, 2015. Credit and copyright: Henry Weiland.

Comet Lovejoy on January 11, 2015. Credit and copyright: Henry Weiland.
Wide angle shot of Comet Lovejoy with the constellation Orion, showing rich fields of red nebula, star clouds and dark nebula with the bright green naked eye comet. Credit and copyright: Chris Schur.


Wide angle shot of Comet Lovejoy with the constellation Orion, showing rich fields of red nebula, star clouds and dark nebula with the bright green naked eye comet. Credit and copyright: Chris Schur.
Comet Lovejoy traveling through Taurus. Imaged on January 12, 2015 from Bathurst, New South Wales. Credit and copyright: Wes Schulstad.


Comet Lovejoy traveling through Taurus. Imaged on January 12, 2015 from Bathurst, New South Wales. Credit and copyright: Wes Schulstad.
C2014 Q2 Lovejoy on January 7, 2015, taken from Bannister Green, England. Credit and copyright: Wendy Clark.


C2014 Q2 Lovejoy on January 7, 2015, taken from Bannister Green, England. Credit and copyright: Wendy Clark.

Share this:

Some of the Best Pictures of the Planets in our Solar System

Some of the Best Pictures of the Planets in our Solar System:

The Eight Planets of our Solar System. Credit: IAU


The Eight Planets of our Solar System. Credit: IAU
Our Solar System is a pretty picturesque place. Between the Sun, the Moon, and the Inner and Outer Solar System, there is no shortage of wondrous things to behold. But arguably, it is the eight planets that make up our Solar System that are the most interesting and photogenic. With their spherical discs, surface patterns and curious geological formations, Earth’s neighbors have been a subject of immense fascination for astronomers and scientists for millennia.

And in the age of modern astronomy, which goes beyond terrestrial telescopes to space telescopes, orbiters and satellites, there is no shortage of pictures of the planets. But here are a few of the better ones, taken with high-resolutions cameras on board spacecraft that managed to capture their intricate, picturesque, and rugged beauty.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Mercury, as imaged by the MESSENGER spacecraft, revealing parts never before seen by human eyes. Image Credit: NASA/Johns Hopkins University/Carnegie Institution of Washington
Named after the winged messenger of the gods, Mercury is the closest planet to our Sun. It’s also the smallest (now that Pluto is no longer considered a planet. At 4,879 km, it is actually smaller than the Jovian moon of Ganymede and Saturn’s largest moon, Titan.

Because of its slow rotation and tenuous atmosphere, the planet experiences extreme variations in temperature – ranging from -184 °C on the dark side and 465 °C on the side facing the Sun. Because of this, its surface is barren and sun-scorched, as seen in the image above provided by the MESSENGER spacecraft.

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL


A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL
Venus is the second planet from our Sun, and Earth’s closest neighboring planet. It also has the dubious honor of being the hottest planet in the Solar System. While farther away from the Sun than Mercury, it has a thick atmosphere made up primarily of carbon dioxide, sulfur dioxide and nitrogen gas. This causes the Sun’s heat to become trapped, pushing average temperatures up to as high as 460°C. Due to the presence of sulfuric and carbonic compounds in the atmosphere, the planet’s atmosphere also produces rainstorms of sulfuric acid.

Because of its thick atmosphere, scientists were unable to examine of the surface of the planet until 1970s and the development of radar imaging. Since that time, numerous ground-based and orbital imaging surveys have produced information on the surface, particularly by the Magellan spacecraft (1990-94). The pictures sent back by Magellan revealed a harsh landscape dominated by lava flows and volcanoes, further adding to Venus’ inhospitable reputation.

Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA


Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA
Earth is the third planet from the Sun, the densest planet in our Solar System, and the fifth largest planet. Not only is 70% of the Earth’s surface covered with water, but the planet is also in the perfect spot – in the center of the hypothetical habitable zone – to support life. It’s atmosphere is primarily composed of nitrogen and oxygen and its average surface temperatures is 7.2°C. Hence why we call it home.

Being that it is our home, observing the planet as a whole was impossible prior to the space age. However, images taken by numerous satellites and spacecraft – such as the Apollo 11 mission, shown above – have been some of the most breathtaking and iconic in history.

The first true-colour image of Mars from ESA’s Rosetta generated using the OSIRIS orange (red), green and blue colour filters. The image was acquired on 24 February 2007 at 19:28 CET from a distance of about 240 000 km. Credit: MPS for OSIRIS Team MPS/UPD/LAM/ IAA/ RSSD/ INTA/ UPM/ DASP/ IDA


The first true-colour image of Mars taken by the ESA’s Rosetta spacecraft on 24 February 2007. Credit: MPS for OSIRIS Team MPS/UPD/LAM/ IAA/ RSSD/ INTA/ UPM/ DASP/ IDA
Mars is the fourth planet from our Sun and Earth’s second closest neighbor. Roughly half the size of Earth, Mars is much colder than Earth, but experiences quite a bit of variability, with temperatures ranging from 20 °C at the equator during midday, to as low as -153 °C at the poles. This is due in part to Mars’ distance from the Sun, but also to its thin atmosphere which is not able to retain heat.

Mars is famous for its red color and the speculation it has sparked about life on other planets. This red color is caused by iron oxide – rust – which is plentiful on the planet’s surface. It’s surface features, which include long “canals”, have fueled speculation that the planet was home to a civilization.

Observations made by satellites flybys in the 1960’s (by the Mariner 3 and 4 spacecraft) dispelled this notion, but scientists still believe that warm, flowing water once existed on the surface, as well as organic molecules. Since that time, a small army of spacecraft and rovers have taken the Martian surface, and have produced some of the most detailed and beautiful photos of the planet to date.

Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)


Jupiter’s Great Red Spot and Ganymede’s Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)
Jupiter, the closest gas giant to our Sun, is also the largest planet in the Solar System. Measuring over 70,000 km in diameter, it is 317 times more massive than Earth and 2.5 times more massive than all the other planets in our Solar System combined. It also has the most moons of any planet in the Solar System, with 67 confirmed satellites as of 2012.

Despite its size, Jupiter is not very dense. The planet is comprised almost entirely of gas, with what astronomers believe is a core of metallic hydrogen. Yet, the sheer amount of pressure, radiation, gravitational pull and storm activity of this planet make it the undisputed titan of our Solar System.

Jupiter has been imaged by ground-based telescopes, space telescopes, and orbiter spacecraft. The best ground-based picture was taken in 2008 by the ESO’s Very Large Telescope (VTL) using its Multi-Conjugate Adaptive Optics Demonstrator (MAD) instrument. However, the greatest images captured of the Jovian giant were taken during flybys, in this case by the Galileo and Cassini missions.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.


Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute/Gordan Ugarkovic
Saturn, the second gas giant closest to our Sun, is best known for its ring system – which is composed of rocks, dust, and other materials. All gas giants have their own system of rings, but Saturn’s system is the most visible and photogenic. The planet is also the second largest in our Solar System, and is second only to Jupiter in terms of moons (62 confirmed).

Much like Jupiter, numerous pictures have been taken of the planet by a combination of ground-based telescopes, space telescopes and orbital spacecraft. These include the Pioneer, Voyager, and most recently, Cassini spacecraft.

Uranus, seen by Voyager 2. Image credit: NASA/JPL

Uranus, seen by Voyager 2 spacecraft. Image credit: NASA/JPL
Another gas giant, Uranus is the seventh planet from our Sun and the third largest planet in our Solar System. The planet contains roughly 14.5 times the mass of the Earth, but it has a low density. Scientists believe it is composed of a rocky core that is surrounded by an icy mantle made up of water, ammonia and methane ice, which is itself surrounded by an outer gaseous atmosphere of hydrogen and helium.

It is for this reason that Uranus is often referred to as an “ice planet”. The concentrations of methane are also what gives Uranus its blue color. Though telescopes have captured images of the planet, only one spacecraft has even taken pictures of Uranus over the years. This was the Voyager 2 craft which performed a flyby of the planet in 1986.

Neptune from Voyager 2. Image credit: NASA/JPL

Neptune from Voyager 2. Image credit: NASA/JPL
Neptune is the eight planet of our Solar System, and the farthest from the Sun. Like Uranus, it is both a gas giant and ice giant, composed of a solid core surrounded by methane and ammonia ices, surrounded by large amounts of methane gas. Once again, this methane is what gives the planet its blue color.  It is also the smallest gas giant in the outer Solar System, and the fourth smallest planet.

All of the gas giants have intense storms, but Neptune has the fastest winds of any planet in our Solar System. The winds on Neptune can reach up to 24,000 kilometers per hour, and the strongest of which are believed to be the Great Dark Spot, which was seen in 1989, or the Small Dark Spot (also seen in 1989). In both cases, these storms and the planet itself were observed by the Voyager 2 spacecraft, the only one to capture images of the planet.

Universe Today has many interesting articles on the subject of the planets, such as interesting facts about the planets and interesting facts about the Solar System.

If you are looking for more information, try NASA’s Solar System exploration page and an overview of the Solar System.

Astronomy Cast has episodes on all of the planets including Mercury.



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Share this:

Thursday, January 15, 2015

Challenge Yourself! See an Astronomical Event that Only Happens Once Every 26 Years

Challenge Yourself! See an Astronomical Event that Only Happens Once Every 26 Years:

This artist’s impression shows an eclipsing binary star system. Credit: ESO/L. Calçada.


This artist’s impression shows an eclipsing binary star system. Credit: ESO/L. Calçada.
A truly fascinating event may be in the offing this month.

Picture two distant burning embers (candles, light bulbs, LEDs, what have you) circling each other in the distance. From our far-flung vantage point, the two points of light are too faint to resolve individually, but as they pass in front of each other, a telltale dip in combined brightness occurs as one blocks out the other.

Welcome to the fascinating world of eclipsing binary stars. This week, we’d like to turn our attention towards a special star in the constellation of Coma Berenices which may — or may not — put on such a dimming act later this month.

Starry Night


An Alpha Comae Berenices (Diadem) finder chart, with comparison stars and magnitudes, decimals omitted. Credit: Starry Night Education Software.
The brightest star in the constellation Coma Berenices, Alpha (sometimes referred to as Diadem, or the ‘crown’ of Queen Berenice) shines at an apparent magnitude of +4.3. Located 63 light years distant, the system consists of two +5th magnitude F-type stars each about 3 times more luminous than our Sun locked in a 26 year orbital embrace. The physical separation of the pair is about 10 astronomical units: place Alpha Comae Berenices in our solar system, and the pair would fit nicely between the Sun and Saturn.

The orbital plane of the pair is inclined nearly along our line of sight as seen from the Earth, and it’s long been thought that catching a grazing or central eclipse of the pair might just be possible. No eclipse was recorded last time ‘round back in February 1989, but times have changed lots in observational astronomy. Today, there are enough backyard observers armed with dedicated observatories and rigs that’d be the envy of a small university that documenting such an eclipse might just be possible. In fact, a central eclipse might just dim the star by 0.8 magnitudes, and should be noticeable to the naked eye.



The binary nature of Alpha Comae Berenices was first noted by F. G. W. Struve in 1827, and the split is a challenging one during the best of years with a maximum angular separation of just 0.7 arc seconds. The pair also has a third faint +10th magnitude companion located about 89 arc seconds away.

Simplified


A simplified diagram depicting an eclipsing binary event along our line of sight. Created by the author.
The American Association of Variable Star Observers (AAVSO) has an Alert Notice calling for sky watchers worldwide to monitor the star. We also understand the orbit of Alpha Comae Berenices much better in 2015 than back in 1989, and the suspected eclipse should occur somewhere between January 22nd and January 28th and may last anywhere from 28 to 45 hours. This lingering ambiguity means that having a dedicated team of observers worldwide may well be key to nabbing this eclipse.

Bootes-Labeled


Alpha Comae Berenices rising. Photo by the author.
The Navy Precision Optical Interferometer (NPOI) has already begun refining measurements of the brightness of the star last month, and professional facilities, to include the Fairborn Observatory atop Mt Hopkins in Arizona and the CHARA (the Center for High Angular Resolution Astronomy) Array at Mount Wilson Observatory in southern California will also be monitoring the event.

Sky and Telescope magazine also has an excellent article in their January 2015 issue on the prospects for catching this eclipse.

Stellarium


Looking eastward past local midnight. Credit: Stellarium.
In late January, the constellation of Coma Berenices rises high to the northeast just after local midnight.  It’s worth noting that, if the eclipsing binary nature of Alpha Comae Berenices is confirmed, it would be the longest period known, beating out 14.6 year Gamma Persei discovered in 1990 by more than a decade. A system with as wide a separation as Alpha Comae Berenices would have about a 1 in 1,200 chance in eclipsing along our line of sight due to random chance.

Note: Epsilon Aurigae does have a comparable 27 year period involving a debris disk surrounding its host star. Thanks to sharp-eyed reader Dr. John Barentine for pointing this out!

Of course, the universe does provide us with lots of near misses, allowing for an ‘occasional Diadem’ to indeed occur. Most famous eclipsing variables, such as Algol or Beta Lyrae have periods measured over the span of days or hours. Incidentally, these also make great ‘practice stars’ to test your skills as a visual athlete leading up to the big event next week. A skilled visual observer can note a change as slight as a 0.1 of a magnitude, and it’s a good idea to begin familiarizing yourself with the environs of the star now. The Coma Cluster of galaxies, the globular cluster M53, and the galactic plane crossing intruder Arcturus all lie nearby.

Credit: NASA/Spitzer.


The Coma Cluster as seen by Spitzer Space Telescope and the Sloan Digital Sky Survey. Credit: NASA/Spitzer.
Why study eclipsing binaries? Well, said fleeting mutual events when coupled with spectroscopic measurements and determinations of parallax can tell us a good deal about the astrophysical nature of the stars involved. Eclipsing binary stars have even been used to back up standard candle measurements over extragalactic distances. And of course, orbiting observatories such as Kepler and TESS (to be launched in 2017) look for transiting exoplanets using virtually the same method.

Credit: Brad Timerson.


Have a scope+DSLR? Then you can make refined measurements of eclipsing variable stars. Credit: Brad Timerson/IOTA.
But beyond its practical application, we just think that it’s plain cool that you can actually see something out beyond our solar system changing in the span of just a few days or hours.

Observers also still carry out visual observations of variable stars, just like those pipe-smoking, pocket watch carrying astronomers of yore. This involves merely comparing the target star to nearby stars of the same brightness. If you have a DSLR or a CCD rig plus a telescope, the AAVSO also has instructions for how to monitor a star’s brightness as well. No pocket watch required.

A homemade interferometer used to measure the separation of close double stars.


A homemade ‘card interferometer’ used to measure the separation of close double stars. Photo by author.
Unless, of course, you want to carry a pocket watch just for good luck. Don’t let the cold January winters keep you from joining the hunt. Let’s make some astrophysical history!



About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.

Share this: