Tuesday, October 14, 2014

Creepy Comet Looms In The Background Of Newest Philae Spacecraft Selfie

Creepy Comet Looms In The Background Of Newest Philae Spacecraft Selfie:

The Rosetta spacecraft takes a selfie Oct. 7 with its target, 67P/Churyumov–Gerasimenko, from an altitude of about 9.9 miles (16 kilometers). Credit: ESA/Rosetta/Philae/CIVA


The Philae spacecraft takes a selfie Oct. 7 with its target, 67P/Churyumov–Gerasimenko, from an altitude of about 9.9 miles (16 kilometers). Credit: ESA/Rosetta/Philae/CIVA
So this spacecraft — taking this picture — is going to land on the surface of THAT comet. Doesn’t this give you a pit in your stomach? This is a selfie taken from the Philae spacecraft that, riding piggyback, captured the side of the Rosetta spacecraft orbiting  Comet 67P/Churyumov-Gerasimenko.

The image is so close-up — just 9.9 miles (16 kilometers) from 67P’s surface — that mission planners can even spot Landing Site J on the comet’s smaller lobe.

“Two images, one with a short exposure time, one with a longer one, were combined to capture the whole dynamic range of the scene, from the bright parts of the solar arrays to the dark comet and the dark insulation cladding the Rosetta spacecraft,” the European Space Agency stated.

It’s quite the zoom-in after the last selfie that Philae produced for the public in September, which was taken from 31 miles (50 kilometers) away. The spacecraft is expected to make the first touchdown ever on a comet next month. Rosetta, meanwhile, will keep following 67P as it gets closest to the sun in 2015, between the orbits of Earth and Mars.

Tomorrow (Oct. 15), mission managers will announce if Site J is go or no go for a landing. More information is coming from Rosetta’s examination of the site from its new, lower altitude of 6.2 miles (10 kilometers).

Source: European Space Agency



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: 67P/Churyumov-Gerasimenko, philae

Landing on a Comet: The Trailer

Landing on a Comet: The Trailer:

Artist's impression of the 100-kg Philae lander (screenshot) Credit: ESA/DLR

Artist’s impression of the 100-kg Philae lander (screenshot) Credit: ESA/DLR
In less than a month, on November 12, 2014, the 100-kg Philae lander will separate from ESA’s Rosetta spacecraft and descend several kilometers down to the dark, dusty and frozen surface of Comet 67P/Churyumov-Gerasimenko, its three spindly legs and rocket-powered harpoon all that will keep it from crashing or bouncing hopelessly back out into space. It will be the culmination of a decade-long voyage across the inner Solar System, a testament to human ingenuity and inventiveness and a shining example of the incredible things we can achieve through collaboration. But first, Philae has to get there… it has to touch down safely and successfully become, as designed, the first human-made object to soft-land on the nucleus of a comet. How will the little spacecraft pull off such a daring maneuver around a tumbling chunk of icy rubble traveling over 18 km/s nearly 509 million km away? The German Aerospace Center (DLR) has released a “trailer” for the event, worthy of the best sci-fi film. Check it out below.





Want to see more? Of course you do. Keep an eye out for the 11-minute short film “Landing on a Comet – The Rosetta Mission” to be released soon on YouTube here, and follow the latest news from the Rosetta mission here (and here on Universe Today, too!)

“The reason we’re at this comet is for science, no other reason. We’re doing this to get the best science. To characterize this comet has never been done before.”
Original Material: DLR (CC-BY 3.0)
Footage: ESA
Credit 67P image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Music: Omega by TimMcMorris

Source: DLR



About 

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!
Tagged as: 67P, comet, DLR, esa, landing, philae, Solar System, video

NASA Shares Early Results From MAVEN Mars Orbiter

NASA Shares Early Results From MAVEN Mars Orbiter:

MAVEN (Artist's Concept) This image shows an artist concept of NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission. Image Credit: NASA/Goddard Space Flight Center

› Full image and caption
NASA will host a news teleconference at 11 a.m. PDT (2 p.m. EDT) Tuesday, Oct. 14, to announce early science results from its Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Launched in November 2013, the spacecraft entered orbit around Mars on Sept. 21, completing an interplanetary journey of 10 months and 442 million miles (711 million kilometers). MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere to help scientists understand climate change over the Red Planet's history.

The teleconference participants are:

-- Elsayed Talaat, MAVEN program scientist at NASA Headquarters in Washington

-- Bruce Jakosky, MAVEN principal investigator at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder (CU-Boulder)

-- Mike Chaffin, Remote Sensing Team member at CU-Boulder

-- Justin Deighan, Remote Sensing Team member at CU-Boulder

-- Davin Larson, Solar Energetic Particles instrument lead at the University of California, Berkeley

For dial-in information, media should email their name, affiliation and telephone number to Dwayne Brown at dwayne.c.brown@nasa.gov.

Audio of the teleconference will be streamed live at:

http://www.nasa.gov/newsaudio

Visuals will be posted at the start of the event at:

http://www.nasa.gov/maven

Media Contact

Dwayne Brown

Headquarters, Washington

202-358-1726

dwayne.c.brown@nasa.gov

Nancy Jones / Bill Steigerwald
Goddard Space Flight Center, Greenbelt, Md.
301-286-0039 / 301-286-5017
nancy.n.jones@nasa.gov / william.a.steigerwald@nasa.gov

Guy Webster
Jet Propulsion Laboratory, Pasadena, California
818-354-6278
guy.webster@jpl.nasa.gov

2014-350

Rosetta Selflessly Beams Back Comet Selfie

Rosetta Selflessly Beams Back Comet Selfie:

A composite image from a camera on the Rosetta mission's Philae comet lander shows a solar array A composite image from a camera on the Rosetta mission's Philae comet lander shows a solar array, with comet 67P/Churyumov-Gerasimenko in the background. Image Credit: ESA/Rosetta/Philae/CIVA

› Larger image
A camera aboard the European Space Agency's Philae lander snapped this "selfie" of one of the Rosetta spacecraft's 52-foot-long (16-meter) solar arrays, with comet 67P/Churyumov-Gerasimenko hovering in the background some 10 miles (16 kilometers) away. The image, taken by the Comet Infrared and Visible Analyser (CIVA), was taken on Oct. 7. Philae, which is connected to the Rosetta orbiter at this time, will make its descent to the surface of the comet on Nov. 12.

In the image, the active 'neck' region of the comet is now clearly visible, with streams of dust and gas extending away from the comet. The primary landing site, currently known as "Site J," can also be seen on the smaller lobe of the comet.

This is the last image from Philae before the lander separates from Rosetta on Nov. 12. The next image will be taken by CIVA shortly after separation, when the lander will look back at the orbiter to bid it a final farewell.

Two individual CIVA images, one with a short exposure time, one with a longer one, were combined to capture the whole dynamic range of the scene, from the bright parts of the solar arrays to the dark comet and the dark insulation covering the Rosetta spacecraft.

CIVA, one of 10 instruments on board Philae, comprises seven micro-cameras arranged around the top of the lander, and a visible/infrared microscope imager/spectrometer.

Launched in March 2004, Rosetta was reactivated in January 2014 after a record 957 days in hibernation. Composed of an orbiter and lander, Rosetta's objectives since arriving at comet 67P/Churyumov-Gerasimenko earlier this month have been to study the celestial object up close in unprecedented detail, prepare for landing a probe on the comet's nucleus in November, and following the landing, track the comet's changes as it sweeps past the sun.

Comets are time capsules containing primitive material left over from the epoch when the sun and its planets formed. Rosetta's lander will obtain the first images taken from a comet's surface and will provide comprehensive analysis of the comet's possible primordial composition by drilling into the surface. Rosetta also will be the first spacecraft to witness at close proximity how a comet changes as it is subjected to the increasing intensity of the sun's radiation. Observations will help scientists learn more about the origin and evolution of our solar system and the role comets may have played in seeding Earth with water, and perhaps even life.

Rosetta is a European Space Agency mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Gottingen; National Center of Space Studies of France (CNES), Paris; and the Italian Space Agency, Rome. NASA's Jet Propulsion Laboratory in Pasadena, California, a division of the California Institute of Technology, manages the U.S. participation in the Rosetta mission for NASA's Science Mission Directorate in Washington.

For more information on the U.S. instruments aboard Rosetta, visit:

http://rosetta.jpl.nasa.gov

More information about Rosetta is available at:

http://www.esa.int/rosetta

Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Dwayne Brown

NASA Headquarters, Washington

202-358-1726

dwayne.c.brown@nasa.gov

Markus Bauer

European Space Agency, Noordwijk, Netherlands

011-31-71-565-6799

markus.bauer@esa.int

2014-352

Monday, October 13, 2014

Among the Martian Hills: Curiosity Rover Peers At Rocks Of Mount Sharp

Among the Martian Hills: Curiosity Rover Peers At Rocks Of Mount Sharp:

Rover tracks and Martian sand as seen from the rear hazcam of NASA's Curiosity rover. Credit: NASA/JPL-Caltech


Rover tracks and Martian sand as seen from the rear hazcam of NASA’s Curiosity rover. Credit: NASA/JPL-Caltech
After a couple of years of racing towards Mount Sharp (Aeolis Mons), now it’s time for the Curiosity rover to get a better look at its Martian surroundings. The rover has reached its stated science destination and mission planners say now is the time to stop the driving and get deep into the science.

NASA is on the hunt for signs of habitability on the Red Planet, and officials hope that the layers of this big mountain will yield a wealth of information on Martian history.

“This first look at rocks we believe to underlie Mount Sharp is exciting because it will begin to form a picture of the environment at the time the mountain formed, and what led to its growth,” stated Ashwin Vasavada, Curiosity’s deputy project scientist in a press release from late September.

As Curiosity drills and analyzes rocks at its feet, it continues to send back stunning pictures of its surroundings. Check out a sample from this week below.

Mars Curiosity peers over a craggy ridge on Oct. 7, 2014 (Sol 771). Credit: NASA/JPL-Caltech/MSSS


Mars Curiosity peers over a craggy ridge on Oct. 7, 2014 (Sol 771). Credit: NASA/JPL-Caltech/MSSS
Hills beckon in this photo from the Curiosity rover taken Oct. 7, 2014, on Sol 771. Credit: NASA/JPL-Caltech/MSSS


Martian hills beckon in this photo from the Curiosity rover taken Oct. 7, 2014, on Sol 771. Credit: NASA/JPL-Caltech/MSSS
Close-up of a brush instrument on the Mars Curiosity rover on Oct. 3 (Sol 767). Credit: NASA/JPL-Caltech/MSSS


Close-up of a brush instrument on the Mars Curiosity rover on Oct. 3 (Sol 767). Credit: NASA/JPL-Caltech/MSSS
Cracked terrain underfoot seen by the Martian Curiosity rover on Oct. 7, 2014 (Sol 771). Credit: NASA/JPL-Caltech/MSSS


Cracked terrain underfoot seen by the Martian Curiosity rover on Oct. 7, 2014 (Sol 771). Credit: NASA/JPL-Caltech/MSSS


About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: Aeolis Mons, Mount Sharp

Bigelow Inflatable Module to be Added to Space Station in 2015

Bigelow Inflatable Module to be Added to Space Station in 2015:

Artist's concept of the Bigelow Expandable Activity Module (BEAM), currently scheduled to be added to the International Space Station in 2015. Credit: Bigelow Aerospace.


Artist’s concept of the Bigelow Expandable Activity Module (BEAM), currently scheduled to be added to the International Space Station in 2015. Credit: Bigelow Aerospace.
Astronauts aboard the International Space Station are going to be getting an addition in the near future, and in the form of an inflatable room no less. The Bigelow Expandable Activity Module (BEAM) is the first privately-built space habitat that will added to the ISS, and it will be transported into orbit aboard a Space X Falcon 9 rocket sometime next year.

“The BEAM is one small step for Bigelow Aerospace,” Bigelow representative Michael Gold told Universe Today, “but is also one giant leap for private sector space activities since the BEAM will be the first privately owned and developed module ever to be part of a crewed system in space.”


NASA and Bigelow Aerospace announced the $17.8 million contract in 2013, and on October 2, 2014, Gold announced at the International Astronautical Congress that the launch would take place next year on a SpaceX resupply flight. Gold said BEAM provides an example of what the company, and private firms in general, can do in low-Earth orbit (LEO).

Upon arrival, the BEAM will be installed by the robotic Canadarm2 onto the Tranquility node’s aft docking port. Once it’s expanded, an ISS crew member will enter the module and become the first astronaut to step inside an expandable habitat system. The plan is to have the module remain in place for a few years to test and demonstrate the feasibility of the company’s inflatable space habitat technology.

The BEAM, which weighs approximately 1,360 kg (3000 lbs), will travel aboard the unpressurized cargo hold of a Dragon capsule. Once it is successfully transferred to the station, ISS astronauts will activate the deployment sequence, and the module will expand out to its full size – approx. 4 meters (13 feet) in length and 3 meters (10.5 feet) in diameter.

Bigelow currently has two stand-alone autonomous spacecraft in orbit, the Genesis I and the Genesis II – both of which are collecting data about LEO conditions and how well the technology performs in practice in space. In turn, NASA will use BEAM to measure the radiation levels inside the module as compared to other areas of the ISS to determine how safe it is for habitation.

“Through the flight of the Bigelow module on the International Space Station, we expect to learn critical technical performance data related to non-metallic structures in space,” said Jason Crusan, director of Advanced Exploration Systems Division at NASA Human Exploration and Operations Mission Directorate, in an email to Universe Today. “Data about things such as radiation, thermal, and overall operations of non-metallic structures in space has multiple benefits both to NASA and to the commercial sector.”

Bigelow station


Artist concept of the Bigelow space station. Credit: Bigelow Aerospace.
The BEAM module will also allow for further data collection for the company, which is planning on launching its own space station, named Bigelow Aerospace Alpha Station, to be at least partially operational as early as next year. This station will be initially made up of two BA 330 expandable habitats, which are designed to function either as an independent space station or as modular components that can be connected to create a larger apparatus.

Bigelow hopes that such stations will allow for greater participation in space exploration and research, both by nations and private companies. But looking to the future, Bigelow also sees BEAM and its other long-term projects for space habitation as a crucial step in the commercialization of Low-Earth Orbit.

Already, the company is planing on getaways that will take tourists into orbit – for a modest price, of course. Beginning in 2012, the company began offering space travel packages, including the trip to and from LEO aboard a SpaceX craft,  starting at $26.25 million and a two-month stay package aboard the Alpha Station for $25 million – bringing the grand total  to just $51.25 million, compared to the $40 million it currently costs members of the public to stay on the ISS for a week.

Further reading: Bigelow Aerospace



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!
Tagged as: BEAM, Bigelow Aerospace, Bigelow Aerospace Alpha Station, Bigelow Expandable Activity Module (BEAM), International Space Station (ISS), leo, low earth orbit

Earth and Mars Captured Together in One Photo from Lunar Orbit

Earth and Mars Captured Together in One Photo from Lunar Orbit:

The Lunar Reconnaissance Orbiter turned for a quick look at Earth and one of our closest planetary neighbors—Mars. Credit: NASA/GSFC/Arizona State University.


The Lunar Reconnaissance Orbiter turned for a quick look at Earth and one of our closest planetary neighbors—Mars. Credit: NASA/GSFC/Arizona State University.
Wow, this doesn’t happen very often: Earth and Mars together in one photo. To make the image even more unique, it was taken from lunar orbit by the Lunar Reconnaissance Orbiter. This two-for-one photo was was acquired in a single shot on May 24, 2014, by the Narrow Angle Camera (NAC) on LRO as the spacecraft was turned to face the Earth, instead of its usual view of looking down at the Moon.

