Showing posts with label planets. Show all posts
Showing posts with label planets. Show all posts

Saturday, March 7, 2015

NGC 7023: The Iris Nebula

NGC 7023: The Iris Nebula: APOD: 2014 August 2 - NGC 7023: The Iris Nebula


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 2


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: These clouds of interstellar dust and gas have blossomed 1,300 light-years away in the fertile star fields of the constellation Cepheus. Sometimes called the Iris Nebula, NGC 7023 is not the only nebula in the sky to evoke the imagery of flowers, though. Still, this deep telescopic view shows off the Iris Nebula's range of colors and symmetries in impressive detail. Within the Iris, dusty nebular material surrounds a hot, young star. The dominant color of the brighter reflection nebula is blue, characteristic of dust grains reflecting starlight. Central filaments of the dusty clouds glow with a faint reddish photoluminesence as some dust grains effectively convert the star's invisible ultraviolet radiation to visible red light. Infrared observations indicate that this nebula may contain complex carbon molecules known as PAHs. The pretty blue petals of the Iris Nebula span about six light-years.

Dark Shuttle Approaching

Dark Shuttle Approaching:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 3


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: What's that approaching? Astronauts on board the International Space Station first saw it in early 2010 far in the distance. Soon it enlarged to become a dark silhouette. As it came even closer, the silhouette appeared to be a spaceship. Finally, the object revealed itself to be the Space Shuttle Endeavour, and it soon docked as expected with the Earth-orbiting space station. Pictured above, Endeavour was imaged near Earth's horizon as it approached, where several layers of the Earth's atmosphere were visible. Directly behind the shuttle is the mesosphere, which appears blue. The atmospheric layer that appears white is the stratosphere, while the orange layer is Earth's Troposphere. This shuttle mission, began with a dramatic night launch. Tasks completed during this shuttle's visit to the ISS included the delivery of the Tranquility Module which contained a cupola bay window complex that allows even better views of spaceships approaching and leaving the space station.

Shadows and Plumes Across Enceladus

Shadows and Plumes Across Enceladus: APOD: 2014 August 4 - Shadows and Plumes Across Enceladus


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 4


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Why does Enceladus have ice plumes? The discovery of jets spewing water vapor and ice was detected by the Saturn-orbiting Cassini spacecraft in 2005. The origin of the water feeding the jets, however, remained a topic of research. A leading hypothesis held that the source might originate from a deep underground sea, but another hypothesis indicated that it might just be ice melted off walls of deep rifts by the moon's tidal flexing and heating. Pictured above, the textured surface of Enceladus is visible in the foreground, while rows of plumes rise from ice fractures in the distance. These jets are made more visible by the Sun angle and the encroaching shadow of night. Recent study of over a hundred images like this -- of geysers crossing Enceladus' South Pole, together with regional heat maps, indicate that these plumes likely originate from a hidden sea, incresaing the chance that this frosty globe might be harboring life.

Four Billion BCE: Battered Earth

Four Billion BCE: Battered Earth: APOD: 2014 August 5 - Four Billion BCE: Battered Earth


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 5


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: No place on Earth was safe. Four billion years ago, during the Hadean eon, our Solar System was a dangerous shooting gallery of large and dangerous rocks and ice chunks. Recent examination of lunar and Earth bombardment data indicate that the entire surface of the Earth underwent piecemeal upheavals, hiding our globe's ancient geologic history, and creating a battered world with no remaining familiar land masses. The rain of devastation made it difficult for any life to survive, although bacteria that could endure high temperatures had the best chance. Oceans thought to have formed during this epoch would boil away after particularly heavy impacts, only to reform again. The above artist's illustration depicts how Earth might have looked during this epoch, with circular impact features dotting the daylight side, and hot lava flows visible in the night. One billion years later, in a calmer Solar System, Earth's first supercontinent formed.

Saturn's Swirling Cloudscape

Saturn's Swirling Cloudscape: APOD: 2014 August 6 - Saturn's Swirling Cloudscape


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 6


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Acquiring its first sunlit views of far northern Saturn in late 2012, the Cassini spacecraft's wide-angle camera recorded this stunning, false-color image of the ringed planet's north pole. The composite of near-infrared image data results in red hues for low clouds and green for high ones, giving the Saturnian cloudscape a vivid appearance. Enormous by terrestrial standards, Saturn's north polar hurricane-like storm is deep, red, and about 2,000 kilometers wide. Clouds at its outer edge travel at over 500 kilometers per hour. Other atmospheric vortices also swirl inside the large, yellowish green, six-sided jet stream known as the hexagon. Beyond the cloud tops at the upper right, arcs of the planet's eye-catching rings appear bright blue.

Spiral Galaxy NGC 6744

Spiral Galaxy NGC 6744: APOD: 2014 August 8 - Spiral Galaxy NGC 6744


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 8
See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Big, beautiful spiral galaxy NGC 6744 is nearly 175,000 light-years across, larger than our own Milky Way. It lies some 30 million light-years distant in the southern constellation Pavo. We see the disk of the nearby island universe tilted towards our line of sight. Orientation and composition give a strong sense of depth to this colorful galaxy portrait that covers an area about the angular size of the full moon. This giant galaxy's yellowish core is dominated by the light from old, cool stars. Beyond the core, spiral arms filled with young blue star clusters and pinkish star forming regions sweep past a smaller satellite galaxy at the lower left, reminiscent of the Milky Way's satellite galaxy the Large Magellanic Cloud.

A Luminous Night

A Luminous Night: APOD: 2014 August 9 - A Luminous Night


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 9


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: What shines in the world at night? Just visible to the eye, a rare electric blue glow spread along the shores of Victoria Lake on January 16, 2013. Against reflections of a light near the horizon, this digitally stacked long exposure recorded the bioluminescence of Noctiluca scintillans, plankton stimulated by the lapping waves. Above, the night skies of the Gippsland Lakes region, Victoria, Australia shine with a fainter greenish airglow. Oxygen atoms in the upper atmosphere, initially excited by ultraviolet sunlight, produce the more widely seen fading atmospheric chemiluminescence. Washed out by the Earth's rotation, the faint band of the southern summer Milky Way stretches from the horizon as star trails circle the South Celestial Pole.

A Perseid Below

A Perseid Below: APOD: 2014 August 10 - A Perseid Below


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 10


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Denizens of planet Earth typically watch meteor showers by looking up. But this remarkable view, captured on August 13, 2011 by astronaut Ron Garan, caught a Perseid meteor by looking down. From Garan's perspective onboard the International Space Station orbiting at an altitude of about 380 kilometers, the Perseid meteors streak below, swept up dust left from comet Swift-Tuttle heated to incandescence. The glowing comet dust grains are traveling at about 60 kilometers per second through the denser atmosphere around 100 kilometers above Earth's surface. In this case, the foreshortened meteor flash is right of frame center, below the curving limb of the Earth and a layer of greenish airglow, just below bright star Arcturus. Want to look up at a meteor shower? You're in luck, as the 2014 Perseids meteor shower peaks this week. Unfortunately, the fainter meteors in this year's shower will be hard to see in a relatively bright sky lit by the glow of a nearly full Moon.

Rings Around the Ring Nebula

Rings Around the Ring Nebula: APOD: 2014 August 13 - Rings Around the Ring Nebula


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 13


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: It is a familiar sight to sky enthusiasts with even a small telescope. There is much more to the Ring Nebula (M57), however, than can be seen through a small telescope. The easily visible central ring is about one light-year across, but this remarkably deep exposure - a collaborative effort combining data from three different large telescopes - explores the looping filaments of glowing gas extending much farther from the nebula's central star. This remarkable composite image includes narrowband hydrogen image, visible light emission, and infrared light emission. Of course, in this well-studied example of a planetary nebula, the glowing material does not come from planets. Instead, the gaseous shroud represents outer layers expelled from a dying, sun-like star. The Ring Nebula is about 2,000 light-years away toward the musical constellation Lyra.

Surreal Moon

Surreal Moon: APOD: 2014 August 14 - Surreal Moon


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 14


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Big, bright, and beautiful, a Full Moon near perigee, the closest point in its elliptical orbit around our fair planet, rose on August 10. This remarkable picture records the scene with a dreamlike quality from the east coast of the United States. The picture is actually a composite of 10 digital frames made with exposures from 1/500th second to 1 second long, preserving contrast and detail over a much wider than normal range of brightness. At a perigee distance of a mere 356,896 kilometers, August's Full Moon was the closest, and so the largest and most super, of the three Full Moons nearest perigee in 2014 now popularly known as supermoons. But if you missed August's super supermoon, the next not-quite-so supermoon will be September 8. Then, near the full lunar phase the Moon's perigee will be a slightly more distant 358,387 kilometers. That's only about 0.4 percent less super (farther and smaller) than the super supermoon.

Perseid in Moonlight

Perseid in Moonlight: APOD: 2014 August 15 - Perseid in Moonlight


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2014 August 15


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Bright moonlight from a Full Moon near perigee illuminates the night and casts shadows in this skyscape from central Iran. Taken on August 12, near the peak of the annual Perseid meteor shower the exposure also captures a bright and colorful perseid streak above the shady tree in the foreground. This year the super moonlight interfered with meteor watching into the early morning hours, overwhelming the trails from many fainter perseids in the shower. Brighter perseids like this one were still visible though, their trails pointing back to the heroic constellation Perseus outlined at the right. Swept up as planet Earth orbits through dust left behind from periodic comet Swift-Tuttle, the cosmic grains that produce perseid meteors enter the atmosphere at nearly 60 kilometers per second, heated to incandesence and vaporized at altitudes of about 100 kilometers. Next year, Perseid meteors will flash through dark skies under a New Moon.

Enhanced Color Caloris

Enhanced Color Caloris: APOD: 2015 March 5 - Enhanced Color Caloris


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 March 5


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The sprawling Caloris basin on Mercury is one of the solar system's largest impact basins, created during the early history of the solar system by the impact of a large asteroid-sized body. The multi-featured, fractured basin spans about 1,500 kilometers in this enhanced color mosaic based on image data from the Mercury-orbiting MESSENGER spacecraft. Mercury's youngest large impact basin, Caloris was subsequently filled in by lavas that appear orange in the mosaic. Craters made after the flooding have excavated material from beneath the surface lavas. Seen as contrasting blue hues, they likely offer a glimpse of the original basin floor material. Analysis of these craters suggests the thickness of the covering volcanic lava to be 2.5-3.5 kilometers. Orange splotches around the basin's perimeter are thought to be volcanic vents.

Cometary Globule CG4

Cometary Globule CG4: APOD: 2015 March 6 - Cometary Globule CG4


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 March 6


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The faint and somehow menacing cometary globule CG4 reaches through the center of this deep southern skyscape. About 1,300 light-years from Earth toward the constellation Puppis, its head is about 1.5 light-years in diameter and its tail about 8 light-years long. That's far larger than the Solar System's comets that it seems to resemble. In fact, the dusty cloud contains enough material to form several Sun-like stars and likely has ongoing star formation within. How its distinctive form came about is still debated, but its long tail trails away from the Vela Supernova remnant near the center of the Gum Nebula, while its head could represent the rupture of an originally more spherical cloud. Still, the edge-on spiral galaxy also near picture center is not actually being threatened by CG4. The galaxy lies in the distant background more than 100 million light-years away.

10 Interesting Facts About Volcanoes

10 Interesting Facts About Volcanoes:



A view of the Villarrica Volcano's Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.


A view of the Villarrica Volcano’s Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.
Want some volcano facts? Here are 10 interesting facts about volcanoes. Some of these facts you’ll know, and others may surprise you. Whatever the case, volcanoes are amazing features of nature that demand our respect.


Lava fountain in Hawaii.
Lava fountain in Hawaii. Image Credit: Jim D. Griggs/HVO/USGS
1. There are three major kinds of volcanoes
Although volcanoes are all made from hot magma reaching the surface of the Earth and erupting, there are different kinds. Shield volcanoes have lava flows with low viscosity that flow dozens of kilometers; this makes them very wide with smoothly sloping flanks. Stratovolcanoes are made up of different kinds of lava, and eruptions of ash and rock and grow to enormous heights. Cinder cone volcanoes are usually smaller, and come from short-lived eruptions that only make a cone about 400 meters high.

2. Volcanoes erupt because of magma escaping from beneath the Earth’s crust
About 30 km beneath your feet is the Earth’s mantle. It’s a region of superhot rock that extends down to the Earth’s core. This region is so hot that molten rock can squeeze out and form giant bubbles of liquid rock called magma chambers. This magma is lighter than the surrounding rock, so it rises up, finding cracks and weakness in the Earth’s crust. When it finally reaches the surface, it erupts out of the ground as lava, ash, volcanic gasses and rock. It’s called magma when it’s under the ground, and lava when it erupts onto the surface.

3. Volcanoes can be active, dormant or extinct
An active volcano is one that has had an eruption in historical times (in the last few thousand years). A dormant volcano is one that has erupted in historical times and has the potential to erupt again, it just hasn’t erupted recently. An extinct volcano is one that scientists think probably won’t erupt again. Here’s more information on the active volcanoes in the world.



Detailed View of Ash Plume at Eyjafjallajökull Volcano


Detailed view from space of the ash plume caused by the Eyjafjallajökull volcano in 2010. Credit: NASA
4. Volcanoes can grow quickly
Although some volcanoes can take thousands of years to form, others can grow overnight. For example, the cinder cone volcano Paricutin appeared in a Mexican cornfield on February 20, 1943. Within a week it was 5 stories tall, and by the end of a year it had grown to more than 336 meters tall. It ended its grown in 1952, at a height of 424 meters. By geology standards, that’s pretty quick.

5. There are 20 volcanoes erupting right now
Somewhere, around the world, there are likely about 20 active volcanoes erupting as you’re reading this. Some are experiencing new activity, others are ongoing. Between 50-70 volcanoes erupted last year, and 160 were active in the last decade. Geologists estimate that 1,300 erupted in the last 10,000 years. Three quarters of all eruptions happen underneath the ocean, and most are actively erupting and no geologist knows about it at all. One of the reasons is that volcanoes occur at the mid ocean ridges, where the ocean’s plates are spreading apart. If you add the underwater volcanoes, you get an estimate that there are a total of about 6,000 volcanoes that have erupted in the last 10,000 years.

6. Volcanoes are dangerous
But then you knew that. Some of the most deadly volcanoes include Krakatoa, which erupted in 1883, releasing a tsunami that killed 36,000 people. When Vesuvius exploded in AD 79, it buried the towns of Pompeii and Herculaneum, killing 16,000 people. Mount Pelee, on the island of Martinique destroyed a town with 30,000 people in 1902. The most dangerous aspect of volcanoes are the deadly pyroclastic flows that blast down the side of a volcano during an eruption. These contain ash, rock and water moving hundreds of kilometers an hour, and hotter than 1,000 degrees C.



Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Credit: NASA/EO


Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Credit: NASA/EO
7. Supervolcanoes are really dangerous
Geologists measure volcano eruptions using the Volcano Explosivity Index, which measures the amount of material released. A “small” eruption like Mount St. Helens was a 5 out of 8, releasing a cubic kilometer of material. The largest explosion was on record was Toba, thought to have erupted 73,000 years ago. It released more than 1,000 cubic kilometers of material, and created a caldera 100 km long and 30 kilometers wide. The explosion plunged the world into a world wide ice age. Toba was considered an 8 on the VEI.

8. The tallest volcano in the Solar System isn’t on Earth
That’s right, the tallest volcano in the Solar System isn’t on Earth at all, but on Mars. Olympus Mons, on Mars, is a giant shield volcano that rises to an elevation of 27 km, and it measures 550 km across. Scientists think that Olympus Mons was able to get so large because there aren’t any plate tectonics on Mars. A single hotspot was able to bubble away for billions of years, building the volcano up bigger and bigger.

9. The tallest and biggest volcanoes on Earth are side by side
The tallest volcano on Earth is Hawaii’s Mauna Kea, with an elevation of 4,207 meters. It’s only a little bigger than the largest volcano on Earth, Mauna Loa with an elevation of only 4,169 meters. Both are shield volcanoes that rise up from the bottom of the ocean. If you could measure Mauna Kea from the base of the ocean to its peak, you’d get a true height of 10,203 meters (and that’s bigger than Mount Everest).



Mauna Kea


Mauna Kea observed from space. Credit: NASA/EO
10. The most distant point from the center of the Earth is a volcano
You might think that the peak of Mount Everest is the most distant point from the center of the Earth, but that’s not true. Instead, it’s the volcano Chimborazo in Ecuador. That’s because the Earth is spinning in space and is flattened out. Points at the equator are further from the center of the Earth than the poles. And Chimborazo is very close to the Earth’s equator.

We have written many articles about volcanoes for Universe Today. Here’s an article that tackles about the 10 facts about earth’s core. You might also want to read on the 10 facts about earth. And here’s more: all about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Reference:
USGS Volcano Hazards Program

Share this:

The Night Mars Was Closest to Earth

The Night Mars Was Closest to Earth:



On Earth, Don Parker’s Mars images were hard to beat, but the Hubble Space Telescope—six times larger than his 16-inch ‘scope and, more importantly, above the atmosphere—easily pulled it off. In this pair of images taken around the time of the planet’s closest approach in 2003, the giant volcano Olympus Mons is the small, bright circular feature above center. Image courtesy Andrew Chaikin.


On Earth, Don Parker’s Mars images were hard to beat, but the Hubble Space Telescope—six times larger than his 16-inch ‘scope and, more importantly, above the atmosphere—easily pulled it off. In this pair of images taken around the time of the planet’s closest approach in 2003, the giant volcano Olympus Mons is the small, bright circular feature above center. Image courtesy Andrew Chaikin.
Editor’s note: On August 27, 2003 Mars was closer to Earth than at any time in human history. Author Andrew Chaikin asked Universe Today to tell the story of how he was fortunate enough to enjoy the event with Don Parker, a “superb planetary photographer and wonderful guy,” Chaikin wrote. “I first met Don, a retired anesthesiologist from Coral Gables, Florida, several weeks earlier when I journeyed with my telescope to Florida to photograph the Moon passing in front of Mars, an event called an occultation. I’d seen Don’s work for decades in Sky & Telescope magazine, but until the occultation we’d never met. I certainly had never imagined that he would turn out to be as much fun as he was, with a warped, wickedly bawdy sense of humor. Standing under the moon and Mars we bonded, and soon we were making plans for me to come down to his place for the closest approach.”

Don passed away on February 22, 2015. In his memory here’s an excerpt from Chaikin’s book, A Passion for Mars.

Godspeed, Don. See you on Mars.




Don Parker with his 16-inch telescope, which he used to take thousands of superb images of the planets. Photo by Sean Walker.


Don Parker with his 16-inch telescope, which he used to take thousands of superb images of the planets. Photo by Sean Walker.
ON PAPER, Don Parker’s life story is pretty ordinary: Born in 1939, he grew up in an Italian neighborhood in Chicago. He spent a few years in the navy, went to medical school, and ended up living in Florida with his wife, Maureen, and their children, working as an anesthesiologist in a Miami hospital. Looking at his résumé you’d never know about his other life, the one dominated by a lifelong obsession with Mars. By the time he went to see Invaders from Mars and War of the Worlds as a teenager in 1953, he was building his first telescope, a three-inch refractor with lenses from Edmund Scientific and a body made from a stovepipe his dad got for him.

He was subscribing to Sky & Telescope magazine and following the continuing debate over whether the canals on Mars really existed. That was a question that only a handful of professional astronomers cared about, but amateur observers, like the ones whose drawings were printed in the magazine, seemed to be on the case. Parker got serious about observing Mars himself around 1954, when he tried to create a homemade reflector, but failed when he had trouble with the mirror. His aunt Hattie came to the rescue that Christmas by giving him a hundred dollar bill — quite a bit of money in those days — which he used to buy a professionally made eight-inch mirror. With help from his dad, he assembled the new telescope, using pipe fittings for the mounting.

In the summer of 1956, when Mars made its famously close appearance, he was at the eyepiece making drawings of his own, until a dust storm engulfed much of the planet that September, just as Mars came closest to Earth. “Mars looked like a cue ball,” Parker remembers. “There was nothing on it. It was very disappointing for me.” At the time, he thought the problem was with his instrument. “I even took the mirror out of the telescope,” he recalls. “You know,‘What the hell is going on here?’” Only much later, when information on Martian dust storms began to show up in the amateur astronomy literature, did he realize his view had been spoiled by an event happening on Mars.



Gullies on a Martian sand dune in this trio of images from NASA's Mars Reconnaissance Orbiter deceptively resemble features on Earth that are carved by streams of water. However, these gullies likely owe their existence to entirely different geological processes apparently related to the winter buildup of carbon-dioxide frost. Image Credit: NASA/JPL-Caltech/University of Arizona


Gullies on a Martian sand dune in this trio of images from NASA’s Mars Reconnaissance Orbiter deceptively resemble features on Earth that are carved by streams of water. However, these gullies likely owe their existence to entirely different geological processes apparently related to the winter buildup of carbon-dioxide frost. Image Credit: NASA/JPL-Caltech/University of Arizona
By that time Parker was in high school, and soon Martian canals became much less important than more earthly matters. “Football and blondes were my major,” he quips. Then it was off to college, and his telescope sat unused in its wooden shelter in the backyard. When it came time for his internship he convinced his wife, Maureen, that they should move to Florida so he could pursue his interest in scuba diving.

Needless to say he had no time for astronomy then, or during his residency. Then came a stint in the navy, and by the early 1970s he was back in Florida, beginning his career as an anesthesiologist and raising a family. By the time Mars made another close approach in 1973 Parker had brought his telescope down from Chicago; his parents had asked him to take it out of the backyard so they could put in a birdbath, and a few months after that, he remembers, “Maureen said, ‘Can you get that thing out of the garage?’”

He didn’t expect it to do him much good outside, however. The conventional wisdom was that south Florida, with its clouds and frequent storms, was a terrible place to do astronomy. But he found out differently that summer, when he trained his telescope on Mars. “I went, ‘Holy shit.’ It was just absolutely steady. I couldn’t believe it.”

Parker returned to his old practice of making drawings at the eyepiece to record as much detail as possible. He sent some of his work to Charles “Chick” Capen, an astronomer at Arizona’s Lowell Observatory and coordinator of Mars observations for the Association of Lunar and Planetary Observers. Soon he and Capen were in frequent contact, and from him Parker learned about the latest techniques for planetary photography.

In the 1970s that was a time-consuming process; he used professional-grade film ordered directly from Kodak and developed it with special, highly toxic chemicals that had to be laboriously prepared for each session. But that became a part of his life’s routine: off to the hospital in the morning, sailing with Maureen in the afternoon, nights at the telescope, and the rest of the time developing and printing his pictures. Returning to work after a beautiful Florida weekend, he says, “Everybody would come in with a nice tan; I’d come in looking like a bed sheet. Forty-eight hours in the darkroom! People would say, ‘Are you ill?’”

All that effort paid off. Parker’s planetary photos were now appearing frequently in Sky & Telescope. But they still couldn’t record the kind of details a good observer could see at the eyepiece. Soon Chick Capen was steering him, gently, toward more ambitious Martian observing projects—especially the exacting task of monitoring the planet’s north polar ice cap. Using a measuring device called a filar micrometer attached to their telescopes, Parker and fellow amateur Jeff Beish studied the cap as it shrank during the Martian spring and summer. Observations going back to the early years of the twentieth century showed that the north polar cap always shrank at the same predictable rate, but in the 1980s Parker and Beish found a surprise: The cap shrank more quickly, and to a smaller size, than ever before. Years before most people had even heard the term “global warming” (and more than a decade before evidence from NASA’s Mars Global Surveyor mission) Parker and Beish had found evidence that it was taking place on Mars.



Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubble)


Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubble)
Soon their observations were being reinforced by several kinds of data from other astronomers, a convergence that Parker remembers as tremendously thrilling. “All this stuff began to come together,” Parker says. “The dust storm frequencies, the cloud study frequencies, the polar cap shit. And it’s almost better than sex. And it came in from a lot of different observers, different times. It’s really kind of cool—when you’re in a science and something all of a sudden falls into place that you don’t expect. It’s really neat. Nothing’s better than sex, but it’s close.” His work with Beish and other observers was later published, to Parker’s great satisfaction, in the professional planetary science journal Icarus. For Parker it epitomizes the rewards of all those hours at the eyepiece. “It’s the thrill of the hunt,” he says. “That’s really the only thing that’s kept me going. Taking pretty pictures is fine and fun, but doing that for thirty years, it wears after a while. You’ve taken one pretty picture, you’ve taken them all.”

