Thursday, January 29, 2015

Luna vs. the Hyades! The 1st of 13 Occultations of Aldebaran Set For January 29th

Luna vs. the Hyades! The 1st of 13 Occultations of Aldebaran Set For January 29th:

Credit:


Getting closer… the Moon and Aldebaran from May 2014. Credit and copyright: Ziad El-Zaatari.
The cosmos is continually in motion.

Be it atoms, stars or snowflakes from the latest nor’easter pounding the New England seaboard, anything worth studying involves movement. And as skies and snowbound roads clear, this Wednesday and Thursday evening will give us a reason to brave the January cold, as the waxing gibbous Moon pierces the Hyades star cluster to graze past the bright star Aldebaran.

During Thursday night’s passage, the Moon will be 78% illuminated. In a sort ‘cosmos mimics controversy’ irony, the gibbous Moon is doing its best to mimic a sky bound ‘deflategate’ football just in time for Superbowl XLIX this weekend.

Stellarium


The motion of the Moon this week across the Hyades. Credit: Stellarium.
But the January 29th event also marks the first occultation of Aldebaran for 2015.

Fun fact: At magnitude +0.8, Aldebaran is the only star brighter than +1st magnitude north of the celestial equator that the Moon can currently occult. Regulus, the runner up, shines at magnitude +1.4.  Two other second magnitude stars — Antares and Spica — lie along the Moon’s path on occasion, and up until the 2nd century BC, it was possible for the Moon to occult Pollux in the constellation Gemini as well.

There are 13 occultations of Aldebaran in 2015, and the Moon occults the star 49 times overall until the last event in the current cycle on September 3rd, 2018. Aldebaran is also occulted by the Moon more often in the current 2010-2020 decade than any other bright star. You can even spy Aldebaran near the daytime Moon with binoculars, as we did back in 1996 from North Pole, Alaska.

Credit: Occult


Maps for the 13 occultations of Aldebaran  by the Moon in 2015, click to enlarge. solid lines denote regions were the occultation occurs under dark skies. Credit: Occult 4.0.
Of course, the January 29th event is an occultation only for the high Arctic, with only a scattering of villages and distant early warning stations along the northern Nunavut coast welcoming the sequence of 2015 occultations of the bright star.

The rest of us will see a close photogenic pass, as the Moon makes an end run through the Hyades star cluster every 27.3 day sidereal lunar month in 2015. The Moon will thus occult several members of the Hyades on each pass. Our best bet for North America is the occultation of Aldebaran on November 26th, though the Moon will be just 13 hours past Full.

68 Tauri. Credit: Occult 4.0


The occultation of 68 Tauri (a member of the Hyades) for January 29th. Credit: Occult 4.0.
Why doesn’t the path of the Moon just stay put with respect to the sky? Because the orbit of our Moon is fixed at an inclination of 5.1 degrees not with respect to our equator, but to the plