Photos of Nature, Nature Photography Across The Universe. All about Nature, Love, Travel, Beautiful Photo, Landscape, Sunset, Summer, Mountains, Flowers, Photographer, Wallpaper, Portrait, Photo, what is the Universe
Photos of Nature | Nature Photography What is The Universe
Showing posts with label across the universe. Show all posts
Showing posts with label across the universe. Show all posts
Wednesday, January 19, 2022
Tuesday, September 7, 2021
UFO Sightings in Colorado
Labels:
across the universe,
colorado,
ovnis,
space,
UFO,
UFO Sightings,
universe photography,
usa
Thursday, June 14, 2018
Across The Universe- Astronomy Cast Ep. 490: What’s New with Supernovae
Astronomy Cast Ep. 490: What’s New with Supernovae:
Time for another update, this time we’re going to look at what’s new with supernovae. And once again, we’ve got good news, lots of new stuff to report.
We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.
Visit the Astronomy Cast Page to subscribe to the audio podcast!
If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
The post Astronomy Cast Ep. 490: What’s New with Supernovae appeared first on Universe Today.
Time for another update, this time we’re going to look at what’s new with supernovae. And once again, we’ve got good news, lots of new stuff to report.
We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.
Visit the Astronomy Cast Page to subscribe to the audio podcast!
If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!
If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!
The post Astronomy Cast Ep. 490: What’s New with Supernovae appeared first on Universe Today.
Across The Universe - One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts
One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts:
When it comes to the search for extra-terrestrial intelligence (SETI) in the Universe, there is the complicated matter of what to be on the lookout for. Beyond the age-old question of whether or not intelligent life exists elsewhere in the Universe (statistically speaking, it is very likely that it does), there’s also the question of whether or not we would be able to recognize it if and when we saw it.
Given that humanity is only familiar with one form of civilization (our own), we tend to look for indications of technologies we know or which seem feasible. In a recent study, a researcher from the Instituto de Astrofísica de Canarias (IAC) proposed looking for large bands of satellites in distant star systems – a concept that was proposed by the late and great Arthur C. Clarke (known as a Clarke Belt).
The study – titled “Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt” – was conducted by Hector Socas-Navarro, an astrophysicist with the IAC and the Universidad de La Laguna. In it, he advocates using next-generation telescopes to look for signs of massive belts of geostationary communication satellites in distant star systems.
This proposal is based in part on a paper written by Arthur C. Clarke in 1945 (titled “Peacetime Uses for V2“), in which he proposed sending “artificial satellites” into geostationary orbit around Earth to create a global communications network. At present, there are about 400 such satellites in the “Clarke Belt” – a region named in honor of him that is located 36,000 km above the Earth.
This network forms the backbone of modern telecommunications and in the future, many more satellites are expected to be deployed – which will form the backbone of the global internet. Given the practicality of satellites and the fact that humanity has come to rely on them so much, Socas-Navarro considers that a belt of artificial satellites could naturally be considered “technomarkers” (the analogues of “biomarkers”, which indicate the presence of life).
As Socas-Navarro explained to Universe Today via email:
Graphic showing the cloud of space debris that currently surrounds the Earth. Credit: NASA’s Goddard Space Flight Center/JSC“Other existing technomarkers are based on science fiction technology of which we know very little,” said Socas-Navarro. “We don’t know if such technologies are possible or if other alien species might be using them. The Clarke Exobelt, on the other hand, is a technomarker based on real, currently existing technology. We know we can make satellites and, if we make them, it’s reasonable to assume that other civilizations will make them too.”
According to Socas-Navarro, there is some “science fiction” when it comes to Clarke Exobelts that would actually be detectable using these instruments. As noted, humanity has about 400 operational satellites occupying Earth’s “Clarke Belt”. This is about one-third of the Earth’s existing satellites, whereas the rest are at an altitude of 2000 km (1200 mi) or less from the surface – the region known as Low Earth Orbit (LEO).
This essentially means that aliens would need to have billions more satellites within their Clarke Belt – accounting for roughly 0.01% of the belt area – in order for it to be detectable. As for humanity, we are not yet to the point where our own Belt would be detectable by an extra-terrestrial intelligence (ETI). However, this should not take long given that the number of satellites in orbit has been growing exponentially over the past 15 years.
Based on simulations conducted by Socas-Navarro, humanity will reach the threshold where its satellite band will be detectable by ETIs by 2200. Knowing that humanity will reach this threshold in the not-too-distant future makes the Clarke Belt a viable option for SETI. As Socas-Navarro explained:
An exoplanet transiting across the face of its star, demonstrating one of the methods used to find planets beyond our solar system. Credit: ESA/C. CarreauAs for when we might be able to start looking for Exobelts, Socas-Navarro indicates that this will be possible within the next decade. Using instruments like the James Webb Space Telescope (JWST), the Giant Magellan Telescope (GMT), the European Extremely Large Telescope (E-ELT), and the Thirty Meter Telescope (TMT), scientists will have ground-based and space-based telescopes with the necessary resolution to spot these bands around exoplanets.
As for how these belts would be detected, that would come down to the most popular and effective means for finding exoplanets to date – the Transit Method (aka. Transit Photometry). For this method, astronomers monitor distant stars for periodic dips in brightness, which are indications of an exoplanet passing in front of the star. Using next-generation telescopes, astronomers may also be able to detect reflected light from a dense band of satellites in orbit.
“However, before we point our supertelescopes to a planet we need to identify good candidates,” said Socas-Navarro. “There are too many stars to check and we can’t go one by one. We need to rely on exoplanet search projects, such as the recently launched satellite TESS, to spot interesting candidates. Then we can do follow-up observations with supertelescopes to confirm or refute those candidates.”
In this respect, telescopes like the Kepler Space Telescope and the Transiting Exoplanet Survey Telescope (TESS) will still serve an important function in searching for technomarkers. Whereas the former telescope is due to retire soon, the latter is scheduled to launch in 2018.
Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research CenterWhile these space-telescopes would search for rocky planets that are located within the habitable zones of thousands of stars, next-generation telescopes could search for signs of Clarke Exobelts and other technomarkers that would be otherwise hard to spot. However, as Socas-Navarro indicated, astronomers could also find evidence of Exobands by sifting through existing data as well.
“In doing SETI, we have no idea what we are looking for because we don’t know what the aliens are doing,” he said. “So we have to investigate all the possibilities that we can think of. Looking for Clarke Exobelts is a new way of searching, it seems at least reasonably plausible and, most importantly, it’s free. We can look for signatures of Clarke Exobelts in currently existing missions that search for exoplanets, exorings or exomoons. We don’t need to build costly new telescopes or satellites. We simply need to keep our eyes open to see if we can spot the signatures presented in the simulation in the flow of data from all of those projects.”
Humanity has been actively searching for signs of extra-terrestrial intelligence for decades. To know that our technology and methods are becoming more refined, and that more sophisticated searches could begin within a decade, is certainly encouraging. Knowing that we won’t be visible to any ETIs that are out there for another two centuries, that’s also encouraging!
And be sure to check out this cool video by our friend, Jean Michael Godier, where he explains the concept of a Clarke Exobelt:
Further Reading: IAC, The Astrophysical Journal
The post One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts appeared first on Universe Today.
When it comes to the search for extra-terrestrial intelligence (SETI) in the Universe, there is the complicated matter of what to be on the lookout for. Beyond the age-old question of whether or not intelligent life exists elsewhere in the Universe (statistically speaking, it is very likely that it does), there’s also the question of whether or not we would be able to recognize it if and when we saw it.
Given that humanity is only familiar with one form of civilization (our own), we tend to look for indications of technologies we know or which seem feasible. In a recent study, a researcher from the Instituto de Astrofísica de Canarias (IAC) proposed looking for large bands of satellites in distant star systems – a concept that was proposed by the late and great Arthur C. Clarke (known as a Clarke Belt).
The study – titled “Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt” – was conducted by Hector Socas-Navarro, an astrophysicist with the IAC and the Universidad de La Laguna. In it, he advocates using next-generation telescopes to look for signs of massive belts of geostationary communication satellites in distant star systems.
This proposal is based in part on a paper written by Arthur C. Clarke in 1945 (titled “Peacetime Uses for V2“), in which he proposed sending “artificial satellites” into geostationary orbit around Earth to create a global communications network. At present, there are about 400 such satellites in the “Clarke Belt” – a region named in honor of him that is located 36,000 km above the Earth.
This network forms the backbone of modern telecommunications and in the future, many more satellites are expected to be deployed – which will form the backbone of the global internet. Given the practicality of satellites and the fact that humanity has come to rely on them so much, Socas-Navarro considers that a belt of artificial satellites could naturally be considered “technomarkers” (the analogues of “biomarkers”, which indicate the presence of life).
As Socas-Navarro explained to Universe Today via email:
“Essentially, a technomarker is anything that we could potentially observe which would reveal the presence of technology elsewhere in the Universe. It’s the ultimate clue to find intelligent life out there. Unfortunately, interstellar distances are so great that, with our current technology, we can only hope to detect very large objects or structures, something comparable to the size of a planet.”In this respect, a Clarke Exobelt is not dissimilar from a Dyson Sphere or other forms of megastructures that have been proposed by scientists in the past. But unlike these theoretical structures, a Clarke Exobelt is entirely feasible using present-day technology.
Graphic showing the cloud of space debris that currently surrounds the Earth. Credit: NASA’s Goddard Space Flight Center/JSC
According to Socas-Navarro, there is some “science fiction” when it comes to Clarke Exobelts that would actually be detectable using these instruments. As noted, humanity has about 400 operational satellites occupying Earth’s “Clarke Belt”. This is about one-third of the Earth’s existing satellites, whereas the rest are at an altitude of 2000 km (1200 mi) or less from the surface – the region known as Low Earth Orbit (LEO).
This essentially means that aliens would need to have billions more satellites within their Clarke Belt – accounting for roughly 0.01% of the belt area – in order for it to be detectable. As for humanity, we are not yet to the point where our own Belt would be detectable by an extra-terrestrial intelligence (ETI). However, this should not take long given that the number of satellites in orbit has been growing exponentially over the past 15 years.
Based on simulations conducted by Socas-Navarro, humanity will reach the threshold where its satellite band will be detectable by ETIs by 2200. Knowing that humanity will reach this threshold in the not-too-distant future makes the Clarke Belt a viable option for SETI. As Socas-Navarro explained:
“In this sense, the Clarke Exobelt is interesting because it’s the first technomarker that looks for currently existing technology. And it goes both ways too. Humanity’s Clarke Belt is probably too sparsely populated to be detectable from other stars right now (at least with technology like ours). But in the last decades we have been populating it at an exponential rate. If this trend were to continue, our Clarke Belt would be detectable from other stars by the year 2200. Do we want to be detectable? This is an interesting debate that humanity will have to resolve soon.
An exoplanet transiting across the face of its star, demonstrating one of the methods used to find planets beyond our solar system. Credit: ESA/C. Carreau
As for how these belts would be detected, that would come down to the most popular and effective means for finding exoplanets to date – the Transit Method (aka. Transit Photometry). For this method, astronomers monitor distant stars for periodic dips in brightness, which are indications of an exoplanet passing in front of the star. Using next-generation telescopes, astronomers may also be able to detect reflected light from a dense band of satellites in orbit.
“However, before we point our supertelescopes to a planet we need to identify good candidates,” said Socas-Navarro. “There are too many stars to check and we can’t go one by one. We need to rely on exoplanet search projects, such as the recently launched satellite TESS, to spot interesting candidates. Then we can do follow-up observations with supertelescopes to confirm or refute those candidates.”
In this respect, telescopes like the Kepler Space Telescope and the Transiting Exoplanet Survey Telescope (TESS) will still serve an important function in searching for technomarkers. Whereas the former telescope is due to retire soon, the latter is scheduled to launch in 2018.
Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center
“In doing SETI, we have no idea what we are looking for because we don’t know what the aliens are doing,” he said. “So we have to investigate all the possibilities that we can think of. Looking for Clarke Exobelts is a new way of searching, it seems at least reasonably plausible and, most importantly, it’s free. We can look for signatures of Clarke Exobelts in currently existing missions that search for exoplanets, exorings or exomoons. We don’t need to build costly new telescopes or satellites. We simply need to keep our eyes open to see if we can spot the signatures presented in the simulation in the flow of data from all of those projects.”
Humanity has been actively searching for signs of extra-terrestrial intelligence for decades. To know that our technology and methods are becoming more refined, and that more sophisticated searches could begin within a decade, is certainly encouraging. Knowing that we won’t be visible to any ETIs that are out there for another two centuries, that’s also encouraging!
And be sure to check out this cool video by our friend, Jean Michael Godier, where he explains the concept of a Clarke Exobelt:
Further Reading: IAC, The Astrophysical Journal
The post One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts appeared first on Universe Today.
Saturday, June 2, 2018
Meteors, Planes, and a Galaxy over Bryce Canyon
Meteors, Planes, and a Galaxy over Bryce Canyon:
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 6
Meteors, Planes, and a Galaxy over Bryce Canyon
Image Credit & Copyright:
Dave Lane
Explanation:
Sometimes land and sky are both busy and beautiful.
The landscape pictured in the foreground encompasses
Bryce Canyon in
Utah,
USA, famous for its many interesting
rock structures eroded over millions of years.
The featured skyscape, photogenic in its own right, encompasses the
arching central disk of our
Milky Way Galaxy, the
short streaks of three passing planes near the horizon,
at least four long streaks that are likely
Eta Aquariid meteors,
and many stars including the three bright stars that make up the
Summer Triangle.
The
featured image
is a digital panorama created from 12 smaller images during this date in 2014.
Recurring every year, yesterday and tonight mark the peak of
this year's Eta Aquriids meteor shower, where a
patient observer with dark skies and
dark-adapted eyes might expect to see a
meteor every few minutes.
Tomorrow's picture: unusually placed rock
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 6
Meteors, Planes, and a Galaxy over Bryce Canyon
Image Credit & Copyright:
Dave Lane
Explanation:
Sometimes land and sky are both busy and beautiful.
The landscape pictured in the foreground encompasses
Bryce Canyon in
Utah,
USA, famous for its many interesting
rock structures eroded over millions of years.
The featured skyscape, photogenic in its own right, encompasses the
arching central disk of our
Milky Way Galaxy, the
short streaks of three passing planes near the horizon,
at least four long streaks that are likely
Eta Aquariid meteors,
and many stars including the three bright stars that make up the
Summer Triangle.
The
featured image
is a digital panorama created from 12 smaller images during this date in 2014.
Recurring every year, yesterday and tonight mark the peak of
this year's Eta Aquriids meteor shower, where a
patient observer with dark skies and
dark-adapted eyes might expect to see a
meteor every few minutes.
Tomorrow's picture: unusually placed rock
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Spiral Galaxy NGC 4038 in Collision
Spiral Galaxy NGC 4038 in Collision:
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 23
Spiral Galaxy NGC 4038 in Collision
Image Credit:
NASA,
ESA,
Hubble,
HLA;
Processing & Copyright:
Domingo Pestana
Explanation:
This galaxy is having a bad millennium.
In fact, the past 100 million years haven't been so good,
and probably the next billion or so will be quite tumultuous.
Visible toward the lower right, NGC 4038 used to be a normal spiral galaxy, minding its own business, until NGC 4039, to its upper left,
crashed into it.
The evolving wreckage, known famously as
the Antennae, is featured here.
As gravity restructures each galaxy, clouds of gas slam into each other,
bright blue knots of stars form, massive stars form and
explode,
and brown filaments of dust are strewn about.
Eventually the
two galaxies
will converge into one larger spiral galaxy.
Such collisions are not unusual, and even our own
Milky Way Galaxy
has undergone several in the past and is
predicted to collide
with our neighboring
Andromeda Galaxy in a few billion years.
The
frames that compose this image were taken by the orbiting
Hubble Space Telescope by professional astronomers to
better understand galaxy collisions.
These frames -- and many other deep space images from
Hubble -- have since been
made public,
allowing interested amateurs to download and
process them into, for example, this visually stunning composite.
Tomorrow's picture: The Expanse
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 23
Spiral Galaxy NGC 4038 in Collision
Image Credit:
NASA,
ESA,
Hubble,
HLA;
Processing & Copyright:
Domingo Pestana
Explanation:
This galaxy is having a bad millennium.
In fact, the past 100 million years haven't been so good,
and probably the next billion or so will be quite tumultuous.
Visible toward the lower right, NGC 4038 used to be a normal spiral galaxy, minding its own business, until NGC 4039, to its upper left,
crashed into it.
The evolving wreckage, known famously as
the Antennae, is featured here.
As gravity restructures each galaxy, clouds of gas slam into each other,
bright blue knots of stars form, massive stars form and
explode,
and brown filaments of dust are strewn about.
Eventually the
two galaxies
will converge into one larger spiral galaxy.
Such collisions are not unusual, and even our own
Milky Way Galaxy
has undergone several in the past and is
predicted to collide
with our neighboring
Andromeda Galaxy in a few billion years.
The
frames that compose this image were taken by the orbiting
Hubble Space Telescope by professional astronomers to
better understand galaxy collisions.
These frames -- and many other deep space images from
Hubble -- have since been
made public,
allowing interested amateurs to download and
process them into, for example, this visually stunning composite.
Tomorrow's picture: The Expanse
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Galaxies Away
Galaxies Away:
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 25
Galaxies Away
Image Credit &
Copyright:
Data -
Hubble Legacy Archive,
Processing -
Domingo Pestana
Explanation:
This stunning group of galaxies is far, far away,
about 450 million light-years from
planet Earth
and cataloged as galaxy cluster Abell S0740.
Dominated by the cluster's large central elliptical galaxy
(ESO 325-G004), this reprocessed
Hubble
Space Telescope view takes in a
remarkable assortment of galaxy shapes and sizes with
only a few spiky foreground stars
scattered through the field.
The giant elliptical galaxy
(right of center)
spans over 100,000 light years and
contains about 100 billion stars, comparable in
size to our own spiral Milky Way galaxy.
The Hubble data can reveal a
wealth
of detail in even these distant galaxies, including
arms and dust lanes, star clusters, ring structures,
and gravitational lensing arcs.
Tomorrow's picture: Moon over Saturn
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 May 25
Galaxies Away
Image Credit &
Copyright:
Data -
Hubble Legacy Archive,
Processing -
Domingo Pestana
Explanation:
This stunning group of galaxies is far, far away,
about 450 million light-years from
planet Earth
and cataloged as galaxy cluster Abell S0740.