In the 1990s, though, the pictures started to get really pretty. For the first time, amateurs had access to electronic cameras using charged-coupled devices (CCDs), like the ones in NASA spacecraft and professional observatories. Around 1990 fellow amateur astronomer Richard Berry convinced Parker to invest in one of these new cameras, but he had a tough time getting used to it. “I hooked it up,” he remembers. “I didn’t know what to do with it. I was afraid of it. So I went back to film.”



Don Parker's image of Jupiter and the Great Red Spot, taken in 2012. Credit: Don Parker.


Don Parker’s image of Jupiter and the Great Red Spot, taken in 2012. Credit: Don Parker.


Some months later Berry came for a visit and showed Parker what he’d been missing. They pointed Parker’s sixteen-inch telescope at Jupiter, and when the first image came up on his computer screen, “It was ten times better than anything I’d ever gotten with film. The detail was amazing. It was really exciting.”


Before long Parker had completely switched over to using his electronic imager, and he never looked back. Unlike film, it offered instant gratification; no longer did he have to spend hours in the darkroom before he could see results. Even more important, the extraordinary sensitivity of CCDs allowed much shorter exposure times than film, making it possible to record a planet during those brief moments of good seeing. He could even create remarkably detailed color images by taking separate exposures through red, green, and blue filters, then combining the results in newly developed programs like Adobe Photoshop.

And to Parker’s great relief, electronic images proved as good as visual observations for monitoring Martian features like clouds, dust storms, and— thankfully—the changing polar ice caps. At last, he could put aside the filar micrometer and the tedious hours that went along with it. But there was no way around the fact that the whole experience of planetary observing had changed for serious amateurs like Parker, just as it had for professionals. He realized this during Richard Berry’s visit, as they filled his computer’s hard drive with electronic portraits of Jupiter. “I said to Richard, ‘We’ve been here for six hours and haven’t even looked through the telescope.’ And he said, ‘Yeah, now you’re a real astronomer!’”

August 26, 2003,
Coral Gables, Florida


With no time for a road trip, I’ve packed my webcam and flown to Miami. I arrive at Don Parker’s waterfront home shortly after he has awakened from yet another all-nighter at the telescope. Don is tall, pot bellied, and nearly bald, with a kind of leering, lopsided grin that spreads mischievously across his face. In his old hospital scrubs he reminds me of Peter Boyle in Young Frankenstein. Don wouldn’t mind hearing me say that; he often refers to himself as Mongo, after the character in another Mel Brooks film, Blazing Saddles. (For example: “Mongo got good pictures. Mongo happy.”)

When he was a practicing anesthesiologist he had a penchant for playing crude practical jokes in the O.R. to startle the nurses (the fart machine was a favorite). “It was like MASH,” he says. Now that he is retired there is nothing to stop him from spending every clear night at the telescope—and that is what he does, whenever Mars shines overhead. Back in 1984, when the seeing was even better than it is now, he and Jeff Beish logged 285 nights of making drawings, photos, and micrometer measurements. Parker says, “We were praying for rain. Going to the Seminole reservation to pay the guys to do a rain dance.” Two decades later, his “other life” has become his life. For months now, as Mars has grown from an orange speck in the predawn sky to its current brilliance, high overhead at midnight, Don has faithfully recorded its changing aspect, the shrinking polar cap, the comings and goings of blue hazes and yellow dust clouds, the parade of deserts and dark markings. Maureen is now a full-fledged Mars widow. Don calls it “The Curse of the Red Planet.”

For me this is the big night, and I am full of anticipation. About twelve hours from now, at 5:51am Eastern Daylight Time on August 27, Mars will be 34,646,418 million miles away from Coral Gables. An astronomer at JPL has figured out that this is closer than at any time since the year 57617 B.C., and closer than Mars will be again until the year 2287. For Don, though, this is just one more night in an unbroken string of nights that began last April and will continue into next spring. Don, of course, is far from the only one so afflicted. At any given moment this summer someone around the world is observing Mars, including a couple of twenty-something wizards in Hong
Kong and Singapore who are getting spectacular results with telescopes placed on their high-rise apartment balconies (when I mention them Don curses ruefully, then laughs).

