Saturday, March 7, 2015

10 Interesting Facts About Volcanoes

10 Interesting Facts About Volcanoes:



A view of the Villarrica Volcano's Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.


A view of the Villarrica Volcano’s Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.
Want some volcano facts? Here are 10 interesting facts about volcanoes. Some of these facts you’ll know, and others may surprise you. Whatever the case, volcanoes are amazing features of nature that demand our respect.


Lava fountain in Hawaii.
Lava fountain in Hawaii. Image Credit: Jim D. Griggs/HVO/USGS
1. There are three major kinds of volcanoes
Although volcanoes are all made from hot magma reaching the surface of the Earth and erupting, there are different kinds. Shield volcanoes have lava flows with low viscosity that flow dozens of kilometers; this makes them very wide with smoothly sloping flanks. Stratovolcanoes are made up of different kinds of lava, and eruptions of ash and rock and grow to enormous heights. Cinder cone volcanoes are usually smaller, and come from short-lived eruptions that only make a cone about 400 meters high.

2. Volcanoes erupt because of magma escaping from beneath the Earth’s crust
About 30 km beneath your feet is the Earth’s mantle. It’s a region of superhot rock that extends down to the Earth’s core. This region is so hot that molten rock can squeeze out and form giant bubbles of liquid rock called magma chambers. This magma is lighter than the surrounding rock, so it rises up, finding cracks and weakness in the Earth’s crust. When it finally reaches the surface, it erupts out of the ground as lava, ash, volcanic gasses and rock. It’s called magma when it’s under the ground, and lava when it erupts onto the surface.

3. Volcanoes can be active, dormant or extinct
An active volcano is one that has had an eruption in historical times (in the last few thousand years). A dormant volcano is one that has erupted in historical times and has the potential to erupt again, it just hasn’t erupted recently. An extinct volcano is one that scientists think probably won’t erupt again. Here’s more information on the active volcanoes in the world.



Detailed View of Ash Plume at Eyjafjallajökull Volcano


Detailed view from space of the ash plume caused by the Eyjafjallajökull volcano in 2010. Credit: NASA
4. Volcanoes can grow quickly
Although some volcanoes can take thousands of years to form, others can grow overnight. For example, the cinder cone volcano Paricutin appeared in a Mexican cornfield on February 20, 1943. Within a week it was 5 stories tall, and by the end of a year it had grown to more than 336 meters tall. It ended its grown in 1952, at a height of 424 meters. By geology standards, that’s pretty quick.

5. There are 20 volcanoes erupting right now
Somewhere, around the world, there are likely about 20 active volcanoes erupting as you’re reading this. Some are experiencing new activity, others are ongoing. Between 50-70 volcanoes erupted last year, and 160 were active in the last decade. Geologists estimate that 1,300 erupted in the last 10,000 years. Three quarters of all eruptions happen underneath the ocean, and most are actively erupting and no geologist knows about it at all. One of the reasons is that volcanoes occur at the mid ocean ridges, where the ocean’s plates are spreading apart. If you add the underwater volcanoes, you get an estimate that there are a total of about 6,000 volcanoes that have erupted in the last 10,000 years.

6. Volcanoes are dangerous
But then you knew that. Some of the most deadly volcanoes include Krakatoa, which erupted in 1883, releasing a tsunami that killed 36,000 people. When Vesuvius exploded in AD 79, it buried the towns of Pompeii and Herculaneum, killing 16,000 people. Mount Pelee, on the island of Martinique destroyed a town with 30,000 people in 1902. The most dangerous aspect of volcanoes are the deadly pyroclastic flows that blast down the side of a volcano during an eruption. These contain ash, rock and water moving hundreds of kilometers an hour, and hotter than 1,000 degrees C.



Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Credit: NASA/EO


Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Credit: NASA/EO
7. Supervolcanoes are really dangerous
Geologists measure volcano eruptions using the Volcano Explosivity Index, which measures the amount of material released. A “small” eruption like Mount St. Helens was a 5 out of 8, releasing a cubic kilometer of material. The largest explosion was on record was Toba, thought to have erupted 73,000 years ago. It released more than 1,000 cubic kilometers of material, and created a caldera 100 km long and 30 kilometers wide. The explosion plunged the world into a world wide ice age. Toba was considered an 8 on the VEI.

8. The tallest volcano in the Solar System isn’t on Earth
That’s right, the tallest volcano in the Solar System isn’t on Earth at all, but on Mars. Olympus Mons, on Mars, is a giant shield volcano that rises to an elevation of 27 km, and it measures 550 km across. Scientists think that Olympus Mons was able to get so large because there aren’t any plate tectonics on Mars. A single hotspot was able to bubble away for billions of years, building the volcano up bigger and bigger.

9. The tallest and biggest volcanoes on Earth are side by side
The tallest volcano on Earth is Hawaii’s Mauna Kea, with an elevation of 4,207 meters. It’s only a little bigger than the largest volcano on Earth, Mauna Loa with an elevation of only 4,169 meters. Both are shield volcanoes that rise up from the bottom of the ocean. If you could measure Mauna Kea from the base of the ocean to its peak, you’d get a true height of 10,203 meters (and that’s bigger than Mount Everest).



Mauna Kea


Mauna Kea observed from space. Credit: NASA/EO
10. The most distant point from the center of the Earth is a volcano
You might think that the peak of Mount Everest is the most distant point from the center of the Earth, but that’s not true. Instead, it’s the volcano Chimborazo in Ecuador. That’s because the Earth is spinning in space and is flattened out. Points at the equator are further from the center of the Earth than the poles. And Chimborazo is very close to the Earth’s equator.

We have written many articles about volcanoes for Universe Today. Here’s an article that tackles about the 10 facts about earth’s core. You might also want to read on the 10 facts about earth. And here’s more: all about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Reference:
USGS Volcano Hazards Program

Share this:

The Night Mars Was Closest to Earth

The Night Mars Was Closest to Earth:



On Earth, Don Parker’s Mars images were hard to beat, but the Hubble Space Telescope—six times larger than his 16-inch ‘scope and, more importantly, above the atmosphere—easily pulled it off. In this pair of images taken around the time of the planet’s closest approach in 2003, the giant volcano Olympus Mons is the small, bright circular feature above center. Image courtesy Andrew Chaikin.


On Earth, Don Parker’s Mars images were hard to beat, but the Hubble Space Telescope—six times larger than his 16-inch ‘scope and, more importantly, above the atmosphere—easily pulled it off. In this pair of images taken around the time of the planet’s closest approach in 2003, the giant volcano Olympus Mons is the small, bright circular feature above center. Image courtesy Andrew Chaikin.
Editor’s note: On August 27, 2003 Mars was closer to Earth than at any time in human history. Author Andrew Chaikin asked Universe Today to tell the story of how he was fortunate enough to enjoy the event with Don Parker, a “superb planetary photographer and wonderful guy,” Chaikin wrote. “I first met Don, a retired anesthesiologist from Coral Gables, Florida, several weeks earlier when I journeyed with my telescope to Florida to photograph the Moon passing in front of Mars, an event called an occultation. I’d seen Don’s work for decades in Sky & Telescope magazine, but until the occultation we’d never met. I certainly had never imagined that he would turn out to be as much fun as he was, with a warped, wickedly bawdy sense of humor. Standing under the moon and Mars we bonded, and soon we were making plans for me to come down to his place for the closest approach.”

Don passed away on February 22, 2015. In his memory here’s an excerpt from Chaikin’s book, A Passion for Mars.

Godspeed, Don. See you on Mars.




Don Parker with his 16-inch telescope, which he used to take thousands of superb images of the planets. Photo by Sean Walker.


Don Parker with his 16-inch telescope, which he used to take thousands of superb images of the planets. Photo by Sean Walker.
ON PAPER, Don Parker’s life story is pretty ordinary: Born in 1939, he grew up in an Italian neighborhood in Chicago. He spent a few years in the navy, went to medical school, and ended up living in Florida with his wife, Maureen, and their children, working as an anesthesiologist in a Miami hospital. Looking at his résumé you’d never know about his other life, the one dominated by a lifelong obsession with Mars. By the time he went to see Invaders from Mars and War of the Worlds as a teenager in 1953, he was building his first telescope, a three-inch refractor with lenses from Edmund Scientific and a body made from a stovepipe his dad got for him.

He was subscribing to Sky & Telescope magazine and following the continuing debate over whether the canals on Mars really existed. That was a question that only a handful of professional astronomers cared about, but amateur observers, like the ones whose drawings were printed in the magazine, seemed to be on the case. Parker got serious about observing Mars himself around 1954, when he tried to create a homemade reflector, but failed when he had trouble with the mirror. His aunt Hattie came to the rescue that Christmas by giving him a hundred dollar bill — quite a bit of money in those days — which he used to buy a professionally made eight-inch mirror. With help from his dad, he assembled the new telescope, using pipe fittings for the mounting.

In the summer of 1956, when Mars made its famously close appearance, he was at the eyepiece making drawings of his own, until a dust storm engulfed much of the planet that September, just as Mars came closest to Earth. “Mars looked like a cue ball,” Parker remembers. “There was nothing on it. It was very disappointing for me.” At the time, he thought the problem was with his instrument. “I even took the mirror out of the telescope,” he recalls. “You know,‘What the hell is going on here?’” Only much later, when information on Martian dust storms began to show up in the amateur astronomy literature, did he realize his view had been spoiled by an event happening on Mars.



Gullies on a Martian sand dune in this trio of images from NASA's Mars Reconnaissance Orbiter deceptively resemble features on Earth that are carved by streams of water. However, these gullies likely owe their existence to entirely different geological processes apparently related to the winter buildup of carbon-dioxide frost. Image Credit: NASA/JPL-Caltech/University of Arizona


Gullies on a Martian sand dune in this trio of images from NASA’s Mars Reconnaissance Orbiter deceptively resemble features on Earth that are carved by streams of water. However, these gullies likely owe their existence to entirely different geological processes apparently related to the winter buildup of carbon-dioxide frost. Image Credit: NASA/JPL-Caltech/University of Arizona
By that time Parker was in high school, and soon Martian canals became much less important than more earthly matters. “Football and blondes were my major,” he quips. Then it was off to college, and his telescope sat unused in its wooden shelter in the backyard. When it came time for his internship he convinced his wife, Maureen, that they should move to Florida so he could pursue his interest in scuba diving.

Needless to say he had no time for astronomy then, or during his residency. Then came a stint in the navy, and by the early 1970s he was back in Florida, beginning his career as an anesthesiologist and raising a family. By the time Mars made another close approach in 1973 Parker had brought his telescope down from Chicago; his parents had asked him to take it out of the backyard so they could put in a birdbath, and a few months after that, he remembers, “Maureen said, ‘Can you get that thing out of the garage?’”

He didn’t expect it to do him much good outside, however. The conventional wisdom was that south Florida, with its clouds and frequent storms, was a terrible place to do astronomy. But he found out differently that summer, when he trained his telescope on Mars. “I went, ‘Holy shit.’ It was just absolutely steady. I couldn’t believe it.”

Parker returned to his old practice of making drawings at the eyepiece to record as much detail as possible. He sent some of his work to Charles “Chick” Capen, an astronomer at Arizona’s Lowell Observatory and coordinator of Mars observations for the Association of Lunar and Planetary Observers. Soon he and Capen were in frequent contact, and from him Parker learned about the latest techniques for planetary photography.

In the 1970s that was a time-consuming process; he used professional-grade film ordered directly from Kodak and developed it with special, highly toxic chemicals that had to be laboriously prepared for each session. But that became a part of his life’s routine: off to the hospital in the morning, sailing with Maureen in the afternoon, nights at the telescope, and the rest of the time developing and printing his pictures. Returning to work after a beautiful Florida weekend, he says, “Everybody would come in with a nice tan; I’d come in looking like a bed sheet. Forty-eight hours in the darkroom! People would say, ‘Are you ill?’”

All that effort paid off. Parker’s planetary photos were now appearing frequently in Sky & Telescope. But they still couldn’t record the kind of details a good observer could see at the eyepiece. Soon Chick Capen was steering him, gently, toward more ambitious Martian observing projects—especially the exacting task of monitoring the planet’s north polar ice cap. Using a measuring device called a filar micrometer attached to their telescopes, Parker and fellow amateur Jeff Beish studied the cap as it shrank during the Martian spring and summer. Observations going back to the early years of the twentieth century showed that the north polar cap always shrank at the same predictable rate, but in the 1980s Parker and Beish found a surprise: The cap shrank more quickly, and to a smaller size, than ever before. Years before most people had even heard the term “global warming” (and more than a decade before evidence from NASA’s Mars Global Surveyor mission) Parker and Beish had found evidence that it was taking place on Mars.



Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubble)


Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubble)
Soon their observations were being reinforced by several kinds of data from other astronomers, a convergence that Parker remembers as tremendously thrilling. “All this stuff began to come together,” Parker says. “The dust storm frequencies, the cloud study frequencies, the polar cap shit. And it’s almost better than sex. And it came in from a lot of different observers, different times. It’s really kind of cool—when you’re in a science and something all of a sudden falls into place that you don’t expect. It’s really neat. Nothing’s better than sex, but it’s close.” His work with Beish and other observers was later published, to Parker’s great satisfaction, in the professional planetary science journal Icarus. For Parker it epitomizes the rewards of all those hours at the eyepiece. “It’s the thrill of the hunt,” he says. “That’s really the only thing that’s kept me going. Taking pretty pictures is fine and fun, but doing that for thirty years, it wears after a while. You’ve taken one pretty picture, you’ve taken them all.”

In the 1990s, though, the pictures started to get really pretty. For the first time, amateurs had access to electronic cameras using charged-coupled devices (CCDs), like the ones in NASA spacecraft and professional observatories. Around 1990 fellow amateur astronomer Richard Berry convinced Parker to invest in one of these new cameras, but he had a tough time getting used to it. “I hooked it up,” he remembers. “I didn’t know what to do with it. I was afraid of it. So I went back to film.”



Don Parker's image of Jupiter and the Great Red Spot, taken in 2012. Credit: Don Parker.


Don Parker’s image of Jupiter and the Great Red Spot, taken in 2012. Credit: Don Parker.


Some months later Berry came for a visit and showed Parker what he’d been missing. They pointed Parker’s sixteen-inch telescope at Jupiter, and when the first image came up on his computer screen, “It was ten times better than anything I’d ever gotten with film. The detail was amazing. It was really exciting.”


Before long Parker had completely switched over to using his electronic imager, and he never looked back. Unlike film, it offered instant gratification; no longer did he have to spend hours in the darkroom before he could see results. Even more important, the extraordinary sensitivity of CCDs allowed much shorter exposure times than film, making it possible to record a planet during those brief moments of good seeing. He could even create remarkably detailed color images by taking separate exposures through red, green, and blue filters, then combining the results in newly developed programs like Adobe Photoshop.

And to Parker’s great relief, electronic images proved as good as visual observations for monitoring Martian features like clouds, dust storms, and— thankfully—the changing polar ice caps. At last, he could put aside the filar micrometer and the tedious hours that went along with it. But there was no way around the fact that the whole experience of planetary observing had changed for serious amateurs like Parker, just as it had for professionals. He realized this during Richard Berry’s visit, as they filled his computer’s hard drive with electronic portraits of Jupiter. “I said to Richard, ‘We’ve been here for six hours and haven’t even looked through the telescope.’ And he said, ‘Yeah, now you’re a real astronomer!’”

August 26, 2003,
Coral Gables, Florida


With no time for a road trip, I’ve packed my webcam and flown to Miami. I arrive at Don Parker’s waterfront home shortly after he has awakened from yet another all-nighter at the telescope. Don is tall, pot bellied, and nearly bald, with a kind of leering, lopsided grin that spreads mischievously across his face. In his old hospital scrubs he reminds me of Peter Boyle in Young Frankenstein. Don wouldn’t mind hearing me say that; he often refers to himself as Mongo, after the character in another Mel Brooks film, Blazing Saddles. (For example: “Mongo got good pictures. Mongo happy.”)

When he was a practicing anesthesiologist he had a penchant for playing crude practical jokes in the O.R. to startle the nurses (the fart machine was a favorite). “It was like MASH,” he says. Now that he is retired there is nothing to stop him from spending every clear night at the telescope—and that is what he does, whenever Mars shines overhead. Back in 1984, when the seeing was even better than it is now, he and Jeff Beish logged 285 nights of making drawings, photos, and micrometer measurements. Parker says, “We were praying for rain. Going to the Seminole reservation to pay the guys to do a rain dance.” Two decades later, his “other life” has become his life. For months now, as Mars has grown from an orange speck in the predawn sky to its current brilliance, high overhead at midnight, Don has faithfully recorded its changing aspect, the shrinking polar cap, the comings and goings of blue hazes and yellow dust clouds, the parade of deserts and dark markings. Maureen is now a full-fledged Mars widow. Don calls it “The Curse of the Red Planet.”

For me this is the big night, and I am full of anticipation. About twelve hours from now, at 5:51am Eastern Daylight Time on August 27, Mars will be 34,646,418 million miles away from Coral Gables. An astronomer at JPL has figured out that this is closer than at any time since the year 57617 B.C., and closer than Mars will be again until the year 2287. For Don, though, this is just one more night in an unbroken string of nights that began last April and will continue into next spring. Don, of course, is far from the only one so afflicted. At any given moment this summer someone around the world is observing Mars, including a couple of twenty-something wizards in Hong
Kong and Singapore who are getting spectacular results with telescopes placed on their high-rise apartment balconies (when I mention them Don curses ruefully, then laughs).

Sitting in Don’s kitchen, we discuss the weather for the coming night— the continuing hurricane season has made things a bit iffy—as he mixes his standard brew of freeze-dried coffee, sugar, and nondairy creamer, a concoction that seems less like a beverage than a research project in polymer chemistry. Arthritis and weakening of the bones in his legs have left him with a limp so painful that he must use a cane, and as he leads me to his upstairs office he utters a string of profanities.

Seated at the computer he unveils his most recent images and I am astonished by their clarity. Even back in April, when Mars was a fraction of its current apparent size, Don was getting a remarkable amount of detail. Now his pictures are so good that they hold up in side-by-side comparisons with Mars images from the Hubble Space Telescope. If you know where to look, you can even spot the giant volcano, Olympus Mons.

When I was growing up, even the two-hundred-inch giant at Palomar couldn’t come close to the details Don has recorded with a telescope just sixteen inches in diameter.

By nightfall the sky is mercifully clear, and Don sets up a ten-inch scope for me to use. The view is amazing: The planet’s disc is shaded with subtle, dusky patterns, far more detailed than any previous view of Mars I’ve ever seen. But when I attach the webcam and fire up the laptop, the live video that appears before me is almost too good to be true. Mars is so big, so clear, that I can even see individual dark spots that must be huge, windblown craters, trailing streaks of dark sand across the pink deserts. At the south pole, the retreating ice cap gleams brilliantly, with an outlier of frosted ground distinctly visible adjacent to the larger white mass.

Long into the night, and again the next, Don and I gather our photographic records of this unprecedented encounter, he at one telescope, I at the other. I feel lucky to be alive at this moment, suspended between the time of the Neanderthals and the twenty-third century, when some of our descendants will be on Mars, looking back at Earth. Right now I am face-to-face with Mars in a way I have never been, and never will be again. It is not the Mars of my childhood picture books, or the one revealed by an armada of space probes, or the trackless world where men and women will someday leave footprints. At this moment, I am exploring Mars, and 35 million miles doesn’t seem like much, not much at all.



Andrew Chaikin.


Andrew Chaikin.
Find out more about Chaikin’s books “A Passion for for Mars,” “A Man on the Moon” and more at Chaikin’s website.

Share this:

Mars Loses an Ocean But Gains the Potential for Life

Mars Loses an Ocean But Gains the Potential for Life:



NASA scientists have determined that a primitive ocean on Mars held more water than Earth's Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. Credit: NASA/GSFC


NASA scientists have determined that a primitive ocean on Mars held more water than Earth’s Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. Water would have covered 20% of the globe about 3 billion years ago. Credit: NASA/GSFC
It’s hard to believe it now looking at Mars’ dusty, dessicated landscape that it once possessed a vast ocean. A recent NASA study of the Red Planet using the world’s most powerful infrared telescopes clearly indicate a planet that sustained a body of water larger than the Earth’s Arctic Ocean.

If spread evenly across the Martian globe, it would have covered the entire surface to a depth of about 450 feet (137 meters). More likely, the water pooled into the low-lying plains that cover much of Mars’ northern hemisphere. In some places, it would have been nearly a mile (1.6 km) deep. (...)

Read the rest of Mars Loses an Ocean But Gains the Potential for Life (829 words)


© Bob King for Universe Today, 2015. |
Permalink |
10 comments |


Post tags: deuterium, evolution, heavy water, Mars, water


Feed enhanced by Better Feed from Ozh

Thursday, March 5, 2015

Saturn Wallpaper

Saturn Wallpaper:



Saturn-640x1136 wallpapers.jpg
Date: Mar 2, 2015, 12:18 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


Solar Flare wallpaper

Solar Flare wallpaper:



Solar Flare-640x1136 wallpapers.jpg
Date: Mar 2, 2015, 12:18 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


Space Earth Sunrise

Space Earth Sunrise:



Space-Earth-Sunrise-1136x640.jpg
Date: Mar 2, 2015, 12:18 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


solar eclipse space moon earth sun

solar eclipse space moon earth sun:



solar-eclipse-space-moon-earth-sun-other-1136x640.jpg
Date: Mar 2, 2015, 12:19 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


space graphics galaxy planet cube 3d

space-graphics-galaxy-planet-cube-3d-1136x640.jpg:



space-graphics-galaxy-planet-cube-3d-1136x640.jpg
Date: Mar 2, 2015, 12:19 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


space planet asteroid universe 3d

space-planet-asteroid-universe-3d-1136x640.jpg:



space-planet-asteroid-universe-3d-1136x640.jpg
Date: Mar 2, 2015, 12:19 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


M106 A Spiral Galaxy with a Strange Center

M106 A Spiral Galaxy with a Strange Center.jpg:



M106 A Spiral Galaxy with a Strange Center.jpg
Date: Mar 2, 2015, 12:51 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


Perseid in Moonlight

Perseid in Moonlight: APOD: 2014 August 15 - Perseid in Moonlight


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 15
See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Bright moonlight from a Full Moon near perigee illuminates the night and casts shadows in this skyscape from central Iran. Taken on August 12, near the peak of the annual Perseid meteor shower the exposure also captures a bright and colorful perseid streak above the shady tree in the foreground. This year the super moonlight interfered with meteor watching into the early morning hours, overwhelming the trails from many fainter perseids in the shower. Brighter perseids like this one were still visible though, their trails pointing back to the heroic constellation Perseus outlined at the right. Swept up as planet Earth orbits through dust left behind from periodic comet Swift-Tuttle, the cosmic grains that produce perseid meteors enter the atmosphere at nearly 60 kilometers per second, heated to incandesence and vaporized at altitudes of about 100 kilometers. Next year, Perseid meteors will flash through dark skies under a New Moon.

Jupiter and Venus from Earth

Jupiter and Venus from Earth: APOD: 2014 August 17 - Jupiter and Venus from Earth


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 17


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: It was visible around the world. The sunset conjunction of Jupiter and Venus in 2012 was visible almost no matter where you lived on Earth. Anyone on the planet with a clear western horizon at sunset could see them. Pictured above in 2012, a creative photographer traveled away from the town lights of Szubin, Poland to image a near closest approach of the two planets. The bright planets were separated only by three degrees and his daughter striking a humorous pose. A faint red sunset still glowed in the background. Early tomorrow (Monday) morning, the two planets will pass even closer -- only 0.2 degrees apart as visible from some locations -- just before sunrise.

In the Center of the Lagoon Nebula

In the Center of the Lagoon Nebula: APOD: 2014 August 20 - In the Center of the Lagoon Nebula


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 20


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The center of the Lagoon Nebula is a whirlwind of spectacular star formation. Visible near the image center, at least two long funnel-shaped clouds, each roughly half a light-year long, have been formed by extreme stellar winds and intense energetic starlight. The tremendously bright nearby star, Herschel 36, lights the area. Walls of dust hide and redden other hot young stars. As energy from these stars pours into the cool dust and gas, large temperature differences in adjoining regions can be created generating shearing winds which may cause the funnels. This picture, spanning about 5 light years, combines images taken by the orbiting Hubble Space Telescope. The Lagoon Nebula, also known as M8, lies about 5,000 light years distant toward the constellation of Sagittarius.

Venus and Jupiter at Dawn

Venus and Jupiter at Dawn: APOD: 2014 August 21 - Venus and Jupiter at Dawn


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 21


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: On Monday morning, Venus and Jupiter gathered close in dawn skies, for some separated by about half the width of a full moon. It was their closest conjunction since 2000, captured here above the eastern horizon before sunrise. The serene and colorful view is from Istia beach near the city of Capoliveri on the island of Elba. Distant lights and rolling hills are along Italy's Tuscan coast. Of course, the celestial pair soon wandered apart. Brighter Venus headed lower, toward the eastern horizon and the glare of the Sun, while Jupiter continues to rise a little higher now in the sky near dawn. The two brightest planets meet again next June 30th, in the evening twilight above the western horizon.

Milky Way over Yellowstone

Milky Way over Yellowstone: APOD: 2014 August 27 - Milky Way over Yellowstone


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 27


See Explanation. Clicking on the picture will download the highest resolution version available.
Milky Way over Yellowstone

Image Credit & Copyright: Dave Lane
Explanation: The Milky Way was not created by an evaporating lake. The colorful pool of water, about 10 meters across, is known as Silex Spring and is located in Yellowstone National Park in Wyoming, USA. Illuminated artificially, the colors are caused by layers of bacteria that grow in the hot spring. Steam rises off the spring, heated by a magma chamber deep underneath known as the Yellowstone hotspot. Unrelated and far in the distance, the central band of our Milky Way Galaxy arches high overhead, a band lit by billions of stars. The above picture is a 16-image panorama taken late last month. If the Yellowstone hotspot causes another supervolcanic eruption as it did 640,000 years ago, a large part of North America would be affected.

Messier 20 and 21

Messier 20 and 21: APOD: 2014 August 28 - Messier 20 and 21


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 28
See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The beautiful Trifid Nebula, also known as Messier 20, is easy to find with a small telescope in the nebula rich constellation Sagittarius. About 5,000 light-years away, the colorful study in cosmic contrasts shares this well-composed, nearly 1 degree wide field with open star cluster Messier 21 (top right). Trisected by dust lanes the Trifid itself is about 40 light-years across and a mere 300,000 years old. That makes it one of the youngest star forming regions in our sky, with newborn and embryonic stars embedded in its natal dust and gas clouds. Estimates of the distance to open star cluster M21 are similar to M20's, but though they share this gorgeous telescopic skyscape there is no apparent connection between the two. In fact, M21's stars are much older, about 8 million years old.

The Starry Sky under Hollow Hill

The Starry Sky under Hollow Hill: APOD: 2014 August 30 - The Starry Sky under Hollow Hill


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 30


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Look up in New Zealand's Hollow Hill Cave and you might think you see a familiar starry sky. And that's exactly what Arachnocampa luminosa are counting on. Captured in this long exposure, the New Zealand glowworms scattered across the cave ceiling give it the inviting and open appearance of a clear, dark night sky filled with stars. Unsuspecting insects fooled into flying too far upwards get trapped in sticky snares the glowworms create and hang down to catch food. Of course professional astronomers wouldn't be so easily fooled, although that does look a lot like the Coalsack Nebula and Southern Cross at the upper left ...

Airglow Ripples over Tibet

Airglow Ripples over Tibet: APOD: 2014 September 1 - Airglow Ripples over Tibet


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 September 1


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Why would the sky look like a giant target? Airglow. Following a giant thunderstorm over Bangladesh in late April, giant circular ripples of glowing air appeared over Tibet, China, as pictured above. The unusual pattern is created by atmospheric gravity waves, waves of alternating air pressure that can grow with height as the air thins, in this case about 90 kilometers up. Unlike auroras powered by collisions with energetic charged particles and seen at high latitudes, airglow is due to chemiluminescence, the production of light in a chemical reaction. More typically seen near the horizon, airglow keeps the night sky from ever being completely dark.

M6: The Butterfly Cluster

M6: The Butterfly Cluster: APOD: 2014 September 3 - M6: The Butterfly Cluster


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 September 3



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: To some, the outline of the open cluster of stars M6 resembles a butterfly. M6, also known as NGC 6405, spans about 20 light-years and lies about 2,000 light years distant. M6, pictured above, can best be seen in a dark sky with binoculars towards the constellation of the Scorpion (Scorpius), coving about as much of the sky as the full moon. Like other open clusters, M6 is composed predominantly of young blue stars, although the brightest star is nearly orange. M6 is estimated to be about 100 million years old. Determining the distance to clusters like M6 helps astronomers calibrate the distance scale of the universe.