Dominated by the cluster's large central elliptical galaxy
(ESO 325-G004), this reprocessed
Hubble
Space Telescope view takes in a
remarkable assortment of galaxy shapes and sizes with
only a few spiky foreground stars
scattered through the field.
The giant elliptical galaxy
(right of center)
spans over 100,000 light years and
contains about 100 billion stars, comparable in
size to our own spiral Milky Way galaxy.
The Hubble data can reveal a
wealth
of detail in even these distant galaxies, including
arms and dust lanes, star clusters, ring structures,
and gravitational lensing arcs.
Tomorrow's picture: Moon over Saturn
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Two Spacecraft Will Get Closer to the Sun Than Ever Before
Two Spacecraft Will Get Closer to the Sun Than Ever Before:
Our understanding of distant stars has increased dramatically in recent decades. Thanks to improved instruments, scientists are able to see farther and clearer, thus learning more about star systems and the planets that orbit them (aka. extra-solar planets). Unfortunately, it will be some time before we develop the necessary technology to explore these stars up close.
But in the meantime, NASA and the ESA are developing missions that will allow us to explore our own Sun like never before. These missions, NASA’s Parker Solar Probe and the ESA’s (the European Space Agency) Solar Orbiter, will explore closer to the Sun than any previous mission. In so doing, it is hoped that they will resolve decades-old questions about the inner workings of the Sun.
These missions – which will launch in 2018 and 2020, respectively – will also have significant implications for life here on Earth. Not only is sunlight essential to life as we know it, solar flares can pose a major hazard for technology that humanity is becoming increasingly dependent on. This includes radio communications, satellites, power grids and human spaceflight.
And in the coming decades, Low-Earth Orbit (LEO) is expected to become increasingly crowded as commercial space stations and even space tourism become a reality. By improving our understanding of the processes that drive solar flares, we will therefore be able to better predict when they will occur and how they will impact Earth, spacecraft, and infrastructure in LEO.
As Chris St. Cyr, the Solar Orbiter project scientist at NASA’s Goddard Space Flight Center, explained in a recent NASA press release:
As Eric Christian, a research scientist on the Parker Solar Probe mission at NASA Goddard, explained:
Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics LaboratoryFor its mission, the Parker Solar Probe will get closer to the Sun than any spacecraft in history – as close as 6 million km (3.8 million mi) from the surface. This will replace the previous record of 43.432 million km (~27 million mi), which was established by the Helios B probe in 1976. From this position, the Parker Solar Probe will use its four suites of scientific instruments to image the solar wind and study the Sun’s magnetic fields, plasma and energetic particles.
In so doing, the probe will help clarify the true anatomy of the Sun’s outer atmosphere, which will help us to understand why the corona is hotter than the Sun’s surface. Basically, while temperatures in the corona can reach as high as a few million degrees, the solar surface (aka. photosphere), experiences temperatures of around 5538 °C (10,000 °F).
Meanwhile, the Solar Orbiter will come to a distance of about 42 million km (26 million mi) from the Sun, and will assume a highly-tilted orbit that can provide the first-ever direct images of the Sun’s poles. This is another area of the Sun that scientists don’t yet understand very well, and the study of it could provide valuable clues as to what drives the Sun’s constant activity and eruptions.
Both missions will also study solar wind, which is the Sun’s most pervasive influence on the solar system. This steam of magnetized gas fills the inner Solar System, interacting with magnetic fields, atmospheres and even the surfaces of planets. Here on Earth, it is what is responsible for the Aurora Borealis and Australis, and can also play havoc with satellites and electrical systems at times.
Artist’s impression of a solar flare erupting from the Sun’s surface. Credit: NASA Goddard Space Flight CenterPrevious missions have led scientists to believe that the corona contributes to the process that accelerates solar wind to such high speeds. As these charged particles leave the Sun and pass through the corona, their speed effectively triples. By the time the solar wind reaches the spacecraft responsible for measuring it – 148 million km (92 million mi) from the Sun – it has plenty of time to mix with other particles from space and lose some of its defining features.
By being parked so close to the Sun, the Parker Solar Probe will able to measure the solar wind just as it forms and leaves the corona, thus providing the most accurate measurements of solar wind ever recorded. From its perspective above the Sun’s poles, the Solar Orbiter will complement the Parker Solar Probe’s study of the solar wind by seeing how the structure and behavior of solar wind varies at different latitudes.
This unique orbit will also allow the Solar Orbiter to study the Sun’s magnetic fields, since some of the Sun’s most interesting magnetic activity is concentrated at the poles. This magnetic field is far-reaching largely because of solar wind, which reaches outwards to create a magnetic bubble known as the heliosphere. Within the heliosphere, solar wind has a profound effect on planetary atmospheres and its presence protects the inner planets from galactic radiation.
In spite of this, it is still not entirely clear how the Sun’s magnetic field is generated or structured deep inside the Sun. But given its position, the Solar Orbiter will be able to study phenomena that could lead to a better understanding of how the Sun’s magnetic field is generated. These include solar flares and coronal mass ejections, which are due to variability caused by the magnetic fields around the poles.
In this way, the Parker Solar Probe and Solar Orbiter are complimentary missions, studying the Sun from different vantage points to help refine our knowledge of the Sun and heliosphere. In the process, they will provide valuable data that could help scientists to tackle long-standing questions about our Sun. This could help expand our knowledge of other star systems and perhaps even answer questions about the origins of life.
As Adam Szabo, a mission scientist for Parker Solar Probe at NASA Goddard, explained:
Further Reading: NASA
The post Two Spacecraft Will Get Closer to the Sun Than Ever Before appeared first on Universe Today.
Our understanding of distant stars has increased dramatically in recent decades. Thanks to improved instruments, scientists are able to see farther and clearer, thus learning more about star systems and the planets that orbit them (aka. extra-solar planets). Unfortunately, it will be some time before we develop the necessary technology to explore these stars up close.
But in the meantime, NASA and the ESA are developing missions that will allow us to explore our own Sun like never before. These missions, NASA’s Parker Solar Probe and the ESA’s (the European Space Agency) Solar Orbiter, will explore closer to the Sun than any previous mission. In so doing, it is hoped that they will resolve decades-old questions about the inner workings of the Sun.
These missions – which will launch in 2018 and 2020, respectively – will also have significant implications for life here on Earth. Not only is sunlight essential to life as we know it, solar flares can pose a major hazard for technology that humanity is becoming increasingly dependent on. This includes radio communications, satellites, power grids and human spaceflight.
And in the coming decades, Low-Earth Orbit (LEO) is expected to become increasingly crowded as commercial space stations and even space tourism become a reality. By improving our understanding of the processes that drive solar flares, we will therefore be able to better predict when they will occur and how they will impact Earth, spacecraft, and infrastructure in LEO.
As Chris St. Cyr, the Solar Orbiter project scientist at NASA’s Goddard Space Flight Center, explained in a recent NASA press release:
“Our goal is to understand how the Sun works and how it affects the space environment to the point of predictability. This is really a curiosity-driven science.”Both missions will focus on the Sun’s dynamic outer atmosphere, otherwise known as the corona. At present, much of the behavior of this layer of the Sun is unpredictable and not well understood. For instance, there’s the so-called “coronal heating problem”, where the corona of the Sun is so much hotter than the solar surface. Then there is the question of what drives the constant outpouring of solar material (aka. solar wind) to such high speeds.
As Eric Christian, a research scientist on the Parker Solar Probe mission at NASA Goddard, explained:
“Parker Solar Probe and Solar Orbiter employ different sorts of technology, but — as missions — they’ll be complementary. They’ll be taking pictures of the Sun’s corona at the same time, and they’ll be seeing some of the same structures — what’s happening at the poles of the Sun and what those same structures look like at the equator.”
Illustration of the Parker Solar Probe spacecraft approaching the Sun. Credits: Johns Hopkins University Applied Physics Laboratory
In so doing, the probe will help clarify the true anatomy of the Sun’s outer atmosphere, which will help us to understand why the corona is hotter than the Sun’s surface. Basically, while temperatures in the corona can reach as high as a few million degrees, the solar surface (aka. photosphere), experiences temperatures of around 5538 °C (10,000 °F).
Meanwhile, the Solar Orbiter will come to a distance of about 42 million km (26 million mi) from the Sun, and will assume a highly-tilted orbit that can provide the first-ever direct images of the Sun’s poles. This is another area of the Sun that scientists don’t yet understand very well, and the study of it could provide valuable clues as to what drives the Sun’s constant activity and eruptions.
Both missions will also study solar wind, which is the Sun’s most pervasive influence on the solar system. This steam of magnetized gas fills the inner Solar System, interacting with magnetic fields, atmospheres and even the surfaces of planets. Here on Earth, it is what is responsible for the Aurora Borealis and Australis, and can also play havoc with satellites and electrical systems at times.
Artist’s impression of a solar flare erupting from the Sun’s surface. Credit: NASA Goddard Space Flight Center
By being parked so close to the Sun, the Parker Solar Probe will able to measure the solar wind just as it forms and leaves the corona, thus providing the most accurate measurements of solar wind ever recorded. From its perspective above the Sun’s poles, the Solar Orbiter will complement the Parker Solar Probe’s study of the solar wind by seeing how the structure and behavior of solar wind varies at different latitudes.
This unique orbit will also allow the Solar Orbiter to study the Sun’s magnetic fields, since some of the Sun’s most interesting magnetic activity is concentrated at the poles. This magnetic field is far-reaching largely because of solar wind, which reaches outwards to create a magnetic bubble known as the heliosphere. Within the heliosphere, solar wind has a profound effect on planetary atmospheres and its presence protects the inner planets from galactic radiation.