Sitting in Don’s kitchen, we discuss the weather for the coming night— the continuing hurricane season has made things a bit iffy—as he mixes his standard brew of freeze-dried coffee, sugar, and nondairy creamer, a concoction that seems less like a beverage than a research project in polymer chemistry. Arthritis and weakening of the bones in his legs have left him with a limp so painful that he must use a cane, and as he leads me to his upstairs office he utters a string of profanities.

Seated at the computer he unveils his most recent images and I am astonished by their clarity. Even back in April, when Mars was a fraction of its current apparent size, Don was getting a remarkable amount of detail. Now his pictures are so good that they hold up in side-by-side comparisons with Mars images from the Hubble Space Telescope. If you know where to look, you can even spot the giant volcano, Olympus Mons.

When I was growing up, even the two-hundred-inch giant at Palomar couldn’t come close to the details Don has recorded with a telescope just sixteen inches in diameter.

By nightfall the sky is mercifully clear, and Don sets up a ten-inch scope for me to use. The view is amazing: The planet’s disc is shaded with subtle, dusky patterns, far more detailed than any previous view of Mars I’ve ever seen. But when I attach the webcam and fire up the laptop, the live video that appears before me is almost too good to be true. Mars is so big, so clear, that I can even see individual dark spots that must be huge, windblown craters, trailing streaks of dark sand across the pink deserts. At the south pole, the retreating ice cap gleams brilliantly, with an outlier of frosted ground distinctly visible adjacent to the larger white mass.

Long into the night, and again the next, Don and I gather our photographic records of this unprecedented encounter, he at one telescope, I at the other. I feel lucky to be alive at this moment, suspended between the time of the Neanderthals and the twenty-third century, when some of our descendants will be on Mars, looking back at Earth. Right now I am face-to-face with Mars in a way I have never been, and never will be again. It is not the Mars of my childhood picture books, or the one revealed by an armada of space probes, or the trackless world where men and women will someday leave footprints. At this moment, I am exploring Mars, and 35 million miles doesn’t seem like much, not much at all.



Andrew Chaikin.


Andrew Chaikin.
Find out more about Chaikin’s books “A Passion for for Mars,” “A Man on the Moon” and more at Chaikin’s website.

Share this:

Mars Loses an Ocean But Gains the Potential for Life

Mars Loses an Ocean But Gains the Potential for Life:



NASA scientists have determined that a primitive ocean on Mars held more water than Earth's Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. Credit: NASA/GSFC


NASA scientists have determined that a primitive ocean on Mars held more water than Earth’s Arctic Ocean and that the Red Planet has lost 87 percent of that water to space. Water would have covered 20% of the globe about 3 billion years ago. Credit: NASA/GSFC
It’s hard to believe it now looking at Mars’ dusty, dessicated landscape that it once possessed a vast ocean. A recent NASA study of the Red Planet using the world’s most powerful infrared telescopes clearly indicate a planet that sustained a body of water larger than the Earth’s Arctic Ocean.

If spread evenly across the Martian globe, it would have covered the entire surface to a depth of about 450 feet (137 meters). More likely, the water pooled into the low-lying plains that cover much of Mars’ northern hemisphere. In some places, it would have been nearly a mile (1.6 km) deep. (...)

Read the rest of Mars Loses an Ocean But Gains the Potential for Life (829 words)


© Bob King for Universe Today, 2015. |
Permalink |
10 comments |


Post tags: deuterium, evolution, heavy water, Mars, water


Feed enhanced by Better Feed from Ozh

Thursday, March 5, 2015

Saturn Wallpaper

Saturn Wallpaper:



Saturn-640x1136 wallpapers.jpg
Date: Mar 2, 2015, 12:18 PM

Number of Comments on Photo:0

View Photo
Original enclosures:


Solar Flare wallpaper

Solar Flare wallpaper:



Solar Flare-640x1136 wallpapers.jpg
Date: Mar 2, 2015, 12:18 PM

Number of Comments on Photo:0

View Photo
Original enclosures: