Friday, August 22, 2014

WALLPAPER Autumn Maple Leaf Collage

Autumn Maple Leaf Collage:

Autumn Maple leaves still on the tree late in the fall season. The maple trees display some of the most beautiful fall colors displayed throughout the forests. Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 6 sec | Lens Focal Length mm: 75 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |
WALLPAPER Autumn Maple Leaf Collage
Autumn Maple leaves still on the tree late in the fall season. The maple trees display some of the most beautiful fall colors displayed throughout the forests.
    Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 6 sec | Lens Focal Length mm: 75 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |

WALLPAPER Pine Grove Church

Pine Grove Church:

Scenic Pine Grove church in the fall season with colorful fall foliage behind the church. Although this church is over 100 years old it is well taken care of. Obviously the congregation of this church love the Lord and their church. Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 1/4 sec | Lens Focal Length mm: 60 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |
Pine Grove Church
Scenic Pine Grove church in the fall season with colorful fall foliage behind the church. Although this church is over 100 years old it is well taken care of. Obviously the congregation of this church love the Lord and their church.
    Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 1/4 sec | Lens Focal Length mm: 60 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |

WALLPAPER Winter Covered Bridge

Winter Covered Bridge:

A covered bridge in the winter time after a fresh morning snow found in central Ohio. Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 1/60 sec | Lens Focal Length mm: 47 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |
Winter Covered Bridge
A covered bridge in the winter time after a fresh morning snow found in central Ohio.
    Picture Height: 3744 pixels | Picture Width: 5616 pixels | Lens Aperture: f/13.5 | Image Exposure Time: 1/60 sec | Lens Focal Length mm: 47 mm | Photo Exposure Value: 0 EV | Camera Model: Canon EOS 5D Mark II | Photo White Balance: 0 | Color Space: sRGB | ForestWander Nature Photography: ForestWander Nature Photography | ForestWander: ForestWander.com |

What Sparked Star Explosion 2014J? NASA Telescope Seeks Clues

What Sparked Star Explosion 2014J? NASA Telescope Seeks Clues:



Astronomers are gazing closely at supernova 2014J (inset) to see what sort of triggers caused the star explosion. Credit: NASA/SAO/CXC/R. Margutti et al

Astronomers are gazing closely at supernova 2014J (inset) to see what sort of triggers caused the star explosion. Credit: NASA/SAO/CXC/R. Margutti et al
X marks the spot: after probing the area where a star used to be, in X-rays, astronomers have been able to rule out one cause for the supernova explosion.

Because the Chandra X-Ray Observatory did not detect anything unusual in X-rays, astronomers say this means that a white dwarf was not responsible for pulling off material from a massive star that exploded (from Earth’s vantage point) on Jan. 21, 2014, triggering excitement from professional and amateur astronomers alike.

“While it may sound a bit odd, we actually learned a great deal about this supernova by detecting absolutely nothing,” stated study leader Raffaella Margutti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Massachusetts. “Now we can essentially rule out that the explosion was caused by a white dwarf continuously pulling material from a companion star.”

So what caused it? Possibly two white dwarfs merged instead. Follow-up observations will take place in Messier 88 and the source of the explosion, which was about 12 million light-years from Earth. While that’s a long time by human standards, astronomers point out that is close on the cosmic distance scale.

A study on this work was recently published in The Astrophysical Journal. You can read a preprint version of the article here.

Source: NASA

Tagged as:
SN2014J

Astrophotos: 2014 Perseid Meteor Shower

Astrophotos: 2014 Perseid Meteor Shower:



Two "late" Perseid meteors captured in one shot on August 15, 2014.  Credit and copyright: Stephen Rahn.

Two “late” Perseid meteors captured in one shot on August 15, 2014. Credit and copyright: Stephen Rahn.
“The sum total of 2 1/2 hours worth of images – one meteor!” lamented photographer Roger Hutchinson (see his image below).

A bright Moon is not conducive seeing and capturing meteors on camera, but some astrophotographers persevered and managed to get some photos of this year’s Perseid Meteor Shower. Enjoy the views from photographers who submitted photos to Universe Today via our Flickr group and on Twitter:



Two Perseid meteors over Mt. Cephren, in Banff, Alberta, Canada on August 11, 2014, caught in two separate exposures and composited into one frame. Credit and copyright: Alan Dyer/Amazing Sky Photography.

Two Perseid meteors over Mt. Cephren, in Banff, Alberta, Canada on August 11, 2014, caught in two separate exposures and composited into one frame. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A bright Perseid meteor over the UK on August 13, 2014. Credit and copyright: Richard Fleet.

A bright Perseid meteor over the UK on August 13, 2014. Credit and copyright: Richard Fleet.
Perseid Meteor and the Veil Nebula as seen from Weatherly, Pennsylvania on August 14, 2014. Credit and copyright: Tom Wildoner.

Perseid Meteor and the Veil Nebula as seen from Weatherly, Pennsylvania on August 14, 2014. Credit and copyright: Tom Wildoner.
The sum total of 2 1/2 hours worth of images – one meteor.

A blue Perseid Meteor on August 14, 2015. Credit and copyright: David Strange.

A blue Perseid Meteor on August 14, 2015. Credit and copyright: David Strange.
@Nancy_A Hi Nancy. Here's my Perseid image. pic.twitter.com/cg7G6Vt6e4

— Stephen Cheatley BFC (@Stephencheatley) August 14, 2014
Faint but several RT @VirtualAstro Did you get get any pics of the #perseids? @Nancy_A wants some for @universetoday pic.twitter.com/KHWfo2brf6

— Woody Carr (@WoodyCarr) August 13, 2014
A Perseid meteor on August 11, 2014 seen over the Alqueva Dark Sky Reserve near Alentejo, Portugal. Credit and copyright: Miguel Claro.

A Perseid meteor on August 11, 2014 seen over the Alqueva Dark Sky Reserve near Alentejo, Portugal. Credit and copyright: Miguel Claro.
A lone Perseid meteor on August 12, 2014 over the UK. Credit and copyright: Roger Hutchinson.

A lone Perseid meteor on August 12, 2014 over the UK. Credit and copyright: Roger Hutchinson.
A double cluster and a Perseid meteor on August 13, 2014. This image is a composite of 24 or so 44 second images with the meteor brushed in from the single frame that captured it.  Credit and copyright: Brian Who Is Called Brian on Flickr.

A double cluster and a Perseid meteor on August 13, 2014. This image is a composite of 24 or so 44 second images with the meteor brushed in from the single frame that captured it. Credit and copyright: Brian Who Is Called Brian on Flickr.
A bright Perseid meteor as seen from the Exeter Station of the UK Meteor Network. Credit and copyright: John Maclean.

A bright Perseid meteor as seen from the Exeter Station of the UK Meteor Network. Credit and copyright: John Maclean.
Above is one image from John Maclean of the UK’s Meteor Network, who sent us several image. You can see a collection of the best images from the UK’s Meteor Observation Network here.





Star trails and the Perseid meteors over the Bembridge LifeBoat Station on the Isle of Wight. Credit and copyright: Jamie Currie.

Star trails and the Perseid meteors over the Bembridge LifeBoat Station on the Isle of Wight. Credit and copyright: Jamie Currie.
Here’s a compilation of meteors from NASA’s Meteor Network seen from August 12-13, 2014.



Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Tagged as:
2014 perseids,
perseid meteor shower

Cygnus Cargo Carrier Concludes with Fiery Reentry Aug. 17 – Amazing Astronaut Photos

Cygnus Cargo Carrier Concludes with Fiery Reentry Aug. 17 – Amazing Astronaut Photos:



Cygnus reentry [17 Aug 2014].  In 84 days Reid, Max and I will ride home inside such an amazing fireball!   Credit: NASA/ESA/Alexander Gerst

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst
Farewell Cygnus!

The flight of the Orbital Sciences’ Cygnus commercial cargo carrier concluded this morning, Sunday Aug. 17, in a spectacular fireball as planned upon reentry into Earth’s atmosphere. And the fireworks were captured for posterity in a series of amazing photos taken by the Expedition 40 crew aboard the International Space Station (ISS). See astronaut photos above and below.

ESA astronaut Alexander Gerst and Russian Cosmonaut Maxim Suraev documented the breakup and disintegration of Cygnus over the Pacific Ocean today following precise thruster firings commanded earlier by Orbital Sciences mission control in Dulles, VA, that slowed the craft and sent it on a preplanned destructive reentry trajectory.

Cygnus reentry on 17 Aug 2014.  Credit: NASA/ESA/Alexander Gerst

Cygnus reentry on 17 Aug 2014. Credit: NASA/ESA/Alexander Gerst
Cygnus was loaded with no longer needed trash and fell harmlessly over an uninhabited area of the South Pacific Ocean.

Today’s spectacular reentry fireworks concluded the hugely successful flight of the Cygnus resupply ship named in honor of astronaut Janice Voss on the Orb-2 mission.