In spite of this, it is still not entirely clear how the Sun’s magnetic field is generated or structured deep inside the Sun. But given its position, the Solar Orbiter will be able to study phenomena that could lead to a better understanding of how the Sun’s magnetic field is generated. These include solar flares and coronal mass ejections, which are due to variability caused by the magnetic fields around the poles.
In this way, the Parker Solar Probe and Solar Orbiter are complimentary missions, studying the Sun from different vantage points to help refine our knowledge of the Sun and heliosphere. In the process, they will provide valuable data that could help scientists to tackle long-standing questions about our Sun. This could help expand our knowledge of other star systems and perhaps even answer questions about the origins of life.
As Adam Szabo, a mission scientist for Parker Solar Probe at NASA Goddard, explained:
“There are questions that have been bugging us for a long time. We are trying to decipher what happens near the Sun, and the obvious solution is to just go there. We cannot wait — not just me, but the whole community.”In time, and with the development of the necessary advanced materials, we might even be able to send probes into the Sun. But until that time, these missions represent the most ambitious and daring efforts to study the Sun to date. As with many other bold initiatives to study our Solar System, their arrival cannot come soon enough!
Further Reading: NASA
The post Two Spacecraft Will Get Closer to the Sun Than Ever Before appeared first on Universe Today.
Pluto is What You Get When a Billion Comets Smash Together
Pluto is What You Get When a Billion Comets Smash Together:
Pluto has been the focus of a lot of attention for more than a decade now. This began shortly after the discovery of Eris in the Kuiper Belt, one of many Kuiper Belt Objects (KBOs) that led to the “Great Planetary Debate” and the 2006 IAU Resolution. Interest in Pluto also increased considerably thanks to the New Horizons mission, which conducted the first flyby of this “dwarf planet” in July of 2015.
The data this mission provided on Pluto is still proving to be a treasure trove for astronomers, allowing for new discoveries about Pluto’s surface, composition, atmosphere, and even formation. For instance, a new study produced by researchers from the Southwest Research Institute (and supported by NASA Rosetta funding) indicates that Pluto may have formed from a billion comets crashing together.
The study, titled “Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto“, recently appeared in the scientific journal Icarus. The study was authored by Dr. Christopher R. Glein – a researcher with the Southwest Research Institute’s Space Science and Engineering Division – and Dr. J. Hunter Waite Jr, an SwRI program director.
The first Kuiper Belt is home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPLThe origin of Pluto is something that astronomers have puzzled over for some time. An early hypothesis was that it was an escaped moon of Neptune that had been knocked out of orbit by Neptune’s current largest moon, Triton. However, this theory was disproven after dynamical studies showed that Pluto never approaches Neptune in its orbit. With the discovery of the Kuiper Belt in 1992, the true of origin of Pluto began to become clear.
Essentially, while Pluto is the largest object in the Kuiper Belt, it is similar in orbit and composition to the icy objects that surround it. On occasion, some of these objects are kicked out of the Kuiper Belt and become long-period comets in the Inner Solar System. To determine if Pluto formed from billions of KBOs, Dr. Glein and Dr. Waite Jr. examined data from the New Horizons mission on the nitrogen-rich ice in Sputnik Planitia.
This large glacier forms the left lobe of the bright Tombaugh Regio feature on Pluto’s surface (aka. Pluto’s “Heart”). They then compared this to data obtained by the NASA/ESA Rosetta mission, which studied the comet 67P/Churyumov–Gerasimenko (67P) between 2014 and 2016. As Dr. Glein explained:
New Horizon’s July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRIThis research also comes up against a competing theory, known as the “solar model”. In this scenario, Pluto formed from the very cold ices that were part of the protoplanetary disk, and would therefore have a chemical composition that more closely matches that of the Sun. In order to determine which was more likely, scientists needed to understand not only how much nitrogen is present at Pluto now (in its atmosphere and glaciers), but how much could have leaked out into space over the course of eons.
They then needed to come up with an explanation for the current proportion of carbon monoxide to nitrogen. Ultimately, the low abundance of carbon monoxide at Pluto could only be explained by burial in surface ices or destruction from liquid water. In the end, Dr. Glein and Dr. Waite Jr.’s research suggests that Pluto’s initial chemical makeup, which was created by comets, was modified by liquid water, possibly in the form of a subsurface ocean.
“This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” said Dr. Glein. “Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”
While the research certainly offers an interesting explanation for how Pluto formed, the solar model still satisfies some criteria. In the end, more research will be needed before scientists can conclude how Pluto formed. And if data from the New Horizons or Rosetta missions should prove insufficient, perhaps another to New Frontiers mission to Pluto will solve the mystery!
Further Reading: SwRI, Icarus
The post Pluto is What You Get When a Billion Comets Smash Together appeared first on Universe Today.
Pluto has been the focus of a lot of attention for more than a decade now. This began shortly after the discovery of Eris in the Kuiper Belt, one of many Kuiper Belt Objects (KBOs) that led to the “Great Planetary Debate” and the 2006 IAU Resolution. Interest in Pluto also increased considerably thanks to the New Horizons mission, which conducted the first flyby of this “dwarf planet” in July of 2015.
The data this mission provided on Pluto is still proving to be a treasure trove for astronomers, allowing for new discoveries about Pluto’s surface, composition, atmosphere, and even formation. For instance, a new study produced by researchers from the Southwest Research Institute (and supported by NASA Rosetta funding) indicates that Pluto may have formed from a billion comets crashing together.
The study, titled “Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto“, recently appeared in the scientific journal Icarus. The study was authored by Dr. Christopher R. Glein – a researcher with the Southwest Research Institute’s Space Science and Engineering Division – and Dr. J. Hunter Waite Jr, an SwRI program director.
The first Kuiper Belt is home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPL
Essentially, while Pluto is the largest object in the Kuiper Belt, it is similar in orbit and composition to the icy objects that surround it. On occasion, some of these objects are kicked out of the Kuiper Belt and become long-period comets in the Inner Solar System. To determine if Pluto formed from billions of KBOs, Dr. Glein and Dr. Waite Jr. examined data from the New Horizons mission on the nitrogen-rich ice in Sputnik Planitia.
This large glacier forms the left lobe of the bright Tombaugh Regio feature on Pluto’s surface (aka. Pluto’s “Heart”). They then compared this to data obtained by the NASA/ESA Rosetta mission, which studied the comet 67P/Churyumov–Gerasimenko (67P) between 2014 and 2016. As Dr. Glein explained:
“We’ve developed what we call ‘the giant comet’ cosmochemical model of Pluto formation. We found an intriguing consistency between the estimated amount of nitrogen inside the glacier and the amount that would be expected if Pluto was formed by the agglomeration of roughly a billion comets or other Kuiper Belt objects similar in chemical composition to 67P, the comet explored by Rosetta.”
New Horizon’s July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI
They then needed to come up with an explanation for the current proportion of carbon monoxide to nitrogen. Ultimately, the low abundance of carbon monoxide at Pluto could only be explained by burial in surface ices or destruction from liquid water. In the end, Dr. Glein and Dr. Waite Jr.’s research suggests that Pluto’s initial chemical makeup, which was created by comets, was modified by liquid water, possibly in the form of a subsurface ocean.
“This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” said Dr. Glein. “Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”
While the research certainly offers an interesting explanation for how Pluto formed, the solar model still satisfies some criteria. In the end, more research will be needed before scientists can conclude how Pluto formed. And if data from the New Horizons or Rosetta missions should prove insufficient, perhaps another to New Frontiers mission to Pluto will solve the mystery!
Further Reading: SwRI, Icarus
The post Pluto is What You Get When a Billion Comets Smash Together appeared first on Universe Today.
Astronomers Observe a Pulsar 6500 Light-Years From Earth and See Two Separate Flares Coming off its Surface
Astronomers Observe a Pulsar 6500 Light-Years From Earth and See Two Separate Flares Coming off its Surface:
Astronomy can be a tricky business, owing to the sheer distances involved. Luckily, astronomers have developed a number of tools and strategies over the years that help them to study distant objects in greater detail. In addition to ground-based and space-based telescopes, there’s also the technique known as gravitational lensing, where the gravity of an intervening object is used to magnify light coming from a more distant object.
Recently, a team of Canadian astronomers used this technique to observe an eclipsing binary millisecond pulsar located about 6500 light years away. According to a study produced by the team, they observed two intense regions of radiation around one star (a brown dwarf) to conduct observations of the other star (a pulsar) – which happened to be the highest resolution observations in astronomical history.
The study, titled “Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary“, recently appeared in the journal Nature. The study was led by Robert Main, a PhD astronomy student at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics, and included members from the Canadian Institute for Theoretical Astrophysics, the Perimeter Institute for Theoretical Physics, and the Canadian Institute for Advanced Research.
The system they observed is known as the “Black Widow Pulsar”, a binary system that consists of a brown dwarf and a millisecond pulsar orbiting closely to each other. Because of their close proximity to one another, scientists have determined that the pulsar is actively siphoning material from its brown dwarf companion and will eventually consume it. Discovered in 1988, the name “Black Widow” has since come to be applied to other similar binaries.
The observations made by the Canadian team were made possible thanks to the rare geometry and characteristics of the binary – specifically, the “wake” or comet-like tail of gas that extends from the brown dwarf to the pulsar. As Robert Main, the lead author of the paper, explained in a Dunlap Institute press release:
Image of the pulsar surrounded by its bow shock. White rays indicate particles of matter and antimatter being spewed from the star. Its companion star is too close to the pulsar to be visible at this scale. Credit: NASA/CXC/M.WeissBecause they are so close together, the brown dwarf is tidally-locked to the pulsar and is blasted by strong radiation. This intense radiation heats one side of the relatively cool brown dwarf to temperatures of about 6000 °C (10,832 °F), the same temperature as our Sun. Because of the radiation and gases passing between them, the emissions coming from the pulsar interfere with each other, which makes them difficult to study.
However, astronomers have long understood that these same regions could be used as “interstellar lenses” that could localize pulsar emission regions, thus allowing for their study. In the past, astronomers have only been able to resolve emission components marginally. But thanks to the efforts of Main and his colleagues, they were able observing two intense radiation flares located 20 kilometers apart.
In addition to being an unprecedentedly high-resolution observation, the results of this study could provide insight into the nature of the mysterious phenomena known as Fast Radio Bursts (FRBs). As Main explained:
Further Reading: University of Toronto, Nature
The post Astronomers Observe a Pulsar 6500 Light-Years From Earth and See Two Separate Flares Coming off its Surface appeared first on Universe Today.
Astronomy can be a tricky business, owing to the sheer distances involved. Luckily, astronomers have developed a number of tools and strategies over the years that help them to study distant objects in greater detail. In addition to ground-based and space-based telescopes, there’s also the technique known as gravitational lensing, where the gravity of an intervening object is used to magnify light coming from a more distant object.
Recently, a team of Canadian astronomers used this technique to observe an eclipsing binary millisecond pulsar located about 6500 light years away. According to a study produced by the team, they observed two intense regions of radiation around one star (a brown dwarf) to conduct observations of the other star (a pulsar) – which happened to be the highest resolution observations in astronomical history.
The study, titled “Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary“, recently appeared in the journal Nature. The study was led by Robert Main, a PhD astronomy student at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics, and included members from the Canadian Institute for Theoretical Astrophysics, the Perimeter Institute for Theoretical Physics, and the Canadian Institute for Advanced Research.
The system they observed is known as the “Black Widow Pulsar”, a binary system that consists of a brown dwarf and a millisecond pulsar orbiting closely to each other. Because of their close proximity to one another, scientists have determined that the pulsar is actively siphoning material from its brown dwarf companion and will eventually consume it. Discovered in 1988, the name “Black Widow” has since come to be applied to other similar binaries.
The observations made by the Canadian team were made possible thanks to the rare geometry and characteristics of the binary – specifically, the “wake” or comet-like tail of gas that extends from the brown dwarf to the pulsar. As Robert Main, the lead author of the paper, explained in a Dunlap Institute press release:
“The gas is acting like a magnifying glass right in front of the pulsar. We are essentially looking at the pulsar through a naturally occurring magnifier which periodically allows us to see the two regions separately.”Like all pulsars, the “Black Widow” is a rapidly rotating neutron star that spins at a rate of over 600 times a second. As it spins, it emits beams of radiation from its two polar hotspots, which have a strobing effect when observed from a distance. The brown dwarf, meanwhile, is about one third the diameter of the Sun, is located roughly two million km from the pulsar and orbits it once every 9 hours.
Image of the pulsar surrounded by its bow shock. White rays indicate particles of matter and antimatter being spewed from the star. Its companion star is too close to the pulsar to be visible at this scale. Credit: NASA/CXC/M.Weiss
However, astronomers have long understood that these same regions could be used as “interstellar lenses” that could localize pulsar emission regions, thus allowing for their study. In the past, astronomers have only been able to resolve emission components marginally. But thanks to the efforts of Main and his colleagues, they were able observing two intense radiation flares located 20 kilometers apart.
In addition to being an unprecedentedly high-resolution observation, the results of this study could provide insight into the nature of the mysterious phenomena known as Fast Radio Bursts (FRBs). As Main explained:
“Many observed properties of FRBs could be explained if they are being amplified by plasma lenses. The properties of the amplified pulses we detected in our study show a remarkable similarity to the bursts from the repeating FRB, suggesting that the repeating FRB may be lensed by plasma in its host galaxy.”It is an exciting time for astronomers, where improved instruments and methods are not only allowing for more accurate observations, but also providing data that could resolve long-standing mysteries. It seems that every few days, fascinating new discoveries are being made!
Further Reading: University of Toronto, Nature
The post Astronomers Observe a Pulsar 6500 Light-Years From Earth and See Two Separate Flares Coming off its Surface appeared first on Universe Today.
Planets on Parade: Saturn at Opposition 2018
Planets on Parade: Saturn at Opposition 2018:
Saturn, Mars and Jupiter all beckon this summer. Image credit and copyright: Sharin Ahmad (@shahgazer).We’re in the midst of a parade of planets crossing the evening sky. Jupiter reached opposition on May 9th, and sits high to the east at dusk. Mars heads towards a fine opposition on July 27th, nearly as favorable as the historic opposition of 2003. And Venus rules the dusk sky in the west after the setting Sun for most of 2018.
June is Saturn’s turn, as the planet reaches opposition this year on June 27th, rising opposite to the setting Sun at dusk.
In classical times, right up until just over two short centuries ago, Saturn represented the very outer limit of the solar system, the border lands where the realm of the planets came to an end. Sir William Herschel extended this view, when he spied Uranus—the first planet discovered in the telescopic era—slowly moving through the constellation Gemini just across the border of Taurus the Bull using a 7-foot reflector (in the olden days, telescopes specs were often quoted referring to their focal length versus aperture) while observing from his backyard garden in Bath, England on the night of March 13th, 1781.
Orbiting the Sun once every 29.5 years, Saturn is the slowest moving of the naked eye planets, fitting for a planet named after Father Time. Saturn slowly loops from one astronomical constellation along the zodiac to the next eastward, moving through one about every two years.
2018 sees Saturn in the constellation Sagittarius the Archer, just above the ‘lid’ of the Teapot asterism, favoring the southern hemisphere for this apparition. Saturn won’t cross the celestial equator northward again until 2026. Not that that should discourage northern hemisphere viewers from going after this most glorious of planets. A low southerly declination also means that Saturn is also up in the evening in the summertime up north, a conducive time for observing. Taking 29-30 years to complete one lap around the ecliptic as seen from our Earthly vantage point, Saturn also makes a great timekeeper with respect to personal life milestones… where were you back in 1989, when Saturn occupied the same spot along the ecliptic?
Saturn also shows the least variation of all the planets in terms of brightness and size, owing to its immense distance 9.5 AU from the Sun, and consequently 8.5 to 10.5 AU from the Earth. Saturn actually just passed its most distant aphelion since 1959 on April 17th, 2018 at 10.066 AU from the Sun.
Saturn’s in 2018 Dates with Destiny
Saturn sits just 1.6 degrees south of the waning gibbous Moon tonight. The Moon will lap it again one lunation later on June 28th. Note that the brightest of the asteroids, +5.7 magnitude 4 Vesta is nearby in northern Sagittarius, also reaching opposition on June 19th. Can you spy Vesta with the naked eye from a dark sky site? 4 Vesta passes just 4 degrees from Saturn on September 23rd, and both flirt with the galactic plane and some famous deep sky targets, including the Trifid and Lagoon Nebulae.
Saturn reaches quadrature 90 degrees east of the Sun on September 25th, then ends its evening apparition when it reaches solar conjunction on New Year’s Day, 2019.
Saturn is well clear of the Moon’s path for most of this year, but stick around: starting on December 9th, 2018, the slow-moving planet will make a great target for the Moon, which will begin occulting it for every lunation through the end of 2019.
It’s ironic: Saturn mostly hides its beauty to unaided eye. Presenting a slight saffron color in appearance, it never strays much from magnitude -0.2 to +1.4 in brightness. One naked eye observation to watch for is a sudden spurt in brightness known as the opposition surge or Seeliger Effect. This is a retro reflector type effect, caused by all those tiny iceball moonlets in the rings reaching 100% illumination at once. Think of how the Full Moon is actually 3 to 4 times brighter than the 50% illuminated Quarter Moon… all those little peaks, ridges and crater rims no longer casting shadows do indeed add up.
Saturn in all its glory (note the moons Enceladus and Tethys, too!). Image credit and copyright: Efrain Morales.And this effect is more prominent in recent years for another reason: Saturn’s rings passed maximum tilt (26.7 degrees) with respect to our line of sight just last year, and are still relatively wide open in 2018. They’ll start slimming down again over the next few oppositions, reaching edge-on again in 2028.
Even using a pair of 7×50 hunting binoculars on Saturn, you can tell that something is amiss. You’re getting the same view that Galileo had through his spyglass, the pinnacle of early 17th century technology. He could tell that something about the planet was awry, and drew sketches showing an oblong world with coffee cup handles on the side. Crank up the magnification using even a small 60 mm refractor, and the rings easily jump into view. This is what makes Saturn a star party staple, an eye candy feast capable of drawing the aim of all the telescopes down the row.
If seeing and atmospheric conditions allow, crank up the magnification up to 150x or higher, and the dark groove of the Cassini division snaps into view. Can you see the shadow of the disk of Saturn, cast back onto the plane of the rings? The shadow of the planet hides behind it near opposition, then becomes most prominent towards quadrature, when we get to peek around its edge. Can you spy the limb of the planet itself, through the Cassini Gap?
Though the disk of Saturn is often featureless, tiny swirls of white storms do occasionally pop up. Astrophotographer Damian Peach noted just one such short-lived storm on the ringed planet this past April 2018.
Saturn’s retinue of moons are also interesting to follow in there own right. The first one you’ll note is +8.5 magnitude smog-shrouded Titan. Larger in diameter than Mercury, Titan would easily be a planet in its own right, were it liberated from its primary’s domain.
Though Saturn has 62 known moons, only six in addition to Titan are in range of a modest backyard telescope: Enceladus, Rhea, Dione, Mimas, Tethys and Iapetus. Two-faced Iapetus is especially interesting to follow, as it varies two full magnitudes in brightness during its 79 day orbit. Arthur C. Clarke originally placed the final monolith in 2001: A Space Odyssey on this moon, its artificial coating a beacon to astronomers. Today, we know from flybys carried out by NASA’s Cassini spacecraft that the leading hemisphere of Iapetus is coated with dark in-falling material, originating from the dark Phoebe ring around Saturn.
Owners of large light bucket telescopes may also want to try from two fainter +15th magnitude moons: Hyperion and Phoebe.
Fun fact: Saturn’s moons can also cast shadows back on the planet itself, much like the Galilean moons do on Jupiter… the catch, however, is that these events only occur around equinox season in the years around when Saturn’s rings are edge-on. This next occurs starting in 2026.
Cassini finished up its thrilling 20 year mission just last year, with a dramatic plunge into Saturn itself. It will be a while before we return again, perhaps in the next decade if NASA selects a nuclear-powered helicopter to explore Titan. Until then, be sure to explore Saturn this summer, from your Earthbound backyard.
Love to observe the planets? Check out our new forthcoming book, The Universe Today Ultimate Guide to Viewing the Cosmos – out on October 23rd, now up for pre-order.
The post Planets on Parade: Saturn at Opposition 2018 appeared first on Universe Today.
Saturn, Mars and Jupiter all beckon this summer. Image credit and copyright: Sharin Ahmad (@shahgazer).
June is Saturn’s turn, as the planet reaches opposition this year on June 27th, rising opposite to the setting Sun at dusk.
In classical times, right up until just over two short centuries ago, Saturn represented the very outer limit of the solar system, the border lands where the realm of the planets came to an end. Sir William Herschel extended this view, when he spied Uranus—the first planet discovered in the telescopic era—slowly moving through the constellation Gemini just across the border of Taurus the Bull using a 7-foot reflector (in the olden days, telescopes specs were often quoted referring to their focal length versus aperture) while observing from his backyard garden in Bath, England on the night of March 13th, 1781.
Orbiting the Sun once every 29.5 years, Saturn is the slowest moving of the naked eye planets, fitting for a planet named after Father Time. Saturn slowly loops from one astronomical constellation along the zodiac to the next eastward, moving through one about every two years.
2018 sees Saturn in the constellation Sagittarius the Archer, just above the ‘lid’ of the Teapot asterism, favoring the southern hemisphere for this apparition. Saturn won’t cross the celestial equator northward again until 2026. Not that that should discourage northern hemisphere viewers from going after this most glorious of planets. A low southerly declination also means that Saturn is also up in the evening in the summertime up north, a conducive time for observing. Taking 29-30 years to complete one lap around the ecliptic as seen from our Earthly vantage point, Saturn also makes a great timekeeper with respect to personal life milestones… where were you back in 1989, when Saturn occupied the same spot along the ecliptic?
Saturn also shows the least variation of all the planets in terms of brightness and size, owing to its immense distance 9.5 AU from the Sun, and consequently 8.5 to 10.5 AU from the Earth. Saturn actually just passed its most distant aphelion since 1959 on April 17th, 2018 at 10.066 AU from the Sun.
Saturn’s in 2018 Dates with Destiny
Saturn sits just 1.6 degrees south of the waning gibbous Moon tonight. The Moon will lap it again one lunation later on June 28th. Note that the brightest of the asteroids, +5.7 magnitude 4 Vesta is nearby in northern Sagittarius, also reaching opposition on June 19th. Can you spy Vesta with the naked eye from a dark sky site? 4 Vesta passes just 4 degrees from Saturn on September 23rd, and both flirt with the galactic plane and some famous deep sky targets, including the Trifid and Lagoon Nebulae.
Saturn reaches quadrature 90 degrees east of the Sun on September 25th, then ends its evening apparition when it reaches solar conjunction on New Year’s Day, 2019.
Saturn is well clear of the Moon’s path for most of this year, but stick around: starting on December 9th, 2018, the slow-moving planet will make a great target for the Moon, which will begin occulting it for every lunation through the end of 2019.
It’s ironic: Saturn mostly hides its beauty to unaided eye. Presenting a slight saffron color in appearance, it never strays much from magnitude -0.2 to +1.4 in brightness. One naked eye observation to watch for is a sudden spurt in brightness known as the opposition surge or Seeliger Effect. This is a retro reflector type effect, caused by all those tiny iceball moonlets in the rings reaching 100% illumination at once. Think of how the Full Moon is actually 3 to 4 times brighter than the 50% illuminated Quarter Moon… all those little peaks, ridges and crater rims no longer casting shadows do indeed add up.
Saturn in all its glory (note the moons Enceladus and Tethys, too!). Image credit and copyright: Efrain Morales.
Even using a pair of 7×50 hunting binoculars on Saturn, you can tell that something is amiss. You’re getting the same view that Galileo had through his spyglass, the pinnacle of early 17th century technology. He could tell that something about the planet was awry, and drew sketches showing an oblong world with coffee cup handles on the side. Crank up the magnification using even a small 60 mm refractor, and the rings easily jump into view. This is what makes Saturn a star party staple, an eye candy feast capable of drawing the aim of all the telescopes down the row.
If seeing and atmospheric conditions allow, crank up the magnification up to 150x or higher, and the dark groove of the Cassini division snaps into view. Can you see the shadow of the disk of Saturn, cast back onto the plane of the rings? The shadow of the planet hides behind it near opposition, then becomes most prominent towards quadrature, when we get to peek around its edge. Can you spy the limb of the planet itself, through the Cassini Gap?
Though the disk of Saturn is often featureless, tiny swirls of white storms do occasionally pop up. Astrophotographer Damian Peach noted just one such short-lived storm on the ringed planet this past April 2018.
Saturn’s retinue of moons are also interesting to follow in there own right. The first one you’ll note is +8.5 magnitude smog-shrouded Titan. Larger in diameter than Mercury, Titan would easily be a planet in its own right, were it liberated from its primary’s domain.
Though Saturn has 62 known moons, only six in addition to Titan are in range of a modest backyard telescope: Enceladus, Rhea, Dione, Mimas, Tethys and Iapetus. Two-faced Iapetus is especially interesting to follow, as it varies two full magnitudes in brightness during its 79 day orbit. Arthur C. Clarke originally placed the final monolith in 2001: A Space Odyssey on this moon, its artificial coating a beacon to astronomers. Today, we know from flybys carried out by NASA’s Cassini spacecraft that the leading hemisphere of Iapetus is coated with dark in-falling material, originating from the dark Phoebe ring around Saturn.
Owners of large light bucket telescopes may also want to try from two fainter +15th magnitude moons: Hyperion and Phoebe.
Fun fact: Saturn’s moons can also cast shadows back on the planet itself, much like the Galilean moons do on Jupiter… the catch, however, is that these events only occur around equinox season in the years around when Saturn’s rings are edge-on. This next occurs starting in 2026.
Cassini finished up its thrilling 20 year mission just last year, with a dramatic plunge into Saturn itself. It will be a while before we return again, perhaps in the next decade if NASA selects a nuclear-powered helicopter to explore Titan. Until then, be sure to explore Saturn this summer, from your Earthbound backyard.
Love to observe the planets? Check out our new forthcoming book, The Universe Today Ultimate Guide to Viewing the Cosmos – out on October 23rd, now up for pre-order.
The post Planets on Parade: Saturn at Opposition 2018 appeared first on Universe Today.
This is What Happens When a Black Hole Gobbles up a Star
This is What Happens When a Black Hole Gobbles up a Star:
At the center of our galaxy resides a Supermassive Black Hole (SMBH) known as Sagittarius A. Based on ongoing observations, astronomers have determined that this SMBH measures 44 million km (27.34 million mi) in diameter and has an estimated mass of 4.31 million Solar Masses. On occasion, a star will wander too close to Sag A and be torn apart in a violent process known as a tidal disruption event (TDE).
These events cause the release of bright flares of radiation, which let astronomers know that a star has been consumed. Unfortunately, for decades, astronomers have been unable to distinguish these events from other galactic phenomena. But thanks to a new study from by an international team of astrophysicists, astronomers now have a unified model that explains recent observations of these extreme events.
The study – which recently appeared in the Astrophysical Journal Letters under the title “A Unified Model for Tidal Disruption Events” – was led by Dr. Jane Lixin Dai, a physicist with the Niels Bohr Institute’s Dark Cosmology Center. She was joined by members from University of Maryland’s Joint Space-Science Institute and the University of California Santa Cruz (UCSC).