The LRO imaging team said seeing the planets together in one image makes the two worlds seem not so far apart, and that the Moon still might have a role to play in future exploration.


“The juxtaposition of Earth and Mars seen from the Moon is a poignant reminder that the Moon would make a convenient waypoint for explorers bound for the fourth planet and beyond!” said the LRO team on their website. “In the near-future, the Moon could serve as a test-bed for construction and resource utilization technologies. Longer-range plans may include the Moon as a resource depot or base of operations for interplanetary activities.”

Watch a video created from this image where it appears you are flying from the Earth to Mars:



The LROC team said this imaging sequence required a significant amount of planning, and that prior to the “conjunction” event, they took practice images of Mars to refine the timing and camera settings.

When the spacecraft captured this image, Earth was about 376,687 kilometers (234,062 miles) away from LRO and Mars was 112.5 million kilometers away. So, Mars was about 300 times farther from the Moon than the Earth.

The NAC is actually two cameras, and each NAC image is built from rows of pixels acquired one after another, and then the left and right images are stitched together to make a complete NAC pair. “If the spacecraft was not moving, the rows of pixels would image the same area over and over; it is the spacecraft motion, combined with fine-tuning of the camera exposure time, that enables the final image, such as this Earth-Mars view,” the LRO team explained.

Check out more about this image on the LRO website, which includes a zoomable, interactive version of the photo.

Tagged as: Earth, LRO, Lunar Reconnaissance Orbiter, Mars, Moon

Were Lunar Volcanoes Active When Dinosaurs Roamed the Earth?

Were Lunar Volcanoes Active When Dinosaurs Roamed the Earth?:

The feature called Maskelyne is one of many newly discovered young volcanic deposits on the moon. Called irregular mare patches, these areas are thought to be remnants of small lava eruptions that occurred recently in the moon's past. To view this image correctly, the large, dark, circular feature right of center is pancake-like dome that rises ABOVE the surrounding lighter-toned terrain. Lower domes, many pitted with small craters, are seen from left to right across the photo. Credit: NASA/GSFC/Arizona State University


The feature called Maskelyne is one of many newly discovered young volcanic deposits on the moon. Called irregular mare patches, these areas are thought to be remnants of small lava eruptions that occurred recently in the moon’s past. To view this image correctly, the large, dark, circular feature right of center is a pancake-like dome that rises ABOVE the surrounding lighter-toned terrain. Lower domes, many pitted with small craters, are seen from left to right across the photo. Credit: NASA/GSFC/Arizona State University
The Moon’s a very dusty museum where the exhibits haven’t changed much over the last 4 billion years. Or so we thought. NASA’s Lunar Reconnaissance Orbiter (LRO) has provided researchers strong evidence the Moon’s volcanic activity slowed gradually instead of stopping abruptly a billion years ago.

Some volcanic deposits are estimated to be 100 million years old, meaning the moon was spouting lava when dinosaurs of the Cretaceous era were busy swatting giant dragonflies. There are even hints of 50-million-year-old volcanism, practically yesterday by lunar standards.


Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA


Ina Caldera sits atop a low, broad volcanic dome or shield volcano, where lavas once oozed from the moon’s crust. The darker patches in the photo are blobs of older lunar crust. As in the photo of Maskelyne, they form a series of low mounds higher than the younger, jumbled terrain around them. Credit: NASA
The deposits are scattered across the Moon’s dark volcanic plains (lunar “seas”) and are characterized by a mixture of smooth, rounded, shallow mounds next to patches of rough, blocky terrain. Because of this combination of textures, the researchers refer to these unusual areas as “irregular mare patches.”

Measuring less than one-third mile (1/2 km) across, almost all are too small to see from Earth with the exception of Ina Caldera, a 2-mile-long D-shaped patch where blobs of older, crater-pitted lunar crust (darker blobs) rise some 250 feet above the younger, rubbly surface like melted cheese on pizza.

Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS


Lavas on the moon were thin and runny like this flow photographed in Kilauea, Hawaii. Credit: USGS
Ina was thought to be a one-of-a-kind until researchers from Arizona State University in Tempe and Westfälische Wilhelms-Universität MĂĽnster in Germany spotted 70 more patches in close-up photos taken by the LRO. The large number and the fact that the patches are scattered all over the nearside of the Moon means that volcanic activity was not only recent but widespread.

Astronomers estimate ages for features on the moon by counting crater numbers and sizes (the fewer seen, the younger the surface) and the steepness of the slopes running from the tops of the smoother domes to the rough terrain below (the steeper, the younger).

“Based on a technique that links such crater measurements to the ages of Apollo and Luna samples, three of the irregular mare patches are thought to be less than 100 million years old, and perhaps less than 50 million years old in the case of Ina,” according to the NASA press release.

Artist concept illustration of the internal structure of the moon. Credit: NOAJ


Artist concept illustration of the internal structure of the moon. Credit: NOAJ
The young mare patches stand in stark contrast to the ancient volcanic terrain surrounding them that dates from 3.5 to 1 billion years ago.

For lava to flow you need a hot mantle, the deep layer of rock beneath the crust that extends to the Moon’s metal core. And a hot mantle means a core that’s still cranking out a lot of heat.

Scientists thought the Moon had cooled off a billion or more years ago, making recent flows all but impossible. Apparently the moon’s interior remained piping hot far longer than anyone had supposed.

“The existence and age of the irregular mare patches tell us that the lunar mantle had to remain hot enough to provide magma for the small-volume eruptions that created these unusual young features,” said Sarah Braden, a recent Arizona State University graduate and the lead author of the study.

It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth's gravity stretches and compresses the moon to warm its interior. Illustration: Bob King


It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth’s gravity stretches and compresses the moon to warm its interior. Illustration: Bob King
One way to keep the Moon warm is through tidal interaction with the Earth. A recent study points out that strains caused by Earth’s gravitational tug on the Moon (nearside vs. farside) heats up its interior. Could this be the source of the relatively recent lava flows?

So the pendulum swings. Prior to 1950 it was thought that lunar craters and landforms were all produced by volcanic activity. But the size and global distribution of craters – and the volcanoes required to produce them – would be impossible on a small body like the Moon. In the 1950s and beyond, astronomers came to realize through the study of nuclear bomb tests and high-velocity impact experiments that explosive impacts from asteroids large and small were responsible for the Moon’s craters.

This latest revelation gives us a more nuanced view of how volcanism may continue to play a role in the formation of lunar features.



About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.
Tagged as: craters, Ina, lava, mantle, mare patches, Moon, volcanoes

A New Look at Dark Matter — Is the Milky Way Less of a Behemoth Than Previously Thought?

A New Look at Dark Matter — Is the Milky Way Less of a Behemoth Than Previously Thought?:

This annotated artist's conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA


This annotated artist’s conception illustrates our current understanding of the structure of the Milky Way galaxy. Image Credit: NASA
Astronomy is notorious for raising more questions than it answers. Take the observation that the vast majority of matter is invisible.

Although astronomers have gathered overwhelming evidence that dark matter makes up roughly 84 percent of the universe’s matter — providing straightforward explanations for the rotation of individual galaxies, the motions of distant galaxy clusters, and the bending of distant starlight — they remain unsure about any specifics.

Now, a group of Australian astronomers thinks there’s only half as much dark matter in the Milky Way as previously thought.

In 1933, Swiss astronomer Fritz Zwicky observed the Coma cluster — a galaxy cluster roughly 320 million light-years away and nearly 2 light-years across — and found that it moved too rapidly. There simply wasn’t enough visible matter to hold the galaxy cluster together.

Zwicky decided there must be a hidden ingredient, known as dunkle Materie, or dark matter, that caused the motions of these galaxies to be so large.

The rotation curve of the Milky Way. Image Credit: Kafle et al.


The rotation curve of the Milky Way. Image Credit: Kafle et al.
Then in 1978, American astronomer Vera Rubin looked at individual galaxies. Astronomers largely assumed galaxies rotated much like our Solar System, with the outer planets rotating slower than the inner planets. This argument aligns with Newton’s Laws and the assumption that most of the mass is located in the center.

But Rubin found that galaxies rotated nothing like our own Solar System. The outer stars did not rotate slower than the inner stars, but just as fast. There had to be dark matter on the outskirts of every galaxy.

Now, astronomer Prajwal Kafle, from The University of Western Australia, and his colleagues have once again observed the speed of stars on the outskirts of our own galaxy, the Milky Way. But he did so in much greater detail than previous estimates.

From a star’s speed, it’s relatively simple to calculate any interior mass. The simple equation below shows that the interior mass (M) is equal to the distance the star is from the galactic center (R) times its velocity (V) squared, all divided by the gravitational constant (G):
Screen Shot 2014-10-13 at 2.35.47 PM

Kafle and his colleagues used messier physics accounting for the sloppiness of the galaxy. But the point holds, with a star’s velocity, you can calculate any interior mass. And with multiple stars’ velocities you’re bound to be more accurate. The team found the dark matter in our galaxy weighs 800 billion times the mass of the Sun, half of previous estimates.

“The current idea of galaxy formation and evolution … predicts that there should be a handful of big satellite galaxies around the Milky Way that are visible with the naked eye, but we don’t see that,” said Kafle in a news release. This is typically referred to as the missing satellites problem, and it has evaded astronomers for years.

“When you use our measurement of the mass of the dark matter the theory predicts that there should only be three satellite galaxies out there, which is exactly what we see; the Large Magellanic Cloud, the Small Magellanic Cloud and the Sagittarius Dwarf Galaxy,” said Kafle.

These new measurements might prove the Milky Way is not quite the behemoth astronomers previously thought. They also help explain why there are so few satellite galaxies in orbit. But first the results will have to be confirmed as they stand up against numerous other ways to weigh the dark matter in our galaxy.

The results have been published in the Astrophysical Journal and are available online.



About 

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.
Tagged as: #milkywaymonday, Dark Matter, Fritz Zwicky, Vera Rubin

Get Ready for the Fireballs of October

Get Ready for the Fireballs of October:

A recent fireball captured over the UK on October


A recent fireball captured over the UK on October 4th, 2014. Credit: the UK Meteor Observation Network.
On October 31st 2005, trick-or-treaters across the central U.S. eastern seaboard were treated to a brilliant fireball, a celestial spectacle that frequently graces October skies.

Mid- to late October is fireball season, a time when several key meteor showers experience a broad peak. We’re already seeing an uptick in fireball activity as monitored by numerous all-sky cameras this month, including NASA’s system positioned across the United States. Three lesser known but fascinating showers are the chief culprits.

Credit: NASA


A Bay area fireball captured in 2012. Credit: NASA/Robert P. Moreno Jr.
The main meteor shower on tap for the month of October is the Orionids. This shower radiates from the Club of the constellation Orion, and is the product of that most famous comet of them all, 1P Halley. Halley’s Comet is actually the source of two annual meteor showers, the October Orionids and the May Eta Aquarids. We’re seeing the inward stream of Halley debris in October, and Orionid velocities average a swift 66 kilometres a second. The radiant rides highest for northern hemisphere observers at 4 AM local, and 2014 sees an estimated zenithal hourly rate (ZHR) of 20 predicted to arrive on the mornings of October 21st through the 22nd. The Orionids experience a broad peak spanning October 21st through November 7th, and 2014 sees the peak arrive just two days prior to the Moon reaching New phase. The Orionids have exhibited an uptick in activity as high as 50-75 per hour from 2005-2007, and it’s been suggested that a 12 year peak cycle may govern the Orionids, as the path of meteoroid debris stream is modified by the gravitational influence of the giant planet Jupiter.

Orionid


A recent early Orionid meteor. Credit: Sharin Ahmad @Shahgazer.
Two other nearby radiants in the sky also produce an exceptionally large number of fireballs in late October: the Southern Taurids and Northern Taurids. These are complex streams laid down by the periodic comet 2P Encke, which possesses the shortest orbital period of any comet known at 3.3 years. Though the ZHR for both is only slightly above the background sporadic rate for northern hemisphere Fall at about five per hour, the Taurids also produce a high ratio of fireballs. The southern Taurids peak in early October and are already active, and the Northern Taurids peak in late October through early November, earning them the nickname the “Fireballs of Halloween”. Unlike many meteor showers, the Northern Taurids are approaching the Earth from behind in our orbit and have a slow relative atmospheric entry velocity of 28 kilometres per second. This makes for long, stately meteor trains often visible in the evening hours before local midnight.

Taurid


A 2012 Taurid meteor. Credit: Andrei Juralve.
The Taurids also seem to exhibit a seven year periodicity that begs for further study. 2008 was a fine year for Taurid fireballs… could 2015 be next?

Of course, the exact definition of a “fireball” meteor varies by source, though we prefer the definition of a fireball as a meteor brighter than magnitude -3. A fireball reaching -14 (a Full Moon equals magnitude -13, about 2.5 times fainter) is often termed a bolide.

Halley's orbit


Comet 1P/Halley’s orbital path through the inner solar system. (Credit: NASA/JPL).
Observing meteor showers such as the Orionids is as simple as sitting back and patiently watching the skies. Our own personal rule while starting a meteor vigil is to scan the skies for 10 minutes; one or more meteor sightings is a good sign to keep on watching, while no meteors means it’s time to pack it in and instead maybe write about astronomy. Dark, moonless skies are key, and you can report how many meteors you see to the International Meteor Organization. Be sure to keep a pair of binoculars handy to examine any lingering smoke trails post-fireball passage.

Credit: Stellarium


The positions of the radiants of the Orionids and the Taurids, with peak dates. Credit: Stellarium.
Of course, seeing a Taurid fireball is largely a matter of luck and looking at the right place in the sky at the right time. All-sky cameras work great in this regard, and many amateurs now use tripod mounted DLSRs set to take wide-field exposures of the sky automatically throughout the night. Just watch out for dew! Nearly every meteor we’ve caught on camera turned up only in post review, a testament to how much of the sky a lone pair of eyes still misses.

Spot a fireball? The American Meteor Society maintains a great online database of recent sightings and reports. Keep in mind, lots of “meteor-wrongs” inevitably crop up on Facebook and Twitter during any event, posted by folks eager for likes and retweets. Faves of such spoofers are: the Peekskill meteor train, the reentry of Hyabusa, Mir, and scenes (!) from the movie Armageddon. We’ve seen ‘em all passed off as legit, though you’re more than welcome to try and be original… a majority of initial meteor images almost always come from dash cams (remember Chelyabinsk?) and security cameras.



Finally, in addition to fireballs, there’s another astronomical tie-in for Halloween, as it’s one of four cross-quarter tie-in days approximately mid-way between a solstice and an equinox. The other three are: Lammas Day (August 1st), Groundhog’s Day (February 2nd) and May Day (May 1st). We just think that it’s great — if a bit paradoxical — to see modern day suburbanites dress up as ghouls and goblins as they reenact archaic rites and holidays…

Don’t forget to keep an eye out for the fireballs of October this Halloween!



