Friday, October 3, 2014

ISRO and NASA Ink Deal to Collaborate on Red Planet and Home Planet Science Missions

ISRO and NASA Ink Deal to Collaborate on Red Planet and Home Planet Science Missions:

The NASA-ISRO Synthetic Aperture Radar (NISAR) mission, targeted to launch in 2020, will make global measurements of the causes and consequences of a variety of land surface changes on Earth. Image Credit: NASA


The NASA-ISRO Synthetic Aperture Radar (NISAR) mission, targeted to launch in 2020, will make global measurements of the causes and consequences of a variety of land surface changes on Earth. Image Credit: NASA
ISRO and NASA have inked a deal to collaborate on future missions to jointly explore the Red Planet and our Home Planet hot on the heels of ISRO’s wildly successful Mars Orbiter Mission (MOM), India’s first ever interplanetary voyager to explore Mars.

NASA Administrator Charles Bolden and K. Radhakrishnan, chairman of the Indian Space Research Organisation (ISRO), signed an agreement to collaborate on future science missions to explore Mars as well as to build and launch a joint NASA-ISRO mission to observe Earth.

The leaders of NASA and ISRO met in Toronto, Canada on Tuesday, Sept. 30 and “signed two documents to launch a NASA-ISRO satellite mission to observe Earth and establish a pathway for future joint missions to explore Mars,” according to a NASA statement.

Bolden and Rao met at the International Astronautical Congress underway in Toronto.

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO


ISRO’s Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO
They signed one agreement defining each agency’s responsibilities for the joint NASA-ISRO Synthetic Aperture Radar (NISAR) mission, targeted to launch in 2020. NISAR will make global measurements of the causes and consequences of land surface changes.

The second agreement “establishes a NASA-ISRO Mars Working Group to investigate enhanced cooperation between the two countries in Mars exploration.”

“The signing of these two documents reflects the strong commitment NASA and ISRO have to advancing science and improving life on Earth,” said NASA Administrator Charles Bolden, in a NASA statement.

“This partnership will yield tangible benefits to both our countries and the world.”

NISAR will be the first Earth observing mission to be equipped two different synthetic aperture radar (SAR) frequencies (L-band and S-band) – one each from NASA and ISRO.

NASA will also provide “the high-rate communication subsystem for science data, GPS receivers, a solid state recorder, and a payload data subsystem.”

ISRO will provide the spacecraft bus and launch vehicle.

The radars will be able to measure subtle changes in Earth’s surface of less than a centimeter across stemming from the flow of glaciers and ice sheets as well as earthquakes and volcanoes.

Regarding Mars, the first subject the joint working group will tackle will be to coordinate observations from each nation’s recently arrived Mars orbiters – ISRO’s MOM and NASA’s MAVEN. They will also examine areas of future collaboration on surface rovers and orbiters.

“NASA and Indian scientists have a long history of collaboration in space science,” said John Grunsfeld, NASA Associate Administrator for Science.

“These new agreements between NASA and ISRO in Earth science and Mars exploration will significantly strengthen our ties and the science that we will be able to produce as a result.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com


MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014, from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com


About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter
Tagged as: Climate Change, Earth science, indian space program, Indian Space Research Organization, ISRO, Mars, Mars MAVEN, Mars Orbiter Mission, MAVEN, MOM, NASA, NISAR, red planet

ow Do Aliens Think? We Need To Learn About Their Biology First, Analyst Argues

How Do Aliens Think? We Need To Learn About Their Biology First, Analyst Argues:

Credit: José Antonio Peñas/Sinc

Credit: José Antonio Peñas/Sinc
TORONTO, CANADA – Should E.T. finally give Earth a ring, it’s not only important to understand what the message says but why it is being sent, a speaker at a talk about extraterrestrials urged this week. This requires understanding about alien social behavior, also known as sociology.

“We keep complaining about the fact that we know so little about extraterrestrials in general, and even though sociology is mentioned in the Drake Equation, it is generally agreed that is the most difficult aspect to address,” said Morris Jones, an Australian who describes himself as an independent space analyst.

The Drake Equation is a set of variables proposed by astronomer Frank Drake that estimates how many intelligent, communicating civilizations there are in the universe. While speaking at the International Astronautical Congress Wednesday (Oct. 1), Jones pointed out that most talk about alien communications focuses on the basics – how they transmit, and where to search, and whether we can hear them. But to fully understand the message, we have to understand how their society works.

Extraterrestrials in the 1979 movie "Close Encounters of the Third King." Credit: Columbia Pictures / Alien Wiki


Extraterrestrials in the 1979 movie “Close Encounters of the Third Kind.” Credit: Columbia Pictures / Alien Wiki
How a society functions is partly a function of biology, Jones argued. So if humans decided to incorporate machine intelligence in their bodies, it would be reasonable to assume that society would change because of that. “Machine society is an entirely different sociology, and that we cannot predict,” Jones said. An extraterrestrial civilization could use machines, drugs, genetic engineering or surgery to alter their basic nature (something that is used also with humans.)

Class systems could also be in place that are similar to the animal kingdom. Herd and hive sociology covers how animals behave. Pigeons, for example, flock together for mutual protection. In the insect world, beings such as ants tend to be born in specific physiological roles that prepare them for different functions — such as the queen ant that is the mother of other ants in the colony.

These are societies that we could predict, perhaps, but more intriguing are those that are difficult to extrapolate from human experience or observation. Jones is particularly interested in cryptosociology. That’s the concept that because we can’t predict yet how alien civilizations will behave, we can speculate what they are capable of.

SETI's Allen Telescope Array monitor the stars for signs of intelligent life (SETI.org)

SETI’s Allen Telescope Array monitors the stars for signs of intelligent life (SETI.org)
Here’s where the danger lies, Jones said: it’s possible to make unfounded assumptions that cannot be tested through science. “If our thinking is too wild it could degenerate into dragons and unicorns, and become a pseduo science. At some point it has to be a framework of … reason and evidence,” he said.

Here, Jones urges using systems theories that would make each system consistent with itself. On Earth, if a system contradicts itself it disappears — such as with ancient civilizations that failed.

While he didn’t detail what these systems could be — predicting them would be difficult, he said — Jones argued it would be tough to really know the true sociology of extraterrestrial civilizations when we not only are ignorant about their biology, but aspects of our own sociology.



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: aliens, extraterrestrials, sociology

Thursday, October 2, 2014

Astro-Panarama: Aurora on the Farm

Astro-Panarama: Aurora on the Farm:

A 180° panorama of an aurora display behind grain bins on a country road in Alberta, Canada. Credit and copyright: Alan Dyer/Amazing Sky Photography.


A 180° panorama of an aurora display behind grain bins on a country road in Alberta, Canada. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Since I grew up on a farm, I know how lovely the night sky can be when you’re out in the country. But this new image from Alan Dyer is just astounding!

This 180-degree panorama shows an aurora display behind grain bins on a country road in Alberta, Canada. “The aurora adds more color to a sky also filled with green airglow,” Alan wrote on Flickr, “while at the ends of the roads are yellow glows of light pollution, from Strathmore and Calgary at left, and Bassano at right. For a few minutes there was also the sharp edge at left to the aurora rays, present in 3 frames of the panorama, so it is not an artifact of the stitching. The Big Dipper is left of centre, low in the north.”

Just gorgeous. Plus, it reminds me of home…

You can click on the image above to see larger versions.
#TerrestrialTuesday

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Tagged as: Astrophotos, aurora

India’s MOM Snaps Spectacular Portrait of New Home – the Red Planet

India’s MOM Snaps Spectacular Portrait of New Home – the Red Planet:

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014. Credit: ISRO


ISRO’s Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014. Credit: ISRO
MOM is truly something special.

For her latest eye popping feat, India’s Mars Orbiter Mission (MOM) has snapped the first global portrait of her new Home – the Red Planet.

MOM is India’s first interplanetary voyager and took the stupendous new image on Sept. 28, barely four days after her historic arrival on Sept. 23/24 following the successful Mars Orbital Insertion (MOI) braking maneuver.

The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept. 29.

Even more impressive is that MOM’s Martian portrait shows a dramatic view of a huge dust storm swirling over a large patch of the planet’s Northern Hemisphere against the blackness of space. Luckily, NASA’s Opportunity and Curiosity surface rovers are nowhere nearby.

“Something’s brewing here!” ISRO tweeted.

The southern polar ice cap is also clearly visible.

It was taken by the probe’s on-board Mars Color Camera from a very high altitude of 74,500 kilometers.

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO


ISRO’s Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. Credit: ISRO
When MOM met Mars, the thrusters placed the probe into a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of the orbit with respect to the equatorial plane of Mars is 150 degrees, as intended, ISRO reported.

So the Red Planet portrait was captured nearly at apoapsis.

This is the third MOM image released by ISRO thus far, and my personal favorite. And its very reminiscent of whole globe Mars shots taken by Hubble.

MOM’s goal is to study Mars’ atmosphere, surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.

The $73 million mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer



About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter
Tagged as: Curiosity Rover, indian space program, Indian Space Research Organization, ISRO, Mars, Mars Dust Storms, mars ice caps, Mars MAVEN, MAVEN, MOM, NASA, Opportunity Rover, red planet

Gallery: 5 Exotic Places NASA’s Next-Generation Rocket Could Help Explore

Gallery: 5 Exotic Places NASA’s Next-Generation Rocket Could Help Explore:

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
TORONTO, CANADA – Could NASA’s new rocket bring a probe to sample the geysers of Saturn’s moon Enceladus, or ferry human explorers to the surface of Mars? Representatives of contractor Boeing think so.

They’ve put together some ideas for sending their Space Launch System to these far-flung destinations, which they presented at the International Astronautical Congress today (Oct. 1).

Bear in mind that the SLS hasn’t yet flown — it’s slated for 2018 if funding lasts and the schedule holds — and the destinations below are just in the conceptual stage. The gallery below summarizes some of the destinations SLS could visit. For more information, check out this brochure by Boeing.

Enceladus

Artist's conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA


Artist’s conception of the Cassini spacecraft flying amid geysers on Enceladus, a moon of Saturn. Credit: Karl Kofoed / NASA
The icy moon of Saturn is known as a hotspot for geysers; earlier this year, scientists found 101 gushers using data from the prolific Cassini probe. Using the SLS could bring a satellite there in four years, as opposed to about seven with rockets on the market today, according to Boeing. It also could carry a heavier spacecraft.

Europa

Artist's conception of Europa's surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech


Artist’s conception of Europa’s surface, backdropped by planet Jupiter. Credit: NASA/JPL-Caltech
Europa is known to have a subterranean ocean, and it also is capable of spewing water plumes — as researchers using the Hubble Space Telescope discovered earlier this year. The SLS could get to Europa a lot faster than a launch with an Atlas, according to Boeing — it would only take two years to fly there directly as opposed to more than six years with the Atlas, which would need to fly by Venus first to pick up some speed.

Trojan asteroids

Artist's diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech


Artist’s diagram of Jupiter and some Trojan asteroids nearby the gas giant. Credit: NASA/JPL-Caltech
Trailing before and after Jupiter are more than a million asteroids that are called Trojans. This means any probe in the area would have no lack of targets to study, providing it had enough fuel on board. A mission profile from Boeing suggests the SLS could bring a spacecraft out there that could swing by a target at least half a dozen times.

Mars

Artist's impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC


Artist’s impression of astronauts exploring Mars. Credit: NASA/Pat Rawlings, SAIC
One of the largest challenges of getting to Mars is figuring out how to send all the life-support equipment and food that humans require — on top of the humans themselves! Since SLS is a heavy-lift rocket, Boeing is trying to position its rocket as the ideal one to get humans to Mars. But it remains to be seen what concept works best to get people out there.

The Moon

Artist's impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA's now defunct Constellation program. Credit: John Frassanito and Associates / NASA


Artist’s impression of astronauts on the moon. This image was used to illustrate a landing concept of NASA’s now defunct Constellation program. Credit: John Frassanito and Associates / NASA
Boeing has an idea to bring a lander down to the Moon that could then lift off multiple times in search of other destinations. Such a concept would require a hefty amount of fuel and equipment. If it works, Boeing says the SLS could assist with plans for lunar mining and other exploration ideas.



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: Boeing

How Private Space Companies Make Money Exploring The Final Frontier

How Private Space Companies Make Money Exploring The Final Frontier:

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

Virgin Galactic’s SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory
TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.

This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.

“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.

“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”

But commercial spaceflight is already taking place, as some of these examples show.

Commercial crew

Would you ‘Enter the Dragon’? First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace


Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace
The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.

Private space travel

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.


Sir Richard Branson hugs designer Burt Rutan, surrounded by employees of Virgin Galactic, The SpaceShip Company, and Scaled Composites, and watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership,” WhiteKnight2, over the Mojave CA area on April 29, 2013, at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.

Asteroid mining

Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.


Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.
The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.

Space station research

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA


The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.

About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.
Tagged as: asteroid mining, boeing CST 100, commercial crew program, deep space industries, Dragon, NanoRacks, Planetary Resources, Sierra Nevada

Making the Case for a Mission to the Martian Moon Phobos

Making the Case for a Mission to the Martian Moon Phobos:

Phobos. From where did it arise or arrive? Is it dry or wet? Should we flyby or sample and return? Should it be Boots or Bots? (Photos: NASA, Illus.:T.Reyes)


From where did Phobos arise or arrive? The Inner or Outer Solar System? Is it dry or wet? Should we flyby or sample & return? Or should it be Boots or Bots? In the illustration, space probes (L-R) Phobos-Grunt 2, JPL/SAR, ARC PADME. Also, Stardust’s return capsule, Phobos above Mars, the Solar Nebula and the MRO HiRISE photo of Phobos. (Photos: NASA, Illustration:T.Reyes)
Ask any space enthusiast, and almost anyone will say humankind’s ultimate destination is Mars. But NASA is currently gearing up to go to an asteroid. While the space agency says its Asteroid Initiative will help in the eventual goal of putting people on Mars, what if instead of going to an asteroid, we went to Mars’ moon Phobos?

Three prominent planetary scientists have joined forces in a new paper in the journal Planetary and Space Science to explain the case for a mission to the moons of Mars, particularly Phobos.

“Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system,” say the scientists. In addition, the moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. But a sample return mission first could provide details on the moons’ origins and makeup.

The Martian moons are riddles, wrapped in a mystery, inside an enigma. Phobos and its sibling Deimos seem like just two asteroids which were captured by the planet Mars, and they remain the last objects of the inner solar system not yet studied with a dedicated mission. But should the moons be explored with flybys or sample-return? Should we consider “boots or bots”?

The publications and mission concepts for Phobos and Deimos are numerous and go back decades. The authors of “The Value of a Phobos Sample Return,” Murchie, Britt, and Pieters, explore the full breadth of questions of why and how to explore Phobos and Deimos.