As Enrico Ramirez-Ruiz – the professor and chair of astronomy and astrophysics at UC Santa Cruz, the Niels Bohr Professor at the University of Copenhagen, and a co-author on the paper – explained in a UCSC press release:
Illustration of emissions from a tidal disruption event shows in cross section what happens when the material from a disrupted star is devoured by a black hole. Credit: Jane Lixin DaiIn the past few years, a few dozen candidates for tidal disruption events (TDEs) have been detected using wide-field optical and UV transient surveys as well as X-ray telescopes. While the physics are expected to be the same for all TDEs, astronomers have noted that a few distinct classes of TDEs appear to exist. While some emit mostly x-rays, others emit mostly visible and ultraviolet light.
As a result, theorists have struggled to understand the diverse properties observed and create a coherent model that can explain them all. For the sake of their model, Dr. Dai and her colleagues combined elements from general relativity, magnetic fields, radiation, and gas hydrodynamics. The team also relied on state-of-the-art computational tools and some recently-acquired large computer clusters funded by the Villum Foundation for Jens Hjorth (head of DARK Cosmology Center), the U.S. National Science Foundation and NASA.
Using the model that resulted, the team concluded that it is the viewing angle of the observer that accounts for the differences in observation. Essentially, different galaxies are oriented randomly with respect to observers on Earth, who see different aspects of TDEs depending on their orientation. As Ramirez-Ruiz explained:
According to Dr. Dai, this new model shows what astronomers can expect to see when viewing TDEs from different angles and will allow them to fit different events into a coherent framework. “We will observe hundreds to thousands of tidal disruption events in a few years,” she said. “This will give us a lot of ‘laboratories’ to test our model and use it to understand more about black holes.”
This improved understanding of how black holes occasionally consume stars will also provide additional tests for general relativity, gravitational wave research, and help astronomers to learn more about the evolution of galaxies.
Further Reading: UCSC, Astrophysical Journal Letters
The post This is What Happens When a Black Hole Gobbles up a Star appeared first on Universe Today.
At the center of our galaxy resides a Supermassive Black Hole (SMBH) known as Sagittarius A. Based on ongoing observations, astronomers have determined that this SMBH measures 44 million km (27.34 million mi) in diameter and has an estimated mass of 4.31 million Solar Masses. On occasion, a star will wander too close to Sag A and be torn apart in a violent process known as a tidal disruption event (TDE).
These events cause the release of bright flares of radiation, which let astronomers know that a star has been consumed. Unfortunately, for decades, astronomers have been unable to distinguish these events from other galactic phenomena. But thanks to a new study from by an international team of astrophysicists, astronomers now have a unified model that explains recent observations of these extreme events.
The study – which recently appeared in the Astrophysical Journal Letters under the title “A Unified Model for Tidal Disruption Events” – was led by Dr. Jane Lixin Dai, a physicist with the Niels Bohr Institute’s Dark Cosmology Center. She was joined by members from University of Maryland’s Joint Space-Science Institute and the University of California Santa Cruz (UCSC).
As Enrico Ramirez-Ruiz – the professor and chair of astronomy and astrophysics at UC Santa Cruz, the Niels Bohr Professor at the University of Copenhagen, and a co-author on the paper – explained in a UCSC press release:
“Only in the last decade or so have we been able to distinguish TDEs from other galactic phenomena, and the new model will provide us with the basic framework for understanding these rare events.”In most galaxies, SMBHs do not actively consume any material and therefore do not emit any light, which distinguishes them from galaxies that have Active Galactic Nuclei (AGNs). Tidal disruption events are therefore rare, occurring only once about every 10,000 years in a typical galaxy. However, when a star does get torn apart, it results in the release of an intense amount of radiation. As Dr. Dai explained:
“It is interesting to see how materials get their way into the black hole under such extreme conditions. As the black hole is eating the stellar gas, a vast amount of radiation is emitted. The radiation is what we can observe, and using it we can understand the physics and calculate the black hole properties. This makes it extremely interesting to go hunting for tidal disruption events.”
Illustration of emissions from a tidal disruption event shows in cross section what happens when the material from a disrupted star is devoured by a black hole. Credit: Jane Lixin Dai
As a result, theorists have struggled to understand the diverse properties observed and create a coherent model that can explain them all. For the sake of their model, Dr. Dai and her colleagues combined elements from general relativity, magnetic fields, radiation, and gas hydrodynamics. The team also relied on state-of-the-art computational tools and some recently-acquired large computer clusters funded by the Villum Foundation for Jens Hjorth (head of DARK Cosmology Center), the U.S. National Science Foundation and NASA.
Using the model that resulted, the team concluded that it is the viewing angle of the observer that accounts for the differences in observation. Essentially, different galaxies are oriented randomly with respect to observers on Earth, who see different aspects of TDEs depending on their orientation. As Ramirez-Ruiz explained:
“It is like there is a veil that covers part of a beast. From some angles we see an exposed beast, but from other angles we see a covered beast. The beast is the same, but our perceptions are different.”In the coming years, a number of planned survey projects are expected to provide much more data on TDEs, which will help expand the field of research into this phenomena. These include the Young Supernova Experiment (YSE) transient survey, which will be led by the DARK Cosmology Center at the Niels Bohr Institute and UC Santa Cruz, and the Large Synoptic Survey Telescopes (LSST) being built in Chile.
According to Dr. Dai, this new model shows what astronomers can expect to see when viewing TDEs from different angles and will allow them to fit different events into a coherent framework. “We will observe hundreds to thousands of tidal disruption events in a few years,” she said. “This will give us a lot of ‘laboratories’ to test our model and use it to understand more about black holes.”
This improved understanding of how black holes occasionally consume stars will also provide additional tests for general relativity, gravitational wave research, and help astronomers to learn more about the evolution of galaxies.
Further Reading: UCSC, Astrophysical Journal Letters
The post This is What Happens When a Black Hole Gobbles up a Star appeared first on Universe Today.
What are the Chances that the Next Generation LSST Could Find New Planets in the Solar System?
What are the Chances that the Next Generation LSST Could Find New Planets in the Solar System?:
In the past few decades, thanks to improvements in ground-based and space-based observatories, astronomers have discovered thousands of planets orbiting neighboring and distant stars (aka. extrasolar planets). Strangely enough, it is these same improvements, and during the same time period, that enabled the discovery of more astronomical bodies within the Solar System.
These include the “minor planets” of Eris, Sedna, Haumea, Makemake, and others, but also the hypothesized planetary-mass objects collectively known as Planet 9 (or Planet X). In a new study led by the Lowell Observatory, a team of researchers hypothesize that the Large Synoptic Survey Telescope (LSST) – a next-generation telescope that will go online in 2022 – has a good chance of finding this mysterious planet.
Their study, titled “On the detectability of Planet X with LSST“, recently appeared online. The study was led by David E. Trilling, an astrophysicist from the Northern Arizona University and the Lowell Observatory, and included Eric C. Bellm from the University of Washington and Renu Malhotra of the Lunar and Planetary Laboratory at The University of Arizona.
Located on the Cerro Pachón ridge in north-central Chile, the 8.4-meter LSST will conduct a 10-year survey of the sky that will deliver 200 petabytes worth of images and data that will address some of the most pressing questions about the structure and evolution of the Universe and the objects in it. In addition to surveying the early Universe in order to understand the nature of dark matter and dark energy, it will also conduct surveys of the remote areas of the Solar System.
Planet 9/X is one such object. In recent years, the existence of two planetary-mass bodies have been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. While neither planet is thought to be exceptionally faint, the sky locations of these planets are poorly constrained – making them difficult to pinpoint. As such, a wide area survey is needed to detect these possible planets.
In 2022, the LSST will carry out an unbiased, large and deep survey of the southern sky, which makes it an important tool when it comes to the search of these hypothesized planets. As they state in their study:
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9” (aka. “Planet X”). Credit: Caltech/nagualdesignThese studies include Trujillo & Sheppard’s 2014 study where they noticed similarities in the orbits of distant Trans-Neptunian Objects (TNOs) and postulated that a massive object was likely influencing them. This was followed by a 2016 study by Sheppard & Trujillo where they suggested that the high perihelion objects Sedna and 2012 VP113 were being influence by an unknown massive planet.
This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit. Finally, Malhotra et al. (2016) noted that the most distant KBOs have near-integer period ratios, which was suggestive of a dynamical resonance with a massive object in the outer Solar System. Between these studies, various mass and distance estimates were formed that became the basis of the search for this planet.
Overall, these estimates indicated that Planet 9/X was a super-Earth with anywhere between 5 to 20 Earth masses, and orbited the Sun at a distance of between 150 – 600 AU. Concurrently, these studies have also attempted to narrow down where this Super-Earth’s orbit will take it throughout the outer Solar System, as evidenced by the perturbations it has on KBOs.
Unfortunately, the predicted locations and brightness of the object are not yet sufficiently constrained for astronomers to simply look in the right place at the right time and pick it out. In this respect, a large area sky survey must be carried out using moderately large telescopes with a very wide field of view. As Dr. Trilling told Universe Today via email:
The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)However, the team also acknowledges that within certain parameters, Planet 9/X may not be detectable by the LSST. For example, it is possible that that there is a very narrow slice of predicted Planet 9/X parameters where it might be slightly too faint to be easily detected in LSST data. In addition, there is also a small possibility that irregularities in the Planet 9/X cadence might lead to it being missed.
The post What are the Chances that the Next Generation LSST Could Find New Planets in the Solar System? appeared first on Universe Today.
