Distribution of galaxies and quasars in a slice of BOSS out to a redshift of 3, or 11 billion years in the past. (Courtesy: SDSS-III.)
By mapping over 10,000 square degrees — 25% of the sky — BOSS is “measuring our universe’s accelerated expansion with the world’s largest extragalactic redshift survey,” according to SDSS-III Director Daniel Eisenstein of the Harvard-Smithsonian Center for Astrophysics. The BOSS results include new and precise measurements of the universe’s expansion rate (called the “Hubble constant”) and matter density, which includes dark matter, stars, gas, and dust.
BOSS conducted its observations at 2.5-meter Sloan Foundation Telescope at Apache Point Observatory in New Mexico, producing spectra and spatial positions for 1.5 million galaxies and 300,000 quasars in a volume equivalent to a cube with length 8.5 billion light-years on a side (see image above). Astronomers used this rich dataset to map the objects’ distributions and to detect the characteristic scale imprinted by baryon acoustic oscillations in the early universe. Sound waves propagate outward with time, like ripples spreading in a pond, and are indicated by a large-scale clustering signal in the positions of galaxies relative to each other (see illustration below). By analyzing this signal at different times, it is possible to study the behavior of the mysterious “dark energy” causing the accelerating expansion of the universe.
An illustration of the concept of baryon acoustic oscillations, imprinted in the early universe and seen today in galaxy surveys. (courtesy: Chris Blake and Sam Moorfield)
Cosmological constraints on the Hubble parameter h, matter density Ωm, and curvature parameter Ωk from BOSS’s baryon acoustic oscillations (BAO) combined with supernovae (SN) and Planck results. (Courtesy: Aubourg et al. 2014)
Where will the BOSS team go from here? The collaboration has begun work on SDSS-IV, whose six-year mission includes an ambitious extended BOSS (eBOSS) survey. According to eBOSS Targeting Coordinator Jeremy Tinker of New York University, eBOSS observations of over 700,000 quasars will precisely measure the distance scale “at a much higher redshift regime that is not covered by current large-scale surveys.”
You can read more about BOSS and updates about the three other componenets of the SDSS in our previous article here.
SDSS website
(Full disclosure: Ramin Skibba had been a member of the BOSS collaboration during 2010-2012.)
About Ramin Skibba
Ramin Skibba is an Assistant Project Scientist at the Center for Astrophysics and Space Sciences at the University of California, San Diego. He writes about astronomy and science policy news at his blog (http://raminskibba.net) and about his scientific research at his work website (http://cass.ucsd.edu/~rskibba/).Share this:
- FASHION WEEK - USA Fashion and Music News
- GOOGLE NEWS - Google News Blogger
- PINTEREST ACROSS THE UNIVERSE - Google Images Nasa Images
- LAST FM - Download Music Legally Direct From Artist
- WOMEN COMMUNITY - Women Communty Photography Videos Beauty
- DISNEY CHANNEL - Photos and Music News
- BABY JUSTIN BIEBER - Google Images Google News
- LADY GAGA - Google Images Google News
- ACROSS THE UNIVERSE - Google Images Universe Pictures
- VICTORIA´S SECRET COMMUNITY - Victoria´s Secret Fashion Show Photos
No comments:
Post a Comment