ISS Crewmate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry.   Credit: Roscosmos/ Max Suraev via ISS crewmate Reid Wiseman

ISS Crewmate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry. Credit: Roscosmos/ Max Suraev via ISS crewmate Reid Wiseman
Cygnus finished it’s month-long resupply mission two days ago when it was unberthed from the International Space Station (ISS) on Friday, Aug. 15, and station astronaut Alex Gerst released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

Goodbye, Cygnus!  Credit: NASA/ESA/Alexander Gerst

Goodbye, Cygnus! Credit: NASA/ESA/Alexander Gerst

Tagged as:
alexander gerst,
Cygnus cargo vessel,
esa,
expedition 40,
ISS,
maxim suraev,
NASA,
Orb-2,
reid wiseman,
Roscosmos

Astrophotos: Spectacular Venus-Jupiter Conjunction Graces the Dawn

Astrophotos: Spectacular Venus-Jupiter Conjunction Graces the Dawn:



A panoramic view of the Venus Jupiter Conjunction on August 17, 2014, taken from the Cairns Esplanade in Queensland Australia. Credit and copyright: Joseph Brimacombe.

A panoramic view of the Venus Jupiter Conjunction on August 17, 2014, taken from the Cairns Esplanade in Queensland Australia. Credit and copyright: Joseph Brimacombe.
The closest planetary conjunction of the year graced the skies this morning, and astrophotographers were out in force to marvel at the beauty. The duo were just 11.9’ apart, less than half the diameter of a Full Moon. Also joining the view was M44, the Beehive Cluster. We start with this gorgeous shot from Queensland, Australia by one of our longtime favorite astrophotographers, Joseph Brimacombe.

But wait… there’s more! Much more! See below:



The Jupiter and Venus conjunction on August 18, 2014 along with the Beehive Cluster. Credit and copyright: Tom Wildoner.

The Jupiter and Venus conjunction on August 18, 2014 along with the Beehive Cluster. Credit and copyright: Tom Wildoner.
Telescopic view of Venus and Jupiter in the morning sky over Lahore, Pakistan. Shot with a Nikon D5100. Credit and copyright: Roshaan Bukhari.

Telescopic view of Venus and Jupiter in the morning sky over Lahore, Pakistan. Shot with a Nikon D5100. Credit and copyright: Roshaan Bukhari.
Beautiful conjunction of Jupiter and Venus over the Appennines on August 18, 2014. The foreground in the image shows the Peligna Valley in central Italy and the city of Sulmona. Credit and copyright: Giuseppe Petricca

Beautiful conjunction of Jupiter and Venus over the Appennines on August 18, 2014. The foreground in the image shows the Peligna Valley in central Italy and the city of Sulmona. Credit and copyright: Giuseppe Petricca
Jupiter-Venus-M44 conjunction on August 18, 2014. Image taken with Canon EOS 50D, through Skywatcher ED80.  Credit and copyright:  Zoran Novak.

Jupiter-Venus-M44 conjunction on August 18, 2014. Image taken with Canon EOS 50D, through Skywatcher ED80. Credit and copyright: Zoran Novak.
Close approach of Venus and Jupiter with M44 in the same field on August 18, 2014 over Payson, Arizona. Shot with a Canon XTi DSLR, 5 seconds exposure, ISO 400, 4" f/4.5 Newtonian. Credit and copyright: Chris Schur.

Close approach of Venus and Jupiter with M44 in the same field on August 18, 2014 over Payson, Arizona. Shot with a Canon XTi DSLR, 5 seconds exposure, ISO 400, 4″ f/4.5 Newtonian. Credit and copyright: Chris Schur.
Conjunction between the planets Venus(top) and Jupiter (bottom) as seen from London just before dawn on 18th August 2014. Credit and copyright: Roger Hutchinson.

Conjunction between the planets Venus(top) and Jupiter (bottom) as seen from London just before dawn on 18th August 2014. Credit and copyright: Roger Hutchinson.
Tight grouping of Venus and Jupiter,  captured at twilight on an 18 day old moon, one can see the two planets less than 1 degree apart in the sky. This image was captured at Damdama Lake, Haryana, India. Credit and copyright:  Rishabh Jain.

Tight grouping of Venus and Jupiter,
captured at twilight on an 18 day old moon, one can see the two planets less than 1 degree apart in the sky. This image was captured at Damdama Lake, Haryana, India. Credit and copyright: Rishabh Jain.
When Venus and Jupiter were almost touching in the sky! August 18, 2014 over  Königswinter-Heisterbacherrott in Germany. Credit and copyright: Daniel Fischer.

When Venus and Jupiter were almost touching in the sky! August 18, 2014 over Königswinter-Heisterbacherrott in Germany. Credit and copyright: Daniel Fischer.
Venus and Jupiter 1/2 degree apart low in the pink twilight at lower left, with the waning crescent Moon near Aldebaran at upper right, taken from Alberta Canada on August 18, 2014 at dawn, looking due east. This is a single 1 second exposure at f/4 with the 16-35mm lens and Canon 6D at ISO 800. Credit and copyright: Alan Dyer/Amazing Sky Photography.