In the past few decades, thanks to improvements in ground-based and space-based observatories, astronomers have discovered thousands of planets orbiting neighboring and distant stars (aka. extrasolar planets). Strangely enough, it is these same improvements, and during the same time period, that enabled the discovery of more astronomical bodies within the Solar System.
These include the “minor planets” of Eris, Sedna, Haumea, Makemake, and others, but also the hypothesized planetary-mass objects collectively known as Planet 9 (or Planet X). In a new study led by the Lowell Observatory, a team of researchers hypothesize that the Large Synoptic Survey Telescope (LSST) – a next-generation telescope that will go online in 2022 – has a good chance of finding this mysterious planet.
Their study, titled “On the detectability of Planet X with LSST“, recently appeared online. The study was led by David E. Trilling, an astrophysicist from the Northern Arizona University and the Lowell Observatory, and included Eric C. Bellm from the University of Washington and Renu Malhotra of the Lunar and Planetary Laboratory at The University of Arizona.
Located on the Cerro Pachón ridge in north-central Chile, the 8.4-meter LSST will conduct a 10-year survey of the sky that will deliver 200 petabytes worth of images and data that will address some of the most pressing questions about the structure and evolution of the Universe and the objects in it. In addition to surveying the early Universe in order to understand the nature of dark matter and dark energy, it will also conduct surveys of the remote areas of the Solar System.
Planet 9/X is one such object. In recent years, the existence of two planetary-mass bodies have been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. While neither planet is thought to be exceptionally faint, the sky locations of these planets are poorly constrained – making them difficult to pinpoint. As such, a wide area survey is needed to detect these possible planets.
In 2022, the LSST will carry out an unbiased, large and deep survey of the southern sky, which makes it an important tool when it comes to the search of these hypothesized planets. As they state in their study:
“The possibility of undiscovered planets in the solar system has long fascinated astronomers and the public alike. Recent studies of the orbital properties of very distant Kuiper belt objects (KBOs) have identified several anomalies that may be due to the gravitational influence of one or more undiscovered planetary mass objects orbiting the Sun at distances comparable to the distant KBOs.
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9” (aka. “Planet X”). Credit: Caltech/nagualdesign
This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit. Finally, Malhotra et al. (2016) noted that the most distant KBOs have near-integer period ratios, which was suggestive of a dynamical resonance with a massive object in the outer Solar System. Between these studies, various mass and distance estimates were formed that became the basis of the search for this planet.
Overall, these estimates indicated that Planet 9/X was a super-Earth with anywhere between 5 to 20 Earth masses, and orbited the Sun at a distance of between 150 – 600 AU. Concurrently, these studies have also attempted to narrow down where this Super-Earth’s orbit will take it throughout the outer Solar System, as evidenced by the perturbations it has on KBOs.
Unfortunately, the predicted locations and brightness of the object are not yet sufficiently constrained for astronomers to simply look in the right place at the right time and pick it out. In this respect, a large area sky survey must be carried out using moderately large telescopes with a very wide field of view. As Dr. Trilling told Universe Today via email:
“The predicted Planet X candidates are not particularly faint, but the possible locations on the sky are not very well constrained at all. Therefore, what you really need to find Planet X is a medium-depth telescope that covers a huge amount of sky. This is exactly LSST. LSST’s sensitivity will be sufficient to find Planet X in almost all its (their) predicted configurations, and LSST will cover around half of the known sky to this depth. Furthermore, the cadence is well-matched to finding moving objects, and the data processing systems are very advanced. If you were going to design a tool to find Planet X, LSST is what you would design.”
The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)
There is the even the unlikely ways in which Planet 9/X could go undetected in LSST data, which would come down to a simple case of bad luck. However, as Dr. Trilling indicated, the team is prepared for these possibilities and is hopeful they will find Planet 9/X, assuming there’s anything to find:
“The more likely conclusion if planet X is not detected in LSST data is that planet X doesn’t exist – or at least not the kind of planet X that has been predicted. In this case, we’ve got to work harder to understand how the Universe created this pattern of orbits in the outer Solar System that I described above. This is a really fun part of science: make a prediction and test it, and find that the result is rarely what is predicted. So now we’ve got to work harder to understand the universe. Hopefully this new understanding makes new predictions that we then can test, and we repeat the cycle.”
The existence of Planet 9/X has been one of the more burning questions for astronomers in recent years. If its existence can be confirmed, astronomers may finally have a complete picture of the Solar System and its dynamics. If it’s existence can be ruled out, this will raise a whole new series of questions about what is going on in the Outer Solar System!
Further Reading: arXivThe post What are the Chances that the Next Generation LSST Could Find New Planets in the Solar System? appeared first on Universe Today.
Thursday, March 15, 2018
Across The Universe - In the Heart of the Heart Nebula
In the Heart of the Heart Nebula:
What's that inside the Heart Nebula?
First, the large emission nebula dubbed
IC 1805 looks, in whole, like a human heart.
It's shape perhaps fitting of the
Valentine's Day,
this heart glows brightly in red light
emitted by its most prominent element:
hydrogen.
The red glow and the larger shape are all created by a
small group of stars near the
nebula's center.
In the heart of the
Heart
Nebula are young stars from the open star cluster
Melotte 15 that are eroding away several picturesque
dust pillars with their energetic light and winds.
The open cluster of stars contains a few
bright stars nearly 50 times the mass of our Sun,
many dim stars only a fraction of the mass of our Sun, and an
absent microquasar
that was expelled millions of years ago.
The Heart Nebula is located about 7,500 light years away toward the
constellation
of the mythological Queen of Aethiopia (Cassiopeia).
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 February 14
Explanation: Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 February 14
What's that inside the Heart Nebula?
First, the large emission nebula dubbed
IC 1805 looks, in whole, like a human heart.
It's shape perhaps fitting of the
Valentine's Day,
this heart glows brightly in red light
emitted by its most prominent element:
hydrogen.
The red glow and the larger shape are all created by a
small group of stars near the
nebula's center.
In the heart of the
Heart
Nebula are young stars from the open star cluster
Melotte 15 that are eroding away several picturesque
dust pillars with their energetic light and winds.
The open cluster of stars contains a few
bright stars nearly 50 times the mass of our Sun,
many dim stars only a fraction of the mass of our Sun, and an
absent microquasar
that was expelled millions of years ago.
The Heart Nebula is located about 7,500 light years away toward the
constellation
of the mythological Queen of Aethiopia (Cassiopeia).
Across The Universe - Jupiter in Infrared from Hubble
Jupiter in Infrared from Hubble:
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 February 21
Jupiter in Infrared from Hubble
Image Credit:
NASA,
ESA,
Hubble;
Data:
Michael Wong
(UC Berkeley)
et al.;
Processing &
License:
Judy Schmidt
Explanation:
Jupiter looks a bit different in infrared light.
To better understand
Jupiter's cloud motions and to help NASA's robotic
Juno spacecraft understand the
planetary context of the small fields that it sees, the
Hubble Space Telescope is being directed to
regularly image the entire Jovian giant.
The colors of Jupiter
being monitored go beyond the normal human visual range to include both
ultraviolet and
infrared light.
Featured here in 2016, three bands of near-infrared light have been digitally reassigned into a mapped color image.
Jupiter appears
different in infrared
partly because the amount of sunlight reflected back is distinct,
giving differing cloud heights and latitudes discrepant brightnesses.
Nevertheless, many familiar features on
Jupiter remain, including the
light zones and dark belts that circle the planet near the equator, the
Great Red Spot on the lower left, and the
string-of-pearls storm systems south of the Great Red Spot.
The poles glow because high altitude haze there is energized by charged
particles from Jupiter's
magnetosphere.
Juno has now completed
10 of 12 planned science orbits of Jupiter and continues to record data that are helping humanity to
understand not only Jupiter's weather but
what lies beneath Jupiter's thick clouds.
Tomorrow's picture: roses aren't red
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Discover the cosmos!
Each day a different image or photograph of our fascinating universe is
featured, along with a brief explanation written by a professional astronomer.
2018 February 21
Jupiter in Infrared from Hubble
Image Credit:
NASA,
ESA,
Hubble;
Data:
Michael Wong
(UC Berkeley)
et al.;
Processing &
License:
Judy Schmidt
Explanation:
Jupiter looks a bit different in infrared light.
To better understand
Jupiter's cloud motions and to help NASA's robotic
Juno spacecraft understand the
planetary context of the small fields that it sees, the
Hubble Space Telescope is being directed to
regularly image the entire Jovian giant.
The colors of Jupiter
being monitored go beyond the normal human visual range to include both
ultraviolet and
infrared light.
Featured here in 2016, three bands of near-infrared light have been digitally reassigned into a mapped color image.
Jupiter appears
different in infrared
partly because the amount of sunlight reflected back is distinct,
giving differing cloud heights and latitudes discrepant brightnesses.
Nevertheless, many familiar features on
Jupiter remain, including the
light zones and dark belts that circle the planet near the equator, the
Great Red Spot on the lower left, and the
string-of-pearls storm systems south of the Great Red Spot.
The poles glow because high altitude haze there is energized by charged
particles from Jupiter's
magnetosphere.
Juno has now completed
10 of 12 planned science orbits of Jupiter and continues to record data that are helping humanity to
understand not only Jupiter's weather but
what lies beneath Jupiter's thick clouds.
Tomorrow's picture: roses aren't red
<
| Archive
| Submissions
| Index
| Search
| Calendar
| RSS
| Education
| About APOD
| Discuss
| >
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.
Subscribe to:
Posts (Atom)