Wednesday, January 14, 2015

It Looks Like These Are All the Large Kuiper Belt Objects We’ll Ever Find

It Looks Like These Are All the Large Kuiper Belt Objects We’ll Ever Find:



The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)


The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)
The self-professed “Pluto Killer” is at it again. Dr. Michael Brown is now reminiscing about the good old days when one could scour through sky survey data and discover big bright objects in the Kuiper Belt. In his latest research paper, Brown and his team have concluded that those days are over.

Ten years ago, Brown discovered what is now known as the biggest Kuiper Belt object – Eris. Brown’s team found others that rivaled Pluto in size and altogether, these discoveries led to the demotion of Pluto to dwarf planet. Now, using yet another sky survey data set but with new computer software, Brown says that its time to move on.



Instigators of the big heist - David Rabinowitz, Brown and Chad Trujillo, left to right. The researchers discovered dozens of Kuiper Belt objects (KBO) including six of the eight largest KBOs including the largest, Eris.


Instigators of the big heist – Rabinowitz, Brown and Trujillo, left to right. The researchers co-discovered dozens of Kuiper Belt objects (KBO) including nine of the ten largest KBOs including the largest, Eris.
Like the famous Bugs Bunny cartoon, its no longer Rabbit Season or Duck Season and as Bugs exclaims to Elmer Fudd, there is no more bullets. Analyzing seven years worth of data, Brown and his team has concluded we are fresh out of Pluto or Charon-sized objects to be discovered in the Kuiper Belt. But for Dr. Brown, perhaps it now might be Oort Cloud season.

His latest paper, A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System, in pre-print, describes the completion of analysis of two past sky surveys covering the northern and southern hemisphere down to 20 degrees in Galactic latitude. Using revised computer software, his team scoured through the data sets from the Catalina Sky Survey (CSS) and the Siding Spring Survey (SSS). The surveys are called “fast cadence surveys” and they primarily search for asteroids near Earth and out to the asteroid belt. Instead Brown’s team used the data to look at image frames spaced days and months apart.

Update: In a Twitter communique, Dr. Brown stated, “I would say we’re out of BRIGHT ones, not big ones. Could be big ones lurking far away!” His latest work involved the southern sky survey, SSS, to about magnitude 19 and the northern survey (CSS) to 21. Low albedo (dark) and more distant KBOs might be lurking beyond the detectability of these surveys that are in the range of Charon to Pluto in size.



Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. (Credit: Brown, et al.)


Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. More images over several weeks were necessary to determine its orbit.(Credit: Brown, et al.)
Objects at Kuiper Belt distances move very slowly. For example, Pluto orbits the Sun at about 17,000 km/hr (11,000 mph), taking 250 years to complete one orbit. These are speeds that are insufficient to maintain ven a low-Earth orbit. Comparing two image frames spaced just hours apart will find nearby asteroids moving relative to the star fields but not Kuiper belt objects. So using image frames spaced days, weeks or even months apart, they searched again. Their conclusion is that all the big Kuiper belt objects have been found.

The only possibility of finding another large KBO lies in a search of the galactic plane which is difficult due to the density of Milky Way’s stars in the field of view. The vast number of small bodies in the Kuiper belt and Oort Cloud lends itself readily to statistical analysis. Brown states that there is a 32% chance of finding another Pluto-sized object hiding among the stars of the Milky Way.



Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)


Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Dr. Brown also released a blog story in celebration of the discovery of the largest of the Kuiper Belt objects, Eris, ten years ago last week. Ten years of Eris, reminisces about the great slew of small body discoveries by Dr. Brown, Dr. Chad Trujillo of Gemini Observatory and Dr. David Rabinowitz of Yale Observatory.

Brown encourages others to take up this final search right in the galactic plane but apparently his own intentions are to move on. What remains to be seen — that is, to be discovered — are hundreds of large “small” bodies residing in the much larger region of the Oort Cloud. These objects are distributed more uniformly throughout the whole spherical region that the Cloud defines around the Sun.

Furthermore, Dr. Brown maintains that there is a good likelihood that a Mars or Earth-sized object exists in the Oort Cloud.

Small bodies within our Solar System along with exo-planets are perhaps the hottest topics and focuses of study in Planetary Science at the moment. Many graduate students and seasoned researchers alike are gravitating to their study. There are certainly many smaller Kuiper belt objects remaining to be found but more importantly, a better understanding of their makeup and origin are yet to be revealed.



Artist's concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn's approach phase and RC3 orbit This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)


Artist’s concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn’s approach phase and RC3 orbit This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)
Presently, the Dawn spacecraft is making final approach to the dwarf planet Ceres in the Asteroid belt. The first close up images of Ceres are only a few days away as Dawn is now just a couple of 100 thousand miles away approaching at a modest speed. And much farther from our home planet, scientists led by Dr. Alan Stern of SWRI are on final approach to the dwarf planet Pluto with their space probe, New Horizons. The Pluto system is now touted as a binary dwarf planet. Pluto and its moon Charon orbit a common point (barycenter) in space that lies between Pluto and Charon.

So Dr. Brown and team exits stage left. No more dwarf planets – at least not soon and not in the Kuiper belt. Will that upstage what is being called the year of the Dwarf Planet?

But next up for close inspection for the first time are Ceres, Pluto and Charon. It should be a great year.



The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)


The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)
References:

A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System

Ten Years of Eris

2015, NASA’s Year of the Dwarf Planet, Universe Today

What is the Kuiper Belt?, Universe Today



About 

Contributing writer Tim Reyes is a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992. He has an M.S. in Space Plasma Physics from University of Alabama, Huntsville.

Faster-Than-Light Lasers Could “Illuminate” the Universe

Faster-Than-Light Lasers Could “Illuminate” the Universe:



The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl


The Very Large Telescoping Interferometer firing it’s adaptive optics laser. Image Credit: ESO/G. Hüdepohl
It’s a cornerstone of modern physics that nothing in the Universe is faster than the speed of light (c). However, Einstein’s theory of special relativity does allow for instances where certain influences appear to travel faster than light without violating causality. These are what is known as “photonic booms,” a concept similar to a sonic boom, where spots of light are made to move faster than c.

And according to a new study by Robert Nemiroff, a physics professor at Michigan Technological University (and co-creator of Astronomy Picture of the Day), this phenomena may help shine a light (no pun!) on the cosmos, helping us to map it with greater efficiency.

Consider the following scenario: if a laser is swept across a distant object – in this case, the Moon – the spot of laser light will move across the object at a speed greater than c. Basically, the collection of photons are accelerated past the speed of light as the spot traverses both the surface and depth of the object.

The resulting “photonic boom” occurs in the form of a flash, which is seen by the observer when the speed of the light drops from superluminal to below the speed of light. It is made possible by the fact that the spots contain no mass, thereby not violating the fundamental laws of Special Relativity.



An image of NGC 2261 (aka. Hubble's Variable Nebula) by the Hubble space telescope. Credit: HST/NASA/JPL.


An image of NGC 2261 (aka. Hubble’s Variable Nebula) by the Hubble space telescope. Image Credit: HST/NASA/JPL.
Another example occurs regularly in nature, where beams of light from a pulsar sweep across clouds of space-borne dust, creating a spherical shell of light and radiation that expands faster than c when it intersects a surface. Much the same is true of fast-moving shadows, where the speed can be much faster and not restricted to the speed of light if the surface is angular.

At a meeting of the American Astronomical Society in Seattle, Washington earlier this month, Nemiroff shared how these effects could be used to study the universe.

“Photonic booms happen around us quite frequently,” said Nemiroff in a press release, “but they are always too brief to notice. Out in the cosmos they last long enough to notice — but nobody has thought to look for them!”

Superluminal sweeps, he claims, could be used to reveal information on the 3-dimensional geometry and distance of stellar bodies like nearby planets, passing asteroids, and distant objects illuminated by pulsars. The key is finding ways to generate them or observe them accurately.

For the purposes of his study, Nemiroff considered two example scenarios. The first involved a beam being swept across a scattering spherical object – i.e. spots of light moving across the Moon and pulsar companions. In the second, the beam is swept across a “scattering planar wall or linear filament” – in this case, Hubble’s Variable Nebula.



Artist view of an asteroid (with companion) passing near Earth. Credit: P. Carril / ESA


Photonic booms caused by laser sweeps could offer a new imaging technique for mapping out passing asteroids. Credit: P. Carril / ESA
In the former case, asteroids could be mapped out in detail using a laser beam and a telescope equipped with a high-speed camera. The laser could be swept across the surface thousands of times a second and the flashes recorded. In the latter, shadows are observed passing between the bright star R Monocerotis and reflecting dust, at speeds so great that they create photonic booms that are visible for days or weeks.

This sort of imaging technique is fundamentally different from direct observations (which relies on lens photography), radar, and conventional lidar. It is also distinct from Cherenkov radiation – electromagnetic radiation emitted when charged particles pass through a medium at a speed greater than the speed of light in that medium. A case in point is the blue glow emitted by an underwater nuclear reactor.

Combined with the other approaches, it could allow scientists to gain a more complete picture of objects in our Solar System, and even distant cosmological bodies.

Nemiroff’s study accepted for publication by the Publications of the Astronomical Society of Australia, with a preliminary version available online at arXiv Astrophysics

Further reading:
Michigan Tech press release
Robert Nemiroff/Michigan Tech



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

One of the Milky Way’s Arms Might Encircle the Entire Galaxy

One of the Milky Way’s Arms Might Encircle the Entire Galaxy:



Artist's conception of the Milky Way galaxy as seen from far Galactic North (in Coma Berenices) Credit: NASA/JPL-Caltech/R. Hurt


Artist’s conception of the Milky Way galaxy as seen from far Galactic North. Credit: NASA/JPL-Caltech/R. Hurt
Given that our Solar System sits inside the Milky Way Galaxy, getting a clear picture of what it looks like as a whole can be quite tricky. In fact, it was not until 1852 that astronomer Stephen Alexander first postulated that the galaxy was spiral in shape. And since that time, numerous discoveries have come along that have altered how we picture it.

For decades astronomers have thought the Milky Way consists of four arms — made up of stars and clouds of star-forming gas — that extend outwards in a spiral fashion. Then in 2008, data from the Spitzer Space Telescope seemed to indicate that our Milky Way has just two arms, but a larger central bar. But now, according to a team of astronomers from China, one of our galaxy’s arms may stretch farther than previously thought, reaching all the way around the galaxy.

This arm is known as Scutum–Centaurus, which emanates from one end of the Milky Way bar, passes between us and Galactic Center, and extends to the other side of the galaxy. For many decades, it was believed that was where this arm terminated.

However, back in 2011, astronomers Thomas Dame and Patrick Thaddeus from the Harvard–Smithsonian Center for Astrophysics spotted what appeared to be an extension of this arm on the other side of the galaxy.



Star-forming region in interstellar space. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration


Star-forming region in interstellar space. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration
But according to astronomer Yan Sun and colleagues from the Purple Mountain Observatory in Nanjing, China, the Scutum–Centaurus Arm may extend even farther than that. Using a novel approach to study gas clouds located between 46,000 to 67,000 light-years beyond the center of our galaxy, they detected 48 new clouds of interstellar gas, as well as 24 previously-observed ones.

For the sake of their study, Sun and his colleagues relied on radio telescope data provided by the Milky Way Imaging Scroll Painting project, which scans interstellar dust clouds for radio waves emitted by carbon monoxide gas. Next to hydrogen, this gas is the most abundant element to be found in interstellar space – but is easier for radio telescopes to detect.

Combining this information with data obtained by the Canadian Galactic Plane Survey (which looks for hydrogen gas), they concluded that these 72 clouds line up along a spiral-arm segment that is 30,000 light-years in length. What’s more, they claim in their report that: “The new arm appears to be the extension of the distant arm recently discovered by Dame & Thaddeus (2011) as well as the Scutum-Centaurus Arm into the outer second quadrant.”



Ilustration of our galaxy, showing our Sun (red dot) and the possible extension of the Scutum-Centaurus Arm. CREDIT: Modified from "A Possible Extension of the Scutum-Centaurus Arm into the Outer Second Quadrant" by Yan Sun et al., in The Astrophysical Journal Letters, Vol. 798, January 2015; Robert Hurt. NASA/JPL-Caltech/SSC (background spiral).


Illustration of our galaxy showing the possible extension of the Scutum-Centaurus Arm. CREDIT: Yan Sun/The Astrophysical Journal Letters, Vol. 798/Robert Hurt. NASA/JPL-Caltech/SSC
This would mean the arm is not only the single largest in our galaxy, but is also the only one to effectively reach 360° around the Milky Way. Such a find would be unprecedented given the fact that nothing of the sort has been observed with other spiral galaxies in our local universe.

Thomas Dame, one of the astronomers who discovered the possible extension of the Scutum-Centaurus Arm in 2011, was quoted by Scientific American as saying: “It’s rare. I bet that you would have to look through dozens of face-on spiral galaxy images to find one where you could convince yourself you could track one arm 360 degrees around.”

Naturally, the prospect presents some problems. For one, there is an apparent gap between the segment that Dame and Thaddeus discovered in 2011 and the start of the one discovered by the Chinese team –  a 40,000 light-year gap to be exact. This could mean that the clouds that Sun and his colleagues discovered may not be part of the Scutum-Centaurus Arm after all, but an entirely new spiral-arm segment.

If this is true, than it would mean that our Galaxy has several “outer” arm segments. On the other hand, additional research may close that gap (so to speak) and prove that the Milky Way is as beautiful when seen afar as any of the spirals we often observe from the comfort of our own Solar System.

Further Reading: arXiv Astrophysics, The Astrophysical Letters



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Sunday, January 11, 2015

Mercury and Venus an Awesome Duo at Dusk

Mercury and Venus an Awesome Duo at Dusk:



You couldn't miss Mercury and Venus together last night January 9th 45 minutes after sunset in the southwestern sky. Very easy to see! They'll be even closer tonight. Credit: Bob King


You couldn’t miss Mercury and Venus together last night January 9th 45 minutes after sunset in the southwestern sky. Very easy to see! They’ll be even closer tonight. Credit: Bob King
As Universe Today’s Dave Dickinson described earlier this week not only has Venus returned to the evening sky, but Mercury has climbed up from the horizon to join it. Last night (Jan. 9th) the two planets were separated by just a hair more than one Moon diameter. The photo only hints at amazingly easy the pair was to see. Consider the duo a tasty hors d’oeuvres before the onset of night and the Comet Lovejoy show.

Tonight the duo will be at their closest and remain near one another for the next week or so. This is one of Mercury’s best apparitions of the year for northern hemisphere skywatchers and well worth donning your winter uniform of coat, boots, hat and thick gloves for a look. Just find a location with a decent view of the southwestern horizon and start looking about a half hour after sunset. Mercury and Venus will be about 10° or one fist held at arm’s length high above the horizon.



Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are also very small with Venus about 10 arc seconds and Mercury 6 seconds across. Source: Stellarium


Through a telescope both Venus and Mercury are in gibbous phase with Venus more fully filled out. Both are very small with Venus about 10 arc seconds in diameter and Mercury 6 seconds. Source: Stellarium
Venus will jump right out. Mercury’s a couple magnitudes fainter and lies to the right of the goddess planet.  By 45 minutes after sunset, Mercury gets even easier to see. Find your sunset time HERE so you can best plan your outing.



Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium


Mark your calendars for a cool conjunction of the 1-day-old lunar crescent, Mercury and Venus on January 21st. Source: Stellarium
Because both planets are still fairly low in the sky and far away, they present only tiny, blurry gibbous disks in the telescope. Later this spring, Venus will climb higher and show its changing phases more clearly. Keep watch the coming week to catch the ever-shifting positions of Venus and Mercury in the evening sky as each follows the binding arc of its own orbit. The grand finale occurs on January 21st when a skinny crescent Moon joins the duo (Mercury now fading) for a triumphant trio. Has this been an exciting month or what?



About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.

How to Find and Make the Most of Comet Lovejoy

How to Find and Make the Most of Comet Lovejoy:



This photo map shows Comet Lovejoy's nightly position among the winter stars through January 19th as it travels across the constellation Taurus not far from Aldebaran and the Pleiades star cluster. Click to enlarge. Credit: Bob King


This photo map shows Comet Lovejoy’s nightly position among the winter stars through January 19th as it travels across the constellation Taurus not far from Aldebaran and the Pleiades star cluster. Click to enlarge. Credit: Bob King
Comet Q2 Lovejoy passed closest to Earth on January 7th and has been putting on a great show this past week. Glowing at magnitude +4 with a bluish coma nearly as big as the Full Moon, the comet’s easy to see with the naked eye from the right location if you know exactly where to look. I wish I could say just tilt your head back and look up and bam! there it would be, but it’ll take a little more effort than that. But just a little, I promise.



Comet Lovejoy and its spectacular "lively" ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia


Comet Lovejoy and its spectacular “lively” ion tail photographed on January 8th by Nick Howes at Tzec Muan Network at Siding Spring Australia
Last night, under a dark rural sky, once I spotted the comet and noticed its position in relation to nearby bright stars, I could look up and see it anytime. Finding anything other than the Moon or a bright planet in the night sky often requires a good map. I normally create a star-chart style map but thought, why not make a photographic version? So last night I snapped a few guided images of Lovejoy as it glimmered in the wilds of southern Taurus and then cloned the comet’s nightly position through onto the image. Maybe you’ll find this useful, maybe not. If not, the regular map is also included.



Comet Lovejoy position is shown for each night tonight through January 23rd. The comet should remain in the 4-5 magnitude range throughout. Click for a larger map you can print out and use outdoors. Click to enlarge and print for use outdoors. Source: Chris Marriott’s SkyMap software


Comet Lovejoy’s position is shown for each night tonight through January 23rd. The comet should remain in the 4-5 magnitude range throughout. Lovejoy is currently high in the southeastern sky at nightfall and crosses the meridian due south around 9 o’clock local time. Click for a larger map you can print out and use outdoors. Source: Chris Marriott’s SkyMap software
To see Comet Lovejoy with the naked eye you’ll need reasonably dark skies. It should be faintly visible from outer ring suburbs, but country skies will guarantee a sighting. I’ve been using bright stars in Orion and Taurus to guide binoculars – and then my eye – to the comet. Pick a couple bright stars like Aldebaran and Betelgeuse and extend a line from each to form a triangle with Lovejoy at one of the corners. If you then point binoculars at that spot in the sky, the comet should pop out. If you don’t find it immediately, sweep around the position a bit.  After you find it, lower the binoculars and try to spot it with the naked eye.



Comet Lovejoy last night January 9th around 8 p.m. (CST) shows a bright coma and faint ~1.5-degree-long


Comet Lovejoy last night January 9th around 8 p.m. (CST) shows a bright coma and faint ~1.5-degree-long tail. This photo, made with a 200mm lens, gives a good idea of what the comet looks like in 50mm binoculars. Details: f/2.8, ISO 800, 2-minute exposure. Credit: Bob King
This week, as Lovejoy continues trekking north, you can use bright orangey Aldebaran in Taurus and the Pleiades, also called the Seven Sisters star cluster, to “triangulate” your way to the comet. Look for a glowing fuzzball. In 10×50 and 8×40 binoculars, it’s obviously different from a star — all puffed up with a brighter center. The 50mm glass even shows a hint of the coma’s blue color caused by carbon molecules fluorescing in ultraviolet sunlight and a faint, streak-like tail extending to the northeast. With the naked eye, at first you might think it’s just a dim star; closer scrutiny reveals the star has a hazy appearance, pegging it as a comet.



Comet Lovejoy sketches from last night made using a 15-inch telescope. The coma is big - almost a half-degree across. The drawing shows the bright nuclear region and tiny "false nucleus". At right, a suspected plume extends to the southwest of the false nucleus. Color is how the comet really looks in the telescope. Credit: Bob King


Comet Lovejoy sketches from last night made using a 15-inch telescope. The coma is big – almost a half-degree across. The drawing shows the bright nuclear region and tiny “false nucleus”. At right, a suspected plume extends to the southwest of the false nucleus. Color is how the comet really looks in the telescope. South is up. Credit: Bob King
Through a telescope the coma is a HUGE pale blue tiki lamp of a thing with a small, much brighter nuclear region. The rays of the ion tail, so beautifully shown in photographs, are indistinct but visible with patience and a moderate-sized telescope under dark skies. At low magnification, the nucleus – the false nucleus actually, since the real comet nucleus is hidden by a shroud of dust and gas – looks like a misty star of about magnitude +9. On close inspection at high magnification (250x and up), you penetrate more deeply into the nuclear zone and the star-like center shrinks and dims to around magnitude +13.



Fascinating plumes of dust recorded by Gianluca Masi on January 6th. South is up, west to the left. Credit: Gianluca Masi


Fascinating plumes of dust recorded by Gianluca Masi on January 6th. South is up, west to the left. Credit: Gianluca Masi
If the seeing is good and comet active, high magnification will often reveal jets or fans of dust in the sunward direction, in this case west of nucleus. I’ve been studying the comet the past couple nights and am almost convinced I can see a short, very low contrast plume poking to the south of center. Generally, plumes and jets are subtle, low-contrast features. Challenging? Yes, but with Lovejoy as close as it’s going to get, now’s the time to seek them.



In this photo taken January 8th, the comet's tail is caught in the act of separated from the head or coma. Magnetic fields embedded in the stream of particles from the Sun occasionally reconnect on the rear side of a comet and pinch off its tail. Credit: Rolando Ligustri


In this photo taken January 8th, the comet’s tail is caught in the act of separated from the head or coma. Magnetic fields embedded in the stream of particles from the Sun occasionally reconnect on the rear side of a comet and pinch off its tail. A new one quickly grows to replace the old. Credit: Rolando Ligustri
Just before Christmas, fluctuations in the solar wind snapped off Comet Lovejoy’s tail. Guess what? It happened again on January 8th as recorded in dramatic fashion by astrophotographer Rolando Ligustri. An ion or gas tail like the one in the photo forms when cometary gases, primarily carbon monoxide, are ionized by solar radiation and lose an electron to become positively charged. Once “electrified”, they can be twisted, kinked and even snapped off by magnetic fields embedded in the Sun’s particle wind.

Of course, the comet didn’t miss a breath but grew another tail immediately. Look closely at the photo and you see another faint streak of light pointing beyond the coma below and left of the bright nuclear region. This may be Lovejoy’s dust tail. Most comets sport both types of tails – gas and dust – since they release both materials as the Sun heats and vaporizes their ices.

Lovejoy’s been a thrill to watch because it’s doing all the cool stuff that makes them so fun to follow. Gianluca Masi, an Italian astrophysicist and lover of all things cometary, will offer a live feed of the comet on Monday January 11th starting at 1 p.m. CST (7 p.m. UT). May your skies be clear tonight!



About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.

Saturday, January 10, 2015

NASA's Chandra Detects Record-Breaking Outburst from Milky Way's Black Hole

NASA's Chandra Detects Record-Breaking Outburst from Milky Way's Black Hole:



Sagittarius A*


On September 14, 2013, astronomers caught the largest X-ray flare ever detected from the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*). This event, which was captured by NASA's Chandra X-ray Observatory, was 400 times brighter than the usual X-ray output from Sgr A*, as described in our press release. The main portion of this graphic shows the area around Sgr A* in a Chandra image where low, medium, and high-energy X-rays are red, green, and blue respectively. The inset box contains an X-ray movie of the region close to Sgr A* and shows the giant flare, along with much steadier X-ray emission from a nearby magnetar, to the lower left. A magnetar is a neutron star with a strong magnetic field. A little more than a year later, astronomers saw another flare from Sgr A* that was 200 times brighter than its normal state in October 2014.

Astronomers have two theories about what could be causing these "megaflares" from Sgr A*. The first idea is that the strong gravity around Sgr A* tore apart an asteroid in its vicinity, heating the debris to X-ray-emitting temperatures before devouring the remains. Their other proposed explanation involves the strong magnetic fields around the black hole. If the magnetic field lines reconfigured themselves and reconnected, this could also create a large burst of X-rays. Such events are seen regularly on the Sun and the events around Sgr A* appear to have a similar pattern in intensity levels to those.

Sgr A* is about 4.5 million times the mass of our Sun and is located about 26,000 light years from Earth. Researchers have been using Chandra to monitor Sgr A* since the telescope was launched in 1999. Recently, astronomers have been closely watching Sgr A* to see if the black hole would consume parts of a nearby cloud of gas known as G2 and cause flares in X-rays. Due to G2's distance from Sgr A* at the time of the September 2013 flare, however, researchers do not think the gas cloud was responsible for the spike in X-rays.

More information at http://chandra.harvard.edu/photo/2015/sgra/index.html

-Megan Watzke, CXC

New Mission: DSCOVR Satellite will Monitor the Solar Wind

New Mission: DSCOVR Satellite will Monitor the Solar Wind:

Artist's concept of the DSCOVR satellite in orbit. Credit: NOAA


Artist’s concept of the DSCOVR satellite, which will provide real-time solar wind monitoring to the National Weather Service. Credit: NOAA
Solar wind – that is, the stream of charged electrons and protons that are released from the upper atmosphere of the Sun – is a constant in our Solar System and generally not a concern for us Earthlings. However, on occasion a solar wind shock wave or Coronal Mass Ejection can occur, disrupting satellites, electronics systems, and even sending harmful radiation to the surface.

Little wonder then why NASA and the National Oceanic and Atmospheric Administration (NOAA) have made a point of keeping satellites in orbit that can maintain real-time monitoring capabilities. The newest mission, the Deep Space Climate Observatory (DSCOVR) is expected to launch later this month.

A collaborative effort between NASA, the NOAA, and the US Air Force, the DSCOVR mission was originally proposed in 1998 as a way of providing near-continuous monitoring of Earth. However, the $100 million satellite has since been re-purposed as a solar observatory.

In this capacity, it will provide support to the National Weather Service’s Space Weather Prediction Center, which is charged with providing advanced warning forecasts of approaching geomagnetic storms for people here on Earth.



Illustration showing the DSCOVR satellite in orbit L1 orbit, located one million miles away from Earth. At this location, the satellite will be in the best position to monitor the constant stream of particles from the sun, known as solar wind, and provide warnings of approaching geomagnetic storms caused by solar wind about an hour before they reach Earth. Credit: NOAA


Illustration showing the DSCOVR satellite in L1 orbit, located 1.5 million km  (930,000 mi) away from Earth. Credit: NOAA
These storms, which are caused by large-scale fluctuations in solar wind, have the potential of disrupting radio signals and electronic systems, which means that everything from telecommunications, aviation, GPS systems, power grids, and every other major bit of infrastructure is vulnerable to them.

In fact, a report made by the National Research Council estimated that recovering from the most extreme geomagnetic storms could take up to a decade, and cost taxpayers in the vicinity of $1 to $2 trillion dollars. Add to the that the potential for radiation poisoning to human beings (at ground level and in orbit), as well as flora and fauna, and the need for alerts becomes clear.

Originally, the satellite was scheduled to be launched into space on Jan. 23rd from the Cape Canaveral Air Force Station, Florida. However, delays in the latest resupply mission to the International Space Station have apparently pushed the date of this launch back as well.

According to a source who spoke to SpaceNews, the delay of the ISS resupply mission caused scheduling pressure, as both launches are being serviced by SpaceX from Cape Canaveral. However, the same source indicated that there are no technical problems with the satellite or the Falcon 9 that will be carrying it into orbit. It is now expected to be launched on Jan. 29th at the latest.



Credit: NOAA


SpaceX will be providing the launch service for DSCOVR, which is now expected to be launched by the end of Jan aboard a Falcon 9 rocket (pictured here). Credit: NOAA
Once deployed, DSCOVR will eventually take over from NASA’s aging Advanced Composition Explorer (ACE) satellite, which has been in providing solar wind alerts since 1997 and is expected to remain in operation until 2024. Like ACE, the DSCOVER will orbit Earth at Lagrange 1 Point (L1), the neutral gravity point between the Earth and sun approximately 1.5 million km (930,000 mi) from Earth.

From this position, DSCOVR will be able to provide advanced warning, roughly 15 to 60 minutes before a solar wind shockwave or CME reaches Earth. This information will be essential to emergency preparedness efforts, and the data provided will also help improve predictions as to where a geomagnetic storm will impact the most.

These sorts of warnings are essential to maintaining the safety and integrity of infrastructure, but also the health and well-being of people here on Earth. Given our dependence on high-tech navigation systems, electricity, the internet, and telecommunications, a massive geomagnetic storm is not something we want to get caught off guard by!

And be sure to check out this video of the DSCOVR mission, courtesy of the NOAA:



Further Reading: NOAA



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Here’s a Fresh, Never Before Seen Impact Crater on Mars

Here’s a Fresh, Never Before Seen Impact Crater on Mars:



Impact crater on Mars


Impact crater on Mars. Credit: NASA/JPL/UA
The surface of Mars is a well worn place in the Solar System, heavily pounded by countless meteor impacts. And some of these craters are hundreds of millions of years old. So it’s unusual for there to be a completely fresh impact on the surface of Mars: but that’s just what NASA scientists discovered looking through a recent batch of images returned from NASA’s Mars Reconnaissance Orbiter.

You’re looking at an image taken by the Mars Context Camera, an instrument on board the Mars Reconnaissance Orbiter. In an older photograph taken of the region in February 2012, there was just a bunch of old craters. And then, in the newer image, taken June 2014, this fresh scar on the surface of Mars is clearly visible.




No crater... then crater. Credit: NASA/JPL/UA


No crater… then crater. Credit: NASA/JPL/UA
The crater itself is circular, but the blast of ejecta indicates that the object came in from the West, and struck the surface of Mars, blasting out a curtain of pulverized rock that covered the nearby surface. The impactor would have vaporized into a fireball of superheated rock, like a nuclear bomb exploding on the surface of Mars, while the eject blanket was shot out to the side.

This isn’t the first time spacecraft have detected new craters on Mars. In fact, the largest new crater discovered was half the length of a football field. And so far, researchers have turned up more than 400 new craters on the surface of Mars.

The Mars Context Camera has completely imaged the entire surface of Mars at least once during its 7-year mission. And with multiple passes, planetary scientists are starting to build up a picture of how the dynamic the surface of Mars can really be.



Largest new crater ever discovered. Credit: NASA/JPL


Largest new crater ever discovered. Credit: NASA/JPL/UA
And of course, planetary scientists have discovered fresh craters on other locations in the Solar System. NASA’s Lunar Impact Monitoring Program turned up a bright meteoroid impact on March 17, 2013, and follow on observations by NASA’s Lunar Reconnaissance Orbiter turned up the impact location. The monitoring program has actually turned up more than 300 impacts so far. So if you’re walking around on the Moon, watch your head.



Bright impact flash made by a foot-wide rock that struck the moon on March 17, 2013. The moon was a crescent in the evening sky at the time. The impact occurred in the dark, earthlit part of the moon away from the sun-lit crescent. Click photo to see video about the event. Credit: NASA


Bright impact flash made by a foot-wide rock that struck the moon on March 17, 2013. The moon was a crescent in the evening sky at the time. The impact occurred in the dark, earthlit part of the moon away from the sun-lit crescent. Credit: NASA


Left: Fresh material brought to the surface makes the new 59-foot-wide crater look like it was spray painted white. Credit: NASA/GSFC/Arizona State University. Right: The meteoroid strike occurred near the familiar crater Copernicus in the Sea of Rains (Mare Imbrium). Credit: Bob King


Left: Fresh material brought to the surface makes the new 59-foot-wide crater look like it was spray painted white. Credit: NASA/GSFC/Arizona State University. Right: The meteoroid strike occurred near the familiar crater Copernicus in the Sea of Rains (Mare Imbrium). Credit: Bob King
Source: NASA/JPL News Release

What Is This Empty Hole In Space?

What Is This Empty Hole In Space?:



The dark nebula LDN 483 imaged by ESO's La Silla Observatory in Chile (ESO)


The dark nebula LDN 483 imaged by ESO’s La Silla Observatory in Chile (ESO)
What may appear at first glance to be an eerie, empty void in an otherwise star-filled scene is really a cloud of cold, dark dust and molecular gas, so dense and opaque that it obscures the distant stars that lie beyond it from our point of view.

Similar to the more well-known Barnard 68, “dark nebula” LDN 483 is seen above in an image taken by the MPG/ESO 2.2-meter telescope’s Wide Field Imager at the La Silla Observatory in Chile.

While it might seem like a cosmic no-man’s-land, no stars were harmed in the making of this image – on the contrary, dark nebulae like LDN 483 are veritable maternity wards for stars. As their cold gas and dust contracts and collapses new stars form inside them, remaining cool until they build up enough density and gravity to ignite fusion within their cores. Then, shining brightly, the young stars will gradually blast away the remaining material with their outpouring wind and radiation to reveal themselves to the galaxy.

The process may take several million years, but that’s just a brief flash in the age of the Universe. Until then, gestating stars within LDN 483 and many other clouds like it remain dim and hidden but keep growing strong.



Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)


Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)
Located fairly nearby, LDN 483 is about 700 light-years away from Earth in the constellation Serpens.

Source: ESO



About 

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Friday, January 9, 2015

Photo Shoot Captures Classified Spy Satellite Engine Burn

Photo Shoot Captures Classified Spy Satellite Engine Burn:



The small white flash in the upper left is the visible engine burn of the Air Force's ANGELS satellite firing it’s final boost stage. Credit and copyright: Randy Halverson.


The small white flash in the upper left is the visible engine burn of the Air Force’s ANGELS satellite firing it’s final boost stage. Credit and copyright: Randy Halverson.
Remember at the end of “Star Trek: First Contact” when Lily looks up to see the Enterprise enter the temporal vortex with a flash of light? Astrophotographer Randy Halverson captured a view very similar to that scene, albeit without time travel or Vulcans standing nearby.

“On July 28th, 2014, I was set up to shoot the Milky Way near Kennebec, South Dakota,” Halverson wrote on his website. “I had looked through some of the stills but didn’t notice anything unusual. [But] in December 2014 I was editing timelapse and when I got to the July 28th sequence I noticed something different on it. At first I thought it was another meteor with persistent train, but I had missed the meteor in between exposures. I had already caught several meteor with persistent trains on timelapse last year, so I was watching for them. Then I looked closer and noticed the flash was dimming and getting brighter. Also, when I zoomed in I could see a satellite or object right before the first flash.”

Halverson did a quick search of launches during that time and found the Air Force had launched a semi-classified trio of satellites into orbit earlier in the evening of July 28th (23:28 UTC, 7:28 EDT) on a Delta IV rocket from Cape Canaveral Air Force Station, and further research indicated he had captured the engine burn of one of the satellite’s final boost stage.

Just goes to show, you can never tell what you’ll see when you’re looking up!

See the timelapse below:



On board the Delta IV were two Geosynchronous Space Situational Awareness Program (GSSAP) spacecraft and the Autonomous Nanosatellite Guardian for Evaluating Local Space (ANGELS) NanoSatellite. Halverson conferred with a few NASA mission analysts and they all agreed the flash was coming from the ANGELS boost stage firing.

“The first flash you see on the timelapse happened at 1:09am July 29th (camera time) so that also seems to match up with the timing for the final burn the article mentions,” Halverson said.

According to the Spaceflight101 website, the ANGELS nanosatellite is a project of the U.S. Air Force Research Laboratory’s (AFRL) and was a secondary payload on Delta IV launched on July 28, 2014. Its purpose was to do a technical demonstration flight several hundred kilometers above the belt of geosynchronous orbit (35,786 kilometers (22,236 miles). The satellite was supposed to “perform an autonomous rendezvous demonstration with the Delta IV upper stage before testing a camera system for the inspection of satellites in high orbits.”

Halverson said he used a Canon 5D Mark III with a Nikon 14-24 lens on an eMotimo TB3 mounted on a Dynamic Perception Stage Zero Dolly.

See more of Randy’s great timelapse and night sky photography work at his website dakotalapse, or Twitter.

The Dark Energy Survey Begins to Reveal Previously Unknown Trans-Neptunian Objects

The Dark Energy Survey Begins to Reveal Previously Unknown Trans-Neptunian Objects:



An artist's concept of a trans-Neptunian object(TNOs). The distant sun is reduced to a bright star at a distance of over 3 billion miles. The Dark Energy Survey (DES) has now released discovery of more TNOs. (Illustration Credit: NASA)


An artist’s concept of a Trans-Neptunian Object (TNO). The distant sun is reduced to a bright star at a distance of over 3 billion miles. The Dark Energy Survey (DES) has now released discovery of more TNOs. (Illustration Credit: NASA)
Sometimes when you stare at something long enough, you begin to see things. This is not the case with optical sensors and telescopes. Sure, there is noise from electronics, but it’s random and traceable. Stargazing with a telescope and camera is ideal for staring at the same patches of real estate for very long and repeated periods. This is the method used by the Dark Energy Survey (DES), and with less than one percent of the target area surveyed, astronomers are already discovering previously unknown objects in the outer Solar System.


The Dark Energy Survey is a five year collaborative effort that is observing Supernovae to better understand the structures and expansion of the universe. But in the meantime, transient objects much nearer to home are passing through the fields of view. Trans-Neptunian Objects (TNOs), small icy worlds beyond the planet Neptune, are being discovered. A new scientific paper, released as part of this year’s American Astronomical Society gathering in Seattle, Washington, discusses these newly discovered TNOs. The lead authors are two undergraduate students from Carleton College of Northfield, Minnesota, participating in a University of Michigan program.

The Palomar Sky Survey (POSS-1, POSS-2), the Sloan Digital Sky Survey, and every other sky survey have mapped not just the static, nearly unchanging night sky, but also transient events such as passing asteroids, comets, or novae events. The Dark Energy Survey is looking at the night sky for structures and expansion of the Universe. As part of the five year survey, DES is observing ten select 3 square degree fields for Type 1a supernovae on a weekly basis. As the survey proceeds, they are getting more than anticipated. The survey is revealing more trans-Neptunian objects. Once again, deep sky surveys are revealing more about our local environment – objects in the farther reaches of our Solar System.

DES is an optical imaging survey in search of Supernovae that can be used as weather vanes to measure the expansion of the universe. This expansion is dependent on the interaction of matter and the more elusive exotic materials of our Universe – Dark Energy and Dark Matter. The five year survey is necessary to achieve a level of temporal detail and a sufficient number of supernovae events from which to draw conclusions.

In the mean time, the young researchers of Carleton College – Ross Jennings and Zhilu Zhang – are discovering the transients inside our Solar System. Led by Professor David Gerdes of the University of Michigan, the researchers started with a list of nearly 100,000 observations of individual transients. Differencing software and trajectory analysis helped identify those objects that were trans-Neptunian rather than asteroids of the inner Solar System.

While asteroids residing in the inner solar system will pass quickly through such small fields, trans-Neptunian objects (TNOs) orbit the Sun much more slowly. For example, Pluto, at an approximate distance of 40 A.U. from the Sun, along with the object Eris, presently the largest of the TNOs, has an apparent motion of about 27 arc seconds per day – although for a half year, the Earth’s orbital motion slows and retrogrades Pluto’s apparent motion. The 27 arc seconds is approximately 1/60th the width of a full Moon. So, from one night to the next, TNOs can travel as much as 100 pixels across the field of view of the DES survey detectors since each pixel has a width of 0.27 arc seconds.



Composite Dark Energy Camera image of one of the sky regions that the collaboration will use to study supernovae, exploding stars that will help uncover the nature of dark energy. The outlines of each of the 62 charge-coupled devices can be seen. This picture spans 2 degrees across on the sky and contains 520 megapixels. (Credit: Fermilab)


Composite Dark Energy Camera image of one of the sky regions that the collaboration will use to study supernovae, exploding stars that will help uncover the nature of dark energy. The outlines of each of the 62 charge-coupled devices can be seen. This picture spans 2 degrees across on the sky and contains 520 megapixels. (Credit: Fermilab)
The scientific sensor array, DECam, is located at Cerro Tololo Inter-American Observatory (CTIO) in Chile utilizing the 4-meter (13 feet) diameter Victor M. Blanco Telescope. It is an array of 62 2048×4096 pixel back-illuminated CCDs totaling 520 megapixels, and altogether the camera weighs 20 tons.



A simple plot of the orbit of one of sixteen TNOs discovered by DES observatrions. (Credit: Dark Energy Detectives)


A simple plot of the orbit of one of sixteen TNOs discovered by DES observations. (Credit: Dark Energy Detectives)
With a little over 2 years of observations, the young astronomers stated, “Our analysis revealed sixteen previously unknown outer solar system objects, including one Neptune Trojan, several objects in mean motion resonances with Neptune, and a distant scattered disk object whose 1200-year orbital period is among the 50 longest known.”



Object 2013 TV158 is one of the objects discovered by Carleton College and University of Michigan team. Observed more than a dozen times over 10 months, the animated gif shows two image frames from August, 2014 taken two hours apart. 2013 TV158 takes 1200 years to orbit the Sun and is likely a few hundred kilometers across (about the size of the Grand Canyon. (Credit: Dark Energy Detectives)


Object 2013 TV158 is one of the objects discovered by the Carleton College and University of Michigan team. Observed more than a dozen times over 10 months, the animated gif shows two image frames from August 2014 taken two hours apart. 2013 TV158 takes 1200 years to orbit the Sun and is likely a few hundred kilometers across – about the size of the Grand Canyon. (Credit: Dark Energy Detectives)
“So far we’ve examined less than one percent of the area that DES will eventually cover,” says Dr. Gerdes. “No other survey has searched for TNOs with this combination of area and depth. We could discover something really unusual.”



Illustration of colour distribution of the trans-Neptunian objects. The horizontal axis represents the difference in intensity between visual (green & yellow) and blue of the object while the vertical is the difference between visual and red. The distribution indicates how TNOs share a common origin and physical makeup as well as common weathering in space. Yellow objects serve as reference: Neptune's moon Triton, Saturn's moon Phoebe, centaur Pholus, and the planet Mars. The objects color represents the hue of the object. The size of the objects are relative where the larger objects are more accurate estimates and smaller objects are simply based on absolute magnitude. (Credit: Wikimedia, Eurocommuter)


Illustration of color distribution of the trans-Neptunian objects. The horizontal axis represents the difference in intensity between visual (green & yellow) and blue of the object, while the vertical axis is the difference between visual and red. The distribution indicates how TNOs share a common origin and physical makeup, as well as common weathering in space. Yellow objects serve as reference: Neptune’s moon Triton, Saturn’s moon Phoebe, centaur Pholus, and the planet Mars. The object’s color represents the hue of the object. The size of the objects are relative – the larger objects are more accurate estimates, while smaller objects are simply based on absolute magnitude. (Credit: Wikimedia, Eurocommuter)
What does it all mean? It is further confirmation that the outer Solar System is chock-full of rocky-icy small bodies. There are other examples of recent discoveries, such as the search for a TNO for the New Horizons mission. As New Horizons has been approaching Pluto, the team turned to the Hubble space telescope to find a TNO to flyby after the dwarf planet. Hubble made short shrift of the work, finding three that the probe could reach. However, the demand for Hubble time does not allow long term searches for TNOs. A survey such as DES will serve to uncover many thousands of more objects in the outer Solar System. As Dr. Michael Brown of Caltech has stated, there is a fair likelihood that a Mars or Earth-sized object will be discovered beyond Neptune in the Oort Cloud.

References:
Observation of new trans-Neptunian Objects in the Dark Energy Survey Supernova Fields
Undergraduate Researchers Discover New Trans-Neptunian Objects
Dark Sky Detectives

For more details on the Dark Energy Survey: DES Website



About 

Contributing writer Tim Reyes is a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992. He has an M.S. in Space Plasma Physics from University of Alabama, Huntsville.

Robots Exploring Alien Volcanoes? NASA Lab Hopes To Get There One Day

Robots Exploring Alien Volcanoes? NASA Lab Hopes To Get There One Day:



Olympus Mons from Orbit


Olympus Mons from orbit. Credit: NASA/JPL/Malin Space Science Systems
We’ve seen volcanoes or geysers erupting on the moons of Io and Enceladus. Volcanic remnants remain on Mars and the Moon. But it’s tough for rovers to get inside these challenging environments.

So NASA’s Jet Propulsion Laboratory is trying out a new robot here on Earth to one day, they hope, get inside volcanoes elsewhere in the Solar System.

The series is called VolcanoBot. The first prototype was tested last year inside the the active Kilauea volcano in Hawaii, and a second is set for further work later this year.

As you can see in the picture below, VolcanoBot has a set of small wheels and a host of electronics inside. The goal is to create 3-D maps of the environments in which they roam. And early results are showing some promise, NASA noted in a press release: VolcanoBot discovered the fissure it was exploring did not completely close up, which is something they did not expect.



The Jet Propulsion Laboratory's VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech


The Jet Propulsion Laboratory’s VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech
“We don’t know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic,” stated Carolyn Parcheta, a NASA postdoctoral fellow at the Jet Propulsion Laboratory in California who is leading the research.

“In order to eventually understand how to predict eruptions and conduct hazard assessments, we need to understand how the magma is coming out of the ground,” she added. “This is the first time we have been able to measure it directly, from the inside, to centimeter-scale accuracy.”

The research will continue this year with VolcanoBot 2, which has less mass, less size and has an advanced “vison center” that can turn about.



Artist's impression of the Cassini spacecraft making a close pass by Saturn's inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon's southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.


Artist’s impression of the Cassini spacecraft making a close pass by Saturn’s inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon’s southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.
Parcheta’s research recently attracted the attention of visitors to National Geographic’s website, who voted her #2 in a list of “great explorers” on the Expedition Granted campaign.

Remember that this is early-stage research, with no missions outside of Earth yet assigned. But this is a small step — or roll, in this case — to better understanding how volcanoes work generally, whether on our own planet or other locations.

Source: Jet Propulsion Laboratory



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.