Venus and Jupiter 1/2 degree apart low in the pink twilight at lower left, with the waning crescent Moon near Aldebaran at upper right, taken from Alberta Canada on August 18, 2014 at dawn, looking due east. This is a single 1 second exposure at f/4 with the 16-35mm lens and Canon 6D at ISO 800. Credit and copyright: Alan Dyer/Amazing Sky Photography.
Venus-Saturn conjunction on August 18, 2014. Credit and copyright: Jeff Sullivan.

Venus-Saturn conjunction on August 18, 2014. Credit and copyright: Jeff Sullivan.
Tagged as:
Astrophotos,
conjunctions,
Jupiter,
planetary conjunctions,
Venus

What Are These Mysterious Green Lights Photographed From the Space Station?

What Are These Mysterious Green Lights Photographed From the Space Station?:



NASA astronaut Reid Wiseman Tweeted this photo of Thailand at night on  Aug. 18, 2014

NASA astronaut Reid Wiseman Tweeted this photo of Thailand at night on Aug. 18, 2014
“Bangkok is the bright city. The green lights outside the city? No idea…” This was the description accompanying the photo above, perplexingly Tweeted by Expedition 40/41 astronaut Reid Wiseman on Aug. 18, 2014. And while we’ve all seen fascinating photos of our planet shared by ISS crew members over the years this one is quite interesting, to say the least. Yes, there’s the bright illumination of Bangkok’s city lights, along with some stars, moonlit cloud cover extending northeast and the fine line of airglow over the horizon, but what are those acid-green blotches scattered throughout the darkness of the Gulf of Thailand? Bioluminescent algal blooms? Secret gamma-ray test labs? Underwater alien bases?

The answer, it turns out, actually is quite fishy.

The offshore illumination comes from fishing boats, which use enormous arrays of bright green LED lights to attract squid and plankton to the surface.

According to an an Oct. 2013 article on NASA’s Earth Observatory site by Michael Carlowicz, “…fishermen from South America and Southeastern Asia light up the ocean with powerful lamps that attract the plankton and fish species that the squid feed on. The squid follow their prey toward the surface, where they are easier for fishermen to catch with jigging lines. Squid boats can carry more than a hundred of these lamps, generating as much as 300 kilowatts of light per boat.”

Seen from orbit, the lights from squid fishing fleets rival the glow of the big cities! What might this look like from sea level? According to photos shared by one travel blogger in 2013, this.

Watch a video time-lapse from an ISS pass over the same region on Jan. 30, 2014.

A Twitter HT to Reid Wiseman and Peter Caltner for the photo and information on the cause, respectively.

Tagged as:
airglow,
Bangkok,
Earth,
fishing,
green lights,
ISS,
reid wiseman,
Space Station,
Thailand

This Martian Basin Shows Off Our Solar System’s Violent Past

This Martian Basin Shows Off Our Solar System’s Violent Past:



A Mars Express image of craters in Hellas Basin, an impact basin on Mars that is one of the biggest in the solar system. Credit: ESA/DLR/FU Berlin

A Mars Express image of craters in Hellas Basin, an impact basin on Mars that is one of the biggest in the solar system. Credit: ESA/DLR/FU Berlin
Did that impact 4.1 billion years ago ever leave a scar! Here, a Mars Express photo from late 2013 (and just highlighted now) shows off craters in Hellas Basin, which was formed when the planets in our young Solar System were under intense bombardment from leftover remnants.

But over time, wind and erosion on Mars have changed the nature of this basin, the German Space Agency explained.

“Over time, the interior of Hellas Planitia has been greatly altered by geological processes,” the German Space Agency stated.

“The wind has blown dust into the basin, glaciers and streams have transported and deposited sediment, and volcanoes have built up layers of low-viscosity lava on the floor of Hellas. Despite its exposure to erosion and coverage by deposits for a long period of time, it is the best-preserved large impact basin on Mars.”

What’s more, Hellas is so deep (four kilometers or 2.5 miles) that scientists suspect water could be stable near the bottom of the pit. That’s because the combination of pressure and temperature there could possibly support water for some time, which is different from much of the rest of Mars where the pressure is too thin for water to do much but evaporate.

Source: German Space Agency

Tagged as:
Hellas,
Mars Express

Feel The Beat: Black Hole’s Pulse Reveals Its Mysterious Size

Feel The Beat: Black Hole’s Pulse Reveals Its Mysterious Size:





There’s a bit of a mystery buried in the heart of the Cigar Galaxy, known more formally as M82 or Messier 82. Shining brightly in X-rays is a black hole (called M82 X-1) that straddles an unusual line between small and huge black holes, new research has revealed.

The new study reveals for the first time just how big this black hole is — about 400 times the mass of the sun — after about a decade of struggling to figure this out.

“Between the two extremes of stellar and supermassive black holes, it’s a real desert, with only about half a dozen objects whose inferred masses place them in the middle ground,” stated Tod Strohmayer, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland.

Scientists figured this out by looking at changes in brightness in X-rays, which fluctuate according to how gas behaves as it falls towards a black hole. At the event horizon — that spot where you’re doomed, even if you’re light — is where the fluctuation happen most frequently. In general, larger black holes have these fluctuations less frequently, but they weren’t sure if this would apply to something that is of M82 X-1′s size.

A view of the core of Messier 82 (M82), also known as the Cigar Galaxy. Credit: ESA/Hubble & NASA

A view of the core of Messier 82 (M82), also known as the Cigar Galaxy. Credit: ESA/Hubble & NASA
But by going through old data from NASA’s Rossi X-ray Timing Explorer (RXTE) satellite — which ceased operations in 2012 — the scientists uncovered a similar pulsing relationship to what you see in larger black holes.

Specifically, they saw X-ray variations repeating 5.1 and 3.3 times a second, which is a similar 3:2 ratio to other black holes studied. This allows them to extend the measurement scale to this black hole, NASA stated.

Results of the study were published this week in Nature. The research was led by Dheeraj Pasham, a graduate student at the University of Maryland, College Park.

Source: NASA

Tagged as:
Cigar Galaxy,
M82

Australian Amateur Terry Lovejoy Discovers New Comet

Australian Amateur Terry Lovejoy Discovers New Comet:



The small fuzzy potential comet is at center in this photo taken discovered by Terry Lovejoy. Credit: copyright Alain Maury and Joaquin Fabrega

The small fuzzy object, a likely new comet, was just discovered by Terry Lovejoy. Copyright Alain Maury and Joaquin Fabrega
It’s confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof observatory in Brisbane, Australia.

“I take large sets of image triplets, i.e 3 images per star field and use software to find moving objects,” said Lovejoy.  “The software I use outputs suspects that I check manually by eye.”

Most of what pops up on the camera are asteroids, known comets, or false alarms but not this time. Lovejoy’s latest find is a faint, fuzzy object in the constellation Puppis in the morning sky.

Sky as seen from central South America showing the approximate location of the new comet on August 19 in Puppis near the bright star Canopus. Stellarium

Sky as seen from central South America showing the approximate location of the new comet on August 19 in Puppis near the bright star Canopus. The view shows the sky facing southeast just before the start of dawn. Stellarium
Glowing a dim magnitude +15, the new comet will be a southern sky object until later this fall when it swings quickly northward soon around the time of perihelion or closest approach to the sun. Lovejoy’s find needs more observations to better refine its orbit, but based on preliminary data, Maik Meyer, founder of the Comets Mailing List, calculates a January 2, 2015 perihelion.

On that date, it will be a healthy 84 million miles from the sun, but one month earlier on December 7, the object could pass just 6.5 million miles from Earth and be well positioned for viewing in amateur telescopes.

Please take all this with a large grain of NaCl until more observations come in. Nothing’s written in stone yet about this latest discovery.

photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA

Comet Lovejoy (C/2011 W3) photographed by NASA astronaut Dan Burbank, onboard the International Space Station on Dec. 22, 2011 from 250 miles up. Credit: NASA
You might remember some of Terry’s earlier comets. Comet Lovejoy (C/2011 W3), a Kreutz sungrazer discovered in November 2011, passed just 87,000 miles above the sun’s surface. Many astronomers thought it wouldn’t  survive the sun’s heat, yet amazingly, though much of its nucleus burned off, enough material survived to produce a spectacular tail.

More recently, Comet Lovejoy (C/2013 R1) thrilled observers as it climbed to naked eye brightness last November, managing to do the impossible at the time and draw our eyes away from Comet ISON.

Congratulations Terry on your new find! May it wax brightly this fall.

Tagged as:
C/2011 W3 Lovejoy,
C/2013 R1,
comet,
Puppis,
Terry Lovejoy

Remembering the “World War I Eclipse”

Remembering the “World War I Eclipse”:



Credit

Glorious totality, as seen during the recent total solar eclipse of July 22nd, 2009. Credit: Narayan Mukkavilli. Used with permission.
The paths of total solar eclipses care not for political borders or conflicts, often crossing over war-torn lands.

Such was the case a century ago this week on August 21st, 1914 when a total solar eclipse crossed over Eastern Europe shortly after the outbreak of World War I.

Known as the “War to End All Wars,” — which, of course, it didn’t — World War I would introduce humanity to the horrors of modern warfare, including the introduction of armored tanks, aerial bombing and poison gas. And then there was the terror of trench warfare, with Allied and Central Powers slugging it out for years with little gain.

Eclipse

The path of the total solar eclipse of August 21st, 2014 laid out across modern day Europe. Credit: Google Maps/Fred Espenak/NASA/GSFC.
But ironically, the same early 20th century science that was hard at work producing mustard gas and a better machine gun was also pushing back the bounds of astronomy. Einstein’s Annus Mirabilis or “miracle year” occurred less than a decade earlier on 1905. And just a decade later in 1924, Edwin Hubble would expand our universe a million-fold with the revelation that “spiral nebulae” were in fact, island universes or galaxies in their own right.

Indeed, it’s tough to imagine that many of these discoveries are less than a century in our past. It was against this backdrop that the total solar eclipse of August 21st, 1914 crossed the eastern European front embroiled in conflict.

Solar eclipses have graced the field of battle before. An annular solar eclipse occurred during the Battle of Isandlwana in 1879 during the Zulu Wars, and a total solar eclipse in 585 B.C. during the Battle of Thales actually stopped the fighting between the Lydians and the Medes.

img537

A photograph of an “eclipse camp” in the Crimea in 1914. Credit: University of Cambridge DSpace. 
But unfortunately, no celestial spectacle, however grand, would save Europe from the conflagration war. In fact, several British eclipse expeditions were already en route to parts of Russia, the Baltic, and Crimea when the war broke out less than two months prior to the eclipse with the assassination of Archduke Ferdinand on June 28th, 1914. Teams arrived to a Russia already mobilized for war, and Britain followed suit on August 4th, 1914 and entered the war when Germany invaded Belgium.

You can see an ominous depiction of the path of totality from a newspaper of the day, provided from the collection of Michael Zeiler:

1914_August_22_TSE_The_Graphic_1

An illustration of the 1914 total solar eclipse “scorching” a war-ravaged Europe. Credit: From the collection of Michael Zeiler. Used with permission.
Note that the graphic depicts a Europe aflame and adds in the foreboding description of Omen faustum, inferring that the eclipse might be an “auspicious omen…” eclipses have never shaken their superstitious trappings in the eyes of man, which persists even with today’s fears of a “Blood Moon.”

A race was also afoot against the wartime backdrop to get an expedition to a solar eclipse to prove or disprove Einstein’s newly minted theory of general relativity. One testable prediction of this theory is that gravity bends light, and astronomers soon realized that the best time to catch this in action would be to measure the position of a star near the limb of the Sun — the most massive light bending object in our solar system — during a total solar eclipse. The advent of World War I would scrub attempts to observe this effect during the 1914 and 1916 eclipses over Europe.

An expedition led by astronomer Arthur Eddington to observe an eclipse from the island of Principe off of the western coast of Africa in 1919 declared success in observing this tiny deflection, measuring in less than two seconds of arc. And it was thus that a British expedition vindicated a German physicist in the aftermath of the most destructive war up to that date.

The total solar eclipse of August 21st 1914 was a member of saros cycle 124, and was eclipse number 49 of 73 in that particular series. Eclipses in the same saros come back around to nearly the same circumstances once every triple saros period of 3 times 18 years and 11.3 days, or about every 54+ years, and there was an eclipse with similar circumstances slightly east of the 1914 eclipse in 1968 — the last total eclipse of saros 124 — and a partial eclipse from the same saros will occur again on October 25th, 2022.

All historical evidence we’ve been able to track down suggests that observers that did make it into the path of totality were clouded out at show time, or at very least, no images of the August 21st 1914 eclipse exist today. Can any astute reader prove us wrong? We’d love to see some images of this historical eclipse unearthed!

Starry Night

A simulation of the total solar eclipse of August 21st 1914 as seen from Latvia. Created using Starry Night Education software.
And, as with all things eclipse related, the biggest question is always: when’s the next one? Well, we’ve got another of total lunar eclipse coming right up on October 8th, 2014, again favoring North America. The next total solar eclipse occurs on March 20th, 2015 but is only visible along a path covering the Faroe and Svalbard Islands, with a path crossing the Norwegian Sea.

But, by happy coincidence, we’re also only now three years out this week from the total solar eclipse of August 21st, 2017 that spans the contiguous “Lower 48” of the United States. The shadow of the Moon will race from the northwest and make landfall off of the Pacific coast of Oregon before reaching a maximum duration for totality at 2 minutes and 40 seconds across Missouri, southern Illinois and Kentucky and will then head towards the southeastern U.S. to depart land off of the coast of South Carolina. Millions will witness this event, and it will be the first total solar eclipse for many. A total solar eclipse hasn’t crossed the contiguous United States since 1979, so you could say that we’re “due”!

Credit

The path of the 2017 total solar eclipse across the United States. Credit: Eclipse-Maps.
Already, towns in Kentucky to Nebraska have laid plans to host this event. The eclipse occurs towards the afternoon for residents of the eastern U.S., which typically sees afternoon thunderstorms popping up in the sultry August summer heat. Eclipse cartographer Michael Zeiler states that the best strategy for eclipse chasers three years hence is to “go west, young man…”

It’s fascinating to ponder tales of eclipses past, present, and future and the role that they play in human history… where will you be on August 21st, 2017?

-      Check out Michael Zeiler’s  new site, GreatAmericanEclipse.com

-      Eclipses pop up in science fiction on occasion as well… check out our history spanning eclipse tale Exeligmos.

Tagged as:
1914 eclipse,
2017 eclipse,
eclipse history,
Einstein's Theory of General Relativity,
relativity eclipse,
when is the next eclipse?,
world war one eclipse

How Watching 13 Billion Years Of Cosmic Growth Links To Storytelling

How Watching 13 Billion Years Of Cosmic Growth Links To Storytelling:





How do you show off 13 billion years of cosmic growth? One way that astronomers can figure that out is through visualizations — such as this one from the Harvard-Smithsonian Center for Astrophysics, called Illustris.

Billed as the most detailed computer simulation ever of the universe (done on a fast supercomputer), you can slowly see how galaxies come alight and the structure of the universe grows. While the pictures are pretty to look at, the Kavli Foundation also argues this is good for science.

In a recent roundtable discussion, the foundation polled experts to talk about the simulation (and in particular how the gas evolves), and how watching these interaction play out before their eyes helps them come to new understandings. But like any dataset, part of the understanding comes from knowing what to focus on and why.

Screenshot of a simulation of how the universe's dark matter and gas grew in its first 13 billion years. Credit: Harvard-Smithsonian Center for Astrophysics / YouTube

Screenshot of a simulation of how the universe’s dark matter and gas grew in its first 13 billion years. Credit: Harvard-Smithsonian Center for Astrophysics / YouTube
“I think we should look at visualization like mapmakers look at map making. A good mapmaker will be deliberate in what gets included in the map, but also in what gets left out,” said Stuart Levy, a research programmer at the National Center for Supercomputing Applications’ advanced visualization lab, in a statement.

“Visualizers think about their audience … and the specific story they want to tell. And so even with the same audience in mind, you might set up the visualization very differently to tell different stories. For example, for one story you might want to show only what it’s possible for the human eye to see, and in others you might want to show the presence of something that wouldn’t be visible in any sort of radiation at all. That can help to get a point across.”

You can read the whole discussion at this webpage.

Tagged as:
simulation

Earth’s Ozone Under Attack Despite Banning Destructive Compound: Study

Earth’s Ozone Under Attack Despite Banning Destructive Compound: Study:



The ozone hole over Antarctica on Aug. 18, 2014. Purple and blue represent zones with the least ozone, while yellow and red show thicker areas. Data sources come from multiple NASA, European Space Agency and National Oceanic and Atmospheric Administration satellites. Credit: NASA

The ozone hole over Antarctica on Aug. 18, 2014. Purple and blue represent zones with the least ozone, while yellow and red show thicker areas. Data sources come from multiple NASA, European Space Agency and National Oceanic and Atmospheric Administration satellites. Credit: NASA
Some bad news in the fight to protect Earth’s ozone — one of the banned compounds that attacks this protective atmospheric layer is still being produced, somehow.

That compound is called carbon tetrachloride, which used to be common in fire extinguishers and dry cleaning. But those who have signed the Montreal Protocol in 1987 reported no new emissions between 2007 and 2012.

So how is it that new research found atmospheric emissions are persisting at 30% of peak production, even with no new emissions being reported?

“We are not supposed to be seeing this at all,” stated lead author Qing Liang, an atmospheric scientist at NASA’s Goddard Space Flight Center in Maryland. “It is now apparent there are either unidentified industrial leakages, large emissions from contaminated sites, or unknown CCl4 sources.”



The concentrations are still declining, but only by 1% a year instead of the expected 4%. Liang’s team used several sources to piece together data from their new study, including ground-based observation and NASA’s 3-D GEOS Chemistry Climate Model.

Their work found that CC14 is still being produced, somehow, and also stays in the atmosphere for about 40% longer than thought. They estimate worldwide emissions of about 39 kilotons per year.

The results were published late last month in Geophysical Research Letters.

Source: NASA

Tagged as:
carbon tetrachloride

Surf Saturn’s Rings In Amazing Raw Cassini Images From This Week

Surf Saturn’s Rings In Amazing Raw Cassini Images From This Week:



Sunlight and shadow combine in this photo of Saturn and its rings taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

Sunlight and shadow combine in this photo of Saturn and its rings taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
When Saturn is at its closest to Earth, it’s three-quarters of a billion miles away — or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Nearly every day, the Cassini spacecraft beams back what it sees at Saturn and the images are put up on this NASA website. This week, for example, it was checking out Saturn’s rings. We have a few of the pictures below, plus an older picture of the entire planet for reference.

Saturn’s rings are believed to be about 4.4 billion years old — that’s close to the age of the Solar System itself. Astronomers, however, have only known about them since the 1600s, when Galileo Galilei was trying to make sense of some funny-looking shapes on either side of the planet in his telescope.

According to NASA, the particles in the rings range from dust-sized to mountain-sized. Some of Saturn’s dozens of moons act as shepherds to the rings, keeping gaps open. You can read more about what we know about their origins here.

The Cassini spacecraft looks to the side of Saturn's rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

The Cassini spacecraft looks to the side of Saturn’s rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute

Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn's rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

Different shades shine in this raw image of Saturn’s rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

Pluto Spacecraft Planning? New Map Of Neptune’s Icy Triton Could Prepare For 2015 Encounter

Pluto Spacecraft Planning? New Map Of Neptune’s Icy Triton Could Prepare For 2015 Encounter:





Talk about recycling! Twenty-five years after Voyager 2 zinged past Neptune’s moon Triton, scientists have put together a new map of the icy moon’s surface using the old data. The information has special relevance right now because the New Horizons spacecraft is approaching Pluto fast, getting to the dwarf planet in less than a year. And it’s quite possible that Pluto and Triton will look similar.

Triton has an exciting history. Scientists believed it used to be a lone wanderer until Neptune captured it, causing tidal heating that in turn created fractures, volcanoes and other features on the surface. While Triton and Pluto aren’t twins — this certainly didn’t happen to Pluto — Pluto also has frozen volatiles on its surface such as carbon monoxide, methane and nitrogen.

What you see in the map is a slightly enhanced version of Triton’s natural colors, bearing in mind that Voyager’s sensors are a little different from the human eye. Voyager 2 only did a brief flyby, so only about half the planet has been imaged. Nonetheless, the encounter was an exciting time for Paul Schenk, a planetary scientist at the Lunar and Planetary Institute in Houston. He led the creation of the new Triton map, and wrote about the experience of Voyager 2 in a blog post.

The southern hemisphere of Neptune's moon Triton, at a resolution of 600 meters (1,969 feet) per pixel. Credit: Paul Schenk (LPI, Houston) from Voyager 2 images acquired August 1989

The southern hemisphere of Neptune’s moon Triton, at a resolution of 600 meters (1,969 feet) per pixel. Credit: Paul Schenk (LPI, Houston) from Voyager 2 images acquired August 1989
“Triton is a near twin of Pluto,” wrote Schenk. “Triton and Pluto are both slightly smaller than Earth’s Moon, have very thin nitrogen atmospheres, frozen ices on the surface (carbon monoxide, carbon dioxide, methane and nitrogen), and similar bulk composition (a mixture of ices, including water ice, and rock.  Triton however was captured by Neptune long time ago and has been wracked by intense heating ever since.  This has remade its surface into a tortured landscape of overturned layers, volcanism, and erupting geysers.”

He also added speculation about what will be seen at Pluto. Will it be a dead planet, or will geology still be affecting its surface? How close will Triton be to Pluto, particularly regarding its volcanoes? Only a year until we know for sure.

Sources: NASA, Lunar and Planetary Institute, Paul Schenk

Tagged as:
triton

Watch A ‘Jellyfish Of Fire’ Created On The International Space Station

Watch A ‘Jellyfish Of Fire’ Created On The International Space Station:



Reid Wiseman, NASA astronaut and part-time master of Vine videos, has done it again. This time he’s showing off a flame experiment on the International Space Station called the Flame Extinguishment Experiment-2 (FLEX-2).

“Ignition, jellyfish of fire, warp-drive finish!” wrote Wiseman on Vine yesterday (Aug. 22). He also posted a slow-motion capture of flames in action, which you can see below the jump. FLEX-2, as the name implies, is the second flame experiment on board the International Space Station. NASA states the goal is to understand how small fuel droplets burn in space.

“The FLEX-2 experiment studies how quickly fuel burns, the conditions required for soot to form, and how mixtures of fuels evaporate before burning. Understanding these processes could lead to the production of a safer spacecraft as well as increased fuel efficiency for engines using liquid fuel on Earth,” the agency wrote.

A screenshot of an experiment in the Flame Extinguishment Experiment - 2 (FLEX-2) on the International Space Station, taken during Expedition 40 in August 2014. Credit: Reid Wiseman/Vine

A screenshot of an experiment in the Flame Extinguishment Experiment – 2 (FLEX-2) on the International Space Station, taken during Expedition 40 in August 2014. Credit: Reid Wiseman/Vine
Tagged as:
expedition 40,
fire,
flex-2,
reid wiseman