About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.
Tagged as: fireball season, october fireballs, orionids, sporadic meteors, taurid fireball, taurids

Sunday, October 12, 2014

Earth Shines In Space Pictures In Glory You’ve Rarely Seen Before

Earth Shines In Space Pictures In Glory You’ve Rarely Seen Before:

A timelapse photo of Earth created from a video made by the Expedition 28 and 29 crews on the International Space Station. Credit: zqyogl


A timelapse photo of Earth created from a video made by the Expedition 28 and 29 crews on the International Space Station. Credit: zqyogl
We truly live on a beautiful planet, and sometimes it just takes a bit of an unusual picture to remind us of that fact. An intrepid amateur took time lapse pictures from the Expedition 28 and 29 crews (filmed in 2011) and combined the shots to create some incredible composite pictures of our planet.

The pictures below are the result of blending 9 different timelapse sequences in two different ways,” wrote a user dubbed zqyogl on Imgur. “The first in each set of two was made by finding the brightest colour for each pixel, and the second by averaging every frame of the timelapse.”

Anyone else out there reminded of Don Pettit’s stunning pictures from space a few years ago? To check out the entire gallery, visit this website to download everything in high-resolution glory. The source video is below the jump.

Earth from Michael König on Vimeo.

h/t Reddit



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: Expedition 28, Expedition 29, timelapse video

Check Out This Huge Rock On The Surface Of Rosetta’s Comet!

Check Out This Huge Rock On The Surface Of Rosetta’s Comet!:

A close-up of a boulder nicknamed "Cheops" on the surface of 67P/Churyumov-Gerasimenko. Image taken by the Rosetta spacecraft. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


A close-up of a boulder nicknamed “Cheops” on the surface of 67P/Churyumov-Gerasimenko. Image taken by the Rosetta spacecraft. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
As the Rosetta spacecraft drops a bit closer to its target comet, some really cool features are popping into view. For example, look at this picture of a 150-foot (45-meter) rock on Comet 67P/Churyumov-Gerasimenko, which was taken in September and released today (Oct. 9). And it’s led to the decision to have an Egyptian theme to naming features on the comet.

“It stands out among a group of boulders in the smooth region located on the lower side of 67P/C-G’s larger lobe,” ESA stated in a release. “This cluster of boulders reminded scientists of the famous pyramids at Giza near Cairo in Egypt, and thus it has been named Cheops for the largest of those pyramids, the Great Pyramid, which was built as a tomb for the pharaoh Cheops (also known as Kheops or Khufu) around 2550 BC.”

Scientists are still trying to figure out what the boulders are made of, and how they are formed, as the spacecraft moves into a “close observation phase” tomorrow (Oct. 10) where it is only 10 kilometers (6.2 miles) from the surface.

A wider field of view of 67P/Churyumov-Gerasimenko on the larger lobe, where the boulder Cheops is located. This picture was taken by the Rosetta spacecraft shortly after its arrival in August. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


A wider field of view of 67P/Churyumov-Gerasimenko on the larger lobe, where the boulder Cheops is located. This picture was taken by the Rosetta spacecraft shortly after its arrival in August. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Meanwhile, some new results are coming from an asteroid that the spacecraft whizzed by a couple of years ago. In the picture below, you can see evidence of a crater that Rosetta didn’t even see!

The grooves you see there on Lutetia (which Rosetta imaged in 2010) hint at shock waves from various craters, including one that was likely on the hidden side of the asteroid relative to Rosetta as it flew by. The suspected crater is called “Suspicio.” While craters have been found in other asteroids visited by spacecraft, grooves are rarer.

“The way in which grooves are formed on these bodies is still widely debated, but it likely involves impacts,” ESA stated. “Shock waves from the impact travel through the interior of a small, porous body and fracture the surface to form the grooves.”

A paper on the research will be published in Planetary and Space Science this month, led by Sebastien Besse, a research fellow at ESA’s Technical Centre. For more information, check out this release from ESA.



A part of asteroid Lutetia imaged by the Rosetta spacecraft in 2010. The grooves you see are colored according to the crater scientists believe it’s associated with. The blue lines are from a suspected, unseen crater called “Suspicio”. Red is associated with the known crater Massilia and purple for the North Pole Crater Cluster. Yellow is unassociated with craters considered in this study. Credit: Data: Besse et al (2014); image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: Asteroid Lutetia, Comet 67P/Churymov-Gerasimenko

Video: Test Flight For NASA’s Orion Will be a ‘Trial By Fire’

Video: Test Flight For NASA’s Orion Will be a ‘Trial By Fire’:



NASA is getting ready for the first test flight of the Orion crew vehicle, currently scheduled for December 4, 2014. “Before we can send astronauts into space on Orion, we have to test all of its systems,” says NASA engineer Kelly Smith in this new video released by NASA. “And there’s only one way to know if we got it right: fly it in space.”


Of course for Orion’s first test fight, no astronauts will be aboard. The spacecraft will be loaded with sensors to record and measure all aspects of the flight in detail. Orion is now in the final stages of preparation for the uncrewed flight that will take it 5,800 km (3,600 miles) above Earth on a 4.5-hour mission to test many of the systems necessary for future human missions into deep space.

Already the Delta IV Heavy rocket that will launch the test flight has been rolled to the launch pad, and the Orion capsule will be transported to the pad around November 10 or 11.

After launch, the spacecraft will make two orbits and then reenter Earth’s atmosphere at almost 32,000 km/hr (20,000 miles per hour), and reach temperatures near 2,200 degrees Celsius (4,000 degrees Fahrenheit), before its parachute system deploys to slow the spacecraft for a splashdown in the Pacific Ocean.

The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. Credit: NASA/Rad Sinyak


The Orion crew module for Exploration Flight Test-1 is shown in the Final Assembly and System Testing (FAST) Cell, positioned over the service module just prior to mating the two sections together. Credit: NASA/Rad Sinyak
Tagged as: NASA, Orion, test flight

Radio Telescopes Help Astronomers Tune In To Nova Generated Gamma Rays

Radio Telescopes Help Astronomers Tune In To Nova Generated Gamma Rays:

When the nova stops blowing a wind, and the material drifts off into space, the fireworks are finished. Credit: Bill Saxton, NRAO/AUI/NSF


When the nova stops blowing a wind, and the material drifts off into space, the fireworks are finished. Credit: Bill Saxton, NRAO/AUI/NSF
Over two years ago, the Fermi-LAT Collaboration observed an “ear and eye opening” event – the exact location where a stellar explosion called a nova emitted one of the most energentic forms of electromagnetic waves… gamma rays. When it was first detected in 2012, it was something of a mystery, but the findings could very well point to what may cause gamma ray emissions.

“We not only found where the gamma rays came from, but also got a look at a previously-unseen scenario that may be common in other nova explosions,” said Laura Chomiuk, of Michigan State University.

A nova? According to the Fermi researchers, a classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. As it gathers in material, the thermonuclear event expels debris into surrounding space. However, astronomers didn’t expect this “normal” event to produce high energy gamma rays!

Explains the Fermi-LAT team: “The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.”

While NASA’s Fermi spacecraft was busy watching a nova called V959 Mon, some 6500 light-years from Earth, other radio telescopes were also busy picking up on the gamma ray incidences. The Karl G. Jansky Very Large Array (VLA) was documenting radio waves coming from the nova. The source of these emissions could be subatomic particles moving at nearly the speed of light interacting with magnetic fields – a condition needed to help produce gamma rays. These findings were backed up by the extremely-sharp radio “vision” of the Very Long Baseline Array (VLBA) and the European VLBI network. They revealed two knots in the radio observations – knots which were moving away from each other. Additional studies were done with e-MERLIN in the UK, and another round of VLA observations in 2014. Now astronomers could begin to piece together the puzzle of how radio knots and gamma rays are produced.

According to the NRAO news release, the white dwarf and its companion give up some of their orbital energy to boost some of the explosion material, making the ejected material move outward faster in the plane of their orbit. Later, the white dwarf blows off a faster wind of particles moving mostly outward along the poles of the orbital plane. When the faster-moving polar flow hits the slower-moving material, the shock accelerates particles to the speeds needed to produce the gamma rays, and the knots of radio emission.

“By watching this system over time and seeing how the pattern of radio emission changed, then tracing the movements of the knots, we saw the exact behavior expected from this scenario,” Chomiuk said.

A nova does not explode like an expanding ball, but instead throws out gas in different directions at different times and different speeds. When this gas inevitably crashes together, it produces shocks and high-energy gamma-ray photons. The complex explosion and gas collisions in nova V959 Mon is illustrated here. In the first days of the nova explosion, dense, relatively slow-moving material is expelled along the binary star system's equator (yellow material in left panel). Over the next several weeks, fast winds pick up and are blown off the binary, but they are funneled along the binary star system's poles (blue material in central panel). The equatorial and polar material crashes together at their intersection, producing shocks and gamma-ray emission (red regions in central panel). Finally, at later times, the nova stops blowing a wind, and the material drifts off into space, the fireworks finished (right panel). CREDIT: Bill Saxton, NRAO/AUI/NSF


A nova does not explode like an expanding ball, but instead throws out gas in different directions at different times and different speeds. When this gas inevitably crashes together, it produces shocks and high-energy gamma-ray photons. The complex explosion and gas collisions in nova V959 Mon is illustrated here. In the first days of the nova explosion, dense, relatively slow-moving material is expelled along the binary star system’s equator (yellow material in left panel). Over the next several weeks, fast winds pick up and are blown off the binary, but they are funneled along the binary star system’s poles (blue material in central panel). The equatorial and polar material crashes together at their intersection, producing shocks and gamma-ray emission (red regions in central panel). Finally, at later times, the nova stops blowing a wind, and the material drifts off into space, the fireworks finished (right panel). CREDIT: Bill Saxton, NRAO/AUI/NSF
But the V959 Mon observations weren’t the end of the story. According to Fermi-LAT records, in 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations.

“This mechanism may be common to such systems. The reason the gamma rays were first seen in V959 Mon is because it’s close,” Chomiuk said. Because the type of ejection seen in V959 Mon also is seen in other binary-star systems, the new insights may help astronomers understand how those systems develop. This “common envelope” phase occurs in all close binary stars, and is poorly understood. “We may be able to use novae as a ‘testbed’ for improving our understanding of this critical stage of binary evolution,” explains Chomiuk.

Original Story Source: Radio Telescopes Unravel Mystery of Nova Gamma Rays from National Radio Astronomy Observatory. Chomiuk worked with an international team of astronomers. The researchers reported their findings in the scientific journal “Nature”.



About 

Tammy is a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status.
Tagged as: binary star systems, Fermi-LAT, Gamma rays, nova, Radio Knots