Dr. Murchie is the principal investigator of the Mars Reconnaissance Orbiter’s CRISM instrument, a visible/infrared imaging spectrometer. He is a planetary scientist from John Hopkins’ Applied Physics Lab (APL) which has been at the forefront of efforts to develop a Phobos mission. Likewise, authors Dr. Britt, from the University of Central Florida, and Dr. Pieters, from Brown University, have partnered with APL and JPL in Phobos/Deimos mission proposals.

A MRO HiRise image of the Martian moon Phobos. Taken on March 23, 2008. Phobos has dimensions of 27 × 22 × 18 km, while Deimos is 15 × 12.2 × 11 km. Both were discovered in 1877 at the US Naval Observatory in Washington, D.C. (Photo: NASA/MRO/HiRISE)


An MRO HiRise image of the Martian moon Phobos. Taken on March 23, 2008. Phobos has dimensions of 27 × 22 × 18 km, while Deimos is 15 × 12.2 × 11 km. Both were discovered in 1877 at the US Naval Observatory in Washington, D.C. (Photo: NASA/MRO/HiRISE)
APL scientists are not the only ones interested in Phobos or Deimos. The Jet Propulsion Laboratory, Ames Research Center and the SETI Institute have also proposed several missions to the small moons. Every NASA center has been involved at some level.

But the only mission to actually get off the ground is the Russian Space Agency’s Phobos-GRUNT[ref]. The Russian mission was launched November 9, 2011, and two months later took a bath in the Pacific Ocean. The propulsion system failed to execute the burns necessary to escape the Earth’s gravity and instead, its orbit decayed despite weeks of attempts to activate the spacecraft. But that’s a whole other story.

The Russian-led mission Phobos-Grunt did not end well; under Pacific swells to be exact. Undaunted Russian scientists are pressing for Phobos-Grunt 2. (Credit: CNES)


The Russian-led mission Phobos-Grunt did not end well; under Pacific swells to be exact. Undaunted Russian scientists are pressing for Phobos-Grunt 2 (illus.), an improved lander with sample-return. Proposed for 2020s (Credit: CNES)
“The Value of a Phobos Sample Return” first discusses the origins of the moons of Mars. There is no certainty. There is a strong consensus that Earth’s Moon was born from the collision of a Mars-sized object with Earth not long after Earth’s formation. This is just one possibility for the Martian moons. Murchie explains that the impacts that created the large basins and craters on Mars could have spawned Phobos and Deimos: ejecta that achieved orbit, formed a ring and then coalesced into the small bodies. Alternative theories claim that the moons were captured by Mars from either the inner or outer solar system. Or they could have co-accreted with Mars from the Solar Nebula. Murchie and the co-authors describe the difficulties and implications of each scenario. For example, if captured by Mars, then it is difficult to explain how their orbits came to be “near-circular and near-equatorial with synchronous rotational periods.”

To answer the question of origins, the paper turns to the questions of their nature. Murchie explains that the limited compositional knowledge leaves several possibilities for their origins. They seem like D-type asteroids of the outer asteroid belt. However, the moons of Mars are very dry, void of water, at least on their surfaces as the paper discusses in detail. The flybys of Phobos and Deimos by NASA and ESA spacecraft are simply insufficient for drawing any clear picture of their composition or structure, let alone their origins, Murchie and co-authors explain.

If the moons were captured then they have compositions different from Mars; however if they accreted with or from Mars, then they share similar compositions with the early Mars when forming, or from Martian crustal material, respectively.

The paper describes in some detail the problem that billions of years of Martian dust accumulation presents. Every time Mars has been hit by a large asteroid, a cloud of debris is launched into space. Some falls back to the planet but much ends up in orbit. Each time, some of the debris collided with Phobos and Deimos; Murchie uses the term “Witness plate” to describe what the two moons are to Mars. There is an accumulation of Martian material and also material from the impactors covering the surfaces of the moons.  Flyby images of Phobos show a reddish surface similar to Mars, and numerous tracks along the surface as if passing objects struck, plowed or rolled along. However, the reddish hue could be weathering from Solar flux over billions of years.

The paper continues with questions of the composition and how rendezvous missions could go further to understanding the moons makeup and origins, however, it is sample return that would deliver, the pay dirt. Despite how well NASA and ESA engineers have worked to shrink and lighten the instruments that fly, orbit, and land on Mars, returning a sample of Phobos to labs on Earth would permit far more detailed analysis.

SpaceX and Elon Musk claim that they will mount human flight to Mars before 2030. Many others remain less optimistic with hopes to human flights before 2040. (Illustrations: Total Recall, 1990, early artist illustration c.1950s )


SpaceX and Elon Musk claim that they will mount human flight to Mars before 2030. Many others remain less optimistic with hopes of human flights before 2040. (Illustrations: Total Recall, 1990, early artist illustration c.1950s )
Science Fiction writers and mission designers have imagined Phobos, in particular, as a starting point for the human exploration and colonization of Mars. A notable contemporary work is “Red Mars” by Kim Stanley Robinson; however, the story line is dated due to the retirement of the Space Shuttle and the external tanks Robinson clustered to form the colonization vessel. While this paper by Murchie et al. is purely scientific, fiction writers have used the understanding that Phobos is far easier to reach from Earth than is the surface of Mars (see Delta-V chart below).

A diagram showing the stair-step energy needed to travel to places beyond the Earth. Delta-V is the velocity in km/sec to reach a destination. The Delta-Vs a accumulative. (Credit: Wikipedia, Delta-V)


A diagram showing the stair-step energy needed to travel to places beyond the Earth. Delta-V is the speed in km/sec required to reach a destination. As shown, the Delta-Vs are cumulative. Note that it takes an extra 5 km/sec  beyond Phobos to reach the Martian surface; a prime reason for making the journey to the moons of Mars. (Credit: Wikipedia, Delta-V)
Phobos, orbiting at 9,400 kilometers (5,840 miles), and Deimos, at 23,500 km (14,600 miles), above Mars avoids the need for the 7-odd minutes of EDL terror – Entry, Descent, and Landing — and pulling oneself out of the Martian gravity well to return to Earth. Furthermore, there is the interest in using Phobos as a material resource – water, material for rocket fuel or building materials. “The Value of a Phobos Sample Return” discusses the potential of Phobos as a resource for space travelers – “In Situ Resource Utilization” (ISRU), in the context of its composition, how the solar flux may have purged the moons of water or how Martian impact debris covers materials of greater interest and value to explorers.

With so many questions and interests, what missions have been proposed and explored? The Murchie paper describes a half dozen missions but there are several others that have been conceived and proposed to some level over several decades.

At present, there is at least one mission actively pursuing funds. The SETI and Ames proposed “Phobos and Deimos & Mars Environment” (PADME) mission led by Dr. Pascal Lee is competing for Discovery program funding. Such projects must limit cost to $425 million or less and be capable of launching in less than 3 years. They are proposing a launch date of 2018 on a SpaceX Falcon 9. The PADME mission design would reuse Ames LADEE hardware and expertise, however, it does not go so far as what Murchie and co-authors argue – returning a sample from Phobos. PADME would maintain in a synchronized orbit with Phobos and then Deimos foe repeated flybys. The mission is likely to cost in the range of $300 million. Stardust, a relevant mission due to its sample return capsule, launched in 1999 and had costs which likely reached a similar level by end of mission in 2012.

The Russian Space Agency is attempting to gain funding for Phobos-Grunt 2 but possible launch dates continue to be moved back – 2020, 2022, and now possibly 2024.

Return of the Stardust sample inside the Lockheed-Martin developed sample-return capsule. See here upon successful landing in the Utah desert. (Credit: NASA/Stardust)


Return of the Stardust sample inside the Lockheed-Martin developed sample-return capsule. Seen here upon successful landing in the Utah desert. (Credit: NASA/Stardust)
Additionally, each of this papers’ authors has mission proposals described. Dr. Pieters, JPL, and Lockheed-Martin proposed the Aladdin mission; Dr. Britt at APL, also with Lockheed-Martin, proposed the mission Gulliver; both would re-use the Stardust sample-return capsule (photo, above). Dr. Murchie also describes his APL/JPL mission concept called MERLIN (Mars–Moon Exploration, Reconnaissance and Landed Investigation).

Phobos and Deimos are the last two of what one would call major objects of the inner Solar System that have not had dedicated missions of exploration. Several bodies of the Asteroid Belt have been targeted with flybys and Dawn is nearing its second target, the largest of the Asteroids, Ceres.

So sooner rather than later, a spacecraft from some nation (not necessarily the United States) will target the moons of Mars. Targeted Phobos/Deimos missions are also likely to include both flyby missions and one or more sample-return missions. A US-led mission with sample-return in the Discovery program will be strained to meet both criteria – $425 million cost cap and 3 year development period.

Those utilizing the Lockheed-Martin (LM) Stardust design have a proven return capsule and spacecraft buses (structure, mechanisms and avionics) for re-use for cost and time savings. This includes five generations of the LM flight software that holds an incredible legacy of mission successes starting with Mars Odyssey/Genesis/Spitzer to now Maven.

All three proposals by this paper’s authors could be re-vamped and proposed again and compete against each other. All three could use Lockheed-Martin past designs. Cooperation in writing this paper may be an indicator that they will join forces, combine concepts, and share investigator positions on a single NASA-led project. The struggle for federal dollars remains a tough, tight battle and with the human spaceflight program struggling to gain a new footing after Space Shuttle, dollars for inter-planetary missions are likely to remain very competitive. However, it appears a Phobos-Deimos mission is likely within the next ten years.

Further reading:

“The Value of a Phobos Sample Return”, Scott L. Murchie, Daniel T. Britt, Carle M. Pieters, Planetary and Space Science, 1 November 2014

The US Naval Observatory, Great 26″ Refractor Telescope

Past Universe Today story, “Finding Phobos: Discovery of a Martian Moon”

About 

Contributing writer Tim Reyes is a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992. He has an M.S. in Space Plasma Physics from University of Alabama, Huntsville.
Tagged as: Ames, APL, Deimos, Discovery Program, Hopkins, JPL, Lockheed Martin, Mars, NASA, PADME, Phobos, SETI

Astrophotos: A Wide Angle “Trilogy” of the North America Nebula

Astrophotos: A Wide Angle “Trilogy” of the North America Nebula:

A colorful, wide view of the North America Nebula (NGC 7000 or Caldwell 20) in Cygnus. This three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees, captured using QHY11/TAK E180 presented here in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.


A colorful, wide view of the North America Nebula (NGC 7000 or Caldwell 20) in Cygnus. This three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees, captured using QHY11/TAK E180 presented here in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.
A perfect set of astrophotos for #WideAngleWednesday! Here are not one but three views of the North America Nebula taken by Terry Hancock. Terry said this is his widest view yet of this region. Also known as NGC 7000 or Caldwell 20, this is an emission nebula in the constellation Cygnus that resembles the shape of North America and The Gulf Of Mexico. It lies at a distance of approximately 1800 light years away from Earth.

Terry presents a “trilogy” of three different color processes (see below). He took imagery in both July and September 2014 with a total exposure time of 13.9 hours from his Down Under Observatory in Fremont, Michigan.


For more details about the processing for each image, click on the images. To see more of Terry’s great work, see his website, Facebook, Flickr, or G+.

A wide, three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees of the North America Nebula (NGC 7000 or Caldwell 20), in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.


A wide, three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees of the North America Nebula (NGC 7000 or Caldwell 20), in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.
Another version of the 3-panel, wide angle view of the North America Nebula. Credit and copyright: Terry Hancock.


Another version of the 3-panel, wide angle view of the North America Nebula. Credit and copyright: Terry Hancock.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Tagged as: Nebulae, North American Nebula, Terry Hancock

Our Complete Guide to the October 8th “Hunter’s Moon” Total Lunar Eclipse

Our Complete Guide to the October 8th “Hunter’s Moon” Total Lunar Eclipse:

Photo by author


The April 15th, 2014, total lunar eclipse and Spica. Photo by author.
October 2014 means eclipse season 2 of 2 for the year is upon us.

Don’t fear the ‘Blood Moon’ that’s currently infecting the web, but if you find yourself on the correct moonward facing hemisphere of the planet, do get out and observe the total lunar eclipse coming right up on the morning of Wednesday, October 8th. This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad.

And the good news is, the eclipse once again favors nearly all of North America. From the western U.S. and Canada, the Moon will be high in the western skies when partial phases begin early in the morning on October 8th. The western U.S., Canada and Alaska will see the entire 61 minute span of totality, just 18 minutes shorter than last April’s lunar eclipse. The Moon will be high in the sky during totality for the Hawaiian Islands, and viewers in Australia and the Pacific Far East will witness the eclipse in the evening hours.

Visibility


The visibility regions for the total lunar eclipse. Credit: NASA/GSFC/Espenak.
This lunar eclipse is part of saros 127, and marks number 42 of a series of 72 for that particular saros. If you witnessed the total lunar eclipse visible from North America and Europe on September 27th, 1996, you caught the last of the series, and if you catch the next eclipse in the saros on October 18th, 2032, you’ve earned a veteran lunar eclipse-watchers badge of seeing an exeligmos, or “triple saros” of eclipses.




The path of the Moon through the Earth’s umbra on October 8th. Adapted from NASA/GFSC.
Timings for key phases of the eclipse are as follows:

P1- Penumbral phase begins: 8:14 UT/4:14 EDT/1:14 PDT

U1- Umbral (partial) phase begins: 9:15 UT/5:14 EDT/2:14 PDT

U2- Totality begins: 10:24 UT/6:24 EDT/3:24 PDT

Mid-totality- 10:55 UT/6:55 EDT/3:55 PDT

U3- Totality ends: 11:25 UT/7:25 EDT/4:25 PDT

U4- Umbral phase ends: 12:35 UT/5:35 PDT

P4- Penumbral phase ends: 13:35/6:35 PDT



Not all total lunar eclipses are the same when it comes to color. Totality can appear anywhere from a dark brick color, as happened during the December 9th, 1992, eclipse following the eruption of Mount Pinatubo, when the Moon nearly disappeared during totality, to a bright coppery red, as seen during the April eclipse earlier this year. The Moon passes to the north of the dark central core of the Earth’ shadow next Wednesday, so expect a brighter than normal eclipse, especially along the Moon’s northeast limb. Grab a painter’s wheel and compare the eclipsed Moon to swatches of orange through red: what colors do you see? What you’re seeing is the combinations of all the world’s sunsets refracted into the cone of the Earth’s shadow, which is about three times the size of the Moon at its average distance as seen from Earth. Remember, the Moon is experiencing a total solar eclipse as we watch the lunar eclipse unfold!

Stellarium


The October 8th total solar eclipse as seen from the Apollo 11 landing site on the nearside of the Moon. Created using Stellarium.
This color can be quantified and described on what is known as the Danjon Scale, with 0 being a very dark eclipse with the Moon barely visible, to a 4, meaning a very bright eclipse.

And yes, each total lunar eclipse is now receiving the “Blood Moon” meme thanks to ye ole Internet. Expect the conspiracy-minded to note that this eclipse occurs on the Jewish holiday of Sukkot starting at sundown on the 8th, which isn’t really all that wondrous as the Jewish calendar is a luni-solar one, and total lunar eclipses have to occur during a Full Moon by definition. Wait long enough, and an occasional “Sukkot total lunar eclipse” does indeed occur.

Uranus occultation


The footprint of the October 8th occultation of Uranus by the Moon during totality. (Credit: Occult 4.1.0).
But a truly rare event does occur during this eclipse, as the Moon actually occults (passes in front of) the planet Uranus during totality for observers in northern Alaska and northeast Asia. The rest of us in the observing zone will see a near miss. Can you spy Uranus with binoculars near the lunar limb during totality? Another such rarity occurred during Shakespeare’s time on December 30th, 1591, involving Saturn and the eclipsed Moon, and another such odd occurrence transpires in 2344 A.D.

2344 eclipse


The circumstances of the 2344 eclipse/occultation. Credit: Starry Night, NASA/GSFC & Occult 4.0.1.
The brightest star to be occulted by the total eclipsed Moon as it crosses the constellation Pisces is +7.9th magnitude HIP 4231 for the northern U.S. and Canada.

And speaking of historical eclipses, there’s a Columbus Day tie-in with the phenomenon as well. Like many mariners of his day, Columbus was well-versed in celestial navigation, and used a total lunar eclipse to get a good one-time fix on his longitude at sea, an experiment that you can easily replicate. Columbus also wasn’t above using prior knowledge of an impending lunar eclipse to get himself and his crew out of a bind with the locals when the need arose.

An outstanding sequence of images taken during the April 15th, 2014 total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.


An outstanding sequence of images taken during the April 15th, 2014, total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.
Photographing an eclipse with a DSLR is as easy as shooting an image of the Moon. Try this a few evenings before the big event. A minimum focal length of 200mm is needed to render the Moon larger than a white dot in the image, and remember that the Moon is much darker during total eclipse, and you’ll need to step the exposure times rapidly down from 1/100th of a second to 2 to 4 seconds during totality.

A long-running effort by Sky & Telescope has been looking for amateur observations of precise crater contacts along the rim of the umbra in an effort to measure variations in the diameter of the Earth’s shadow.

starry night


The Moon versus Uranus as seen from Napa, California just past mid-eclipse on the morning of October 8th. Credit: Starry Night Education Software.
As always, weather prospects are the big question mark when it comes to eclipses. Typically, the southwestern U.S. experiences 13-20 clear days in the month of October; prospects worsen to the northwest, with an average of 3-12 days. We’ll be looking at resources such as NOAA, Skippy Sky and ClearSkyChart on the evenings leading up to the 8th. The great thing about a lunar eclipse is, you don’t need a 100% clear sky to see it: just a clear view of the Moon!

Up for a challenge? We’ve yet to see a capture of a shadow transit of the International Space Station in front of the eclipsed Moon. This time around, such a capture should be possible across southern coastal California and the Baja peninsula just minutes prior to the onset of totality.

Orbitron


A shadow pass of the International Space Station just prior to the onset of totality. Note the position of the Moon. Created using Orbitron.
Another bizarre catch, known as a selenelion — witnessing the end of lunar totality after sunrise — may just be possible across the northern Rockies from the U.S. into southern Canada. The more elevation you can get the better! This works because the Moon lingers a bit in the large shadow of the Earth, plus atmospheric refraction gives the low altitude Sun and Moon a slight boost.

Clouded out? On the wrong side of the planet? You can watch the eclipse online at the following links:

– Live views courtesy of Gialuca Masi and the Virtual Telescope starting at 10:00 UT on October 8th.

– A live webcast starting at 9:00 UT courtesy of Slooh:



– A Columbia State University broadcast, (time to be determined).

Planning an ad-hoc broadcast? Let us know!

And as the eclipse wraps up, the biggest question is always: When’s the next one? Well, lunar eclipse number three of the four eclipse tetrad occurs next year on April 4th, 2015… but in just two weeks time, the western United States and Canada will also witness a fine partial solar eclipse on Oct 23rd

Stay tuned!

Got images of the total lunar eclipse? Send ‘em in to Universe Today’s Flickr forum!

Interested in eclipse sci-fi? Check out our latest short stories Exeligmos and Shadowfall.


Tagged as: 2014 eclipse, blood moon, eclipse observing, eclipse photography, eclipse projects, eclipse science, north america eclipse, oct 8 lunar eclipse, october eclipse, Total Lunar Eclipse, viewing a lunar eclipse

One More Absolutely Amazing Timelapse from the International Space Station

One More Absolutely Amazing Timelapse from the International Space Station:



We’ve featured several timelapse compilations of footage and imagery taken from the International Space Station (like here, here and here) but this one put together by Phil Selmes is great in that it also includes footage *of* the ISS, as shot by the astronauts on the space shuttle as well as actual space to ground audio communications. Phil said he included the audio clips “to remind the audience of the humanity that inhabits the space station.”

There is just something about these videos from the ISS that speaks to your soul. Phil told Universe Today that while putting this together, he saw “how different our world looks just 370kms above our heads. I didn’t see politics, races, borders, countries, religions or differences,” he said via email. “I saw one planet, one world, one incredibly beautiful miracle in the absolute vastness of the universe. It gave me some perspective, ironically it brought me ‘back to earth.’”


The video and imagery is from the Johnson Space Center’s Gateway to Astronaut Photography of the Earth.

Look for more #TimelapseThursday videos in the weeks to come.

Perseid meteor as seen from the ISS by astronaut Ron Garan on August 13, 2011. Credit: NASA/Ron Garan.


Perseid meteor as seen from the ISS by astronaut Ron Garan on August 13, 2011. Credit: NASA/Ron Garan.
Tagged as: Earth, Earth Observation, International Space Station (ISS), Timelapse videos

Swirling Cloud at Titan's Pole is Cold and Toxic

Swirling Cloud at Titan's Pole is Cold and Toxic: Spectral map of Titan with Polar Vortex These two views of Saturn's moon Titan show the southern polar vortex, a huge, swirling cloud that was first observed by NASA's Cassini spacecraft in 2012. Credit: NASA/JPL-Caltech/ASI/University of Arizona/SSI/Leiden Observatory and SRON
› Full image and caption


October 01, 2014

Scientists analyzing data from NASA's Cassini mission have discovered that a giant, toxic cloud is hovering over the south pole of Saturn's largest moon, Titan, after the atmosphere there cooled dramatically.

The scientists found that this giant polar vortex contains frozen particles of the toxic compound hydrogen cyanide, or HCN.

"The discovery suggests that the atmosphere of Titan's southern hemisphere is cooling much faster than we expected," said Remco de Kok of Leiden Observatory and SRON Netherlands Institute for Space Research, lead author of the study published today in the journal Nature.

Titan is the only moon in the solar system that is cloaked in a dense atmosphere. Like our home planet, Earth, Titan experiences seasons. As it makes its 29-year orbit around the sun along with Saturn, each season lasts about seven Earth years. The most recent seasonal switch occurred in 2009, when winter gave way to spring in the northern hemisphere, and summer transitioned to autumn in the southern hemisphere.

In May 2012, while Titan's southern hemisphere was experiencing autumn, images from Cassini revealed a huge swirling cloud, several hundred miles across, taking shape above Titan's south pole. This polar vortex appears to be an effect of the change of season.

A puzzling detail about the swirling cloud is its altitude, some 200 miles (about 300 kilometers) above Titan's surface, where scientists thought the temperature was too warm for clouds to form. "We really didn't expect to see such a massive cloud so high in the atmosphere," said de Kok.

Keen to understand what could give rise to this mysterious cloud, the scientists dove into Cassini's observations and found an important clue in the spectrum of sunlight reflected by Titan's atmosphere.

A spectrum splits the light from a celestial body into its constituent colors, revealing signatures of the elements and molecules present. Cassini's visual and infrared mapping spectrometer (VIMS) maps the distribution of chemical compounds in Titan's atmosphere and on its surface.

"The light coming from the polar vortex showed a remarkable difference with respect to other portions of Titan's atmosphere," says de Kok. "We could clearly see a signature of frozen HCN molecules."

As a gas, HCN is present in small amounts in the nitrogen-rich atmosphere of Titan. Finding these molecules in the form of ice was surprising, as HCN can condense to form frozen particles only if the atmospheric temperature is as cold as minus 234 degrees Farenheit (minus 148 degrees Celsius). This is about 200 degrees Fahrenheit (about 100 degrees Celsius) colder than predictions from current theoretical models of Titan's upper atmosphere.

To check whether such low temperatures were actually possible, the team looked at observations from Cassini's composite infrared spectrometer (CIRS), which measures atmospheric temperature at different altitudes. Those data showed that the southern hemisphere of Titan has been cooling rapidly, making it possible to reach the cold temperature needed to form the giant toxic cloud seen on the south pole.

Atmospheric circulation has been drawing large masses of gas towards the south since the change of season in 2009. As HCN gas becomes more concentrated there, its molecules shine brightly at infrared wavelengths, cooling the surrounding air in the process. Another factor contributing to this cooling is the reduced exposure to sunlight in Titan's southern hemisphere as winter approaches there.

"These fascinating results from a body whose seasons are measured in years rather than months provide yet another example of the longevity of the remarkable Cassini spacecraft and its instruments," said Earl Maize, Cassini project manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "We look forward to further revelations as we approach summer solstice for the Saturn system in 2017."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. The VIMS team is based at the University of Arizona in Tucson. The CIRS team is based at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

More information about Cassini is available at the following sites:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

Preston Dyches
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-7013
preston.dyches@jpl.nasa.gov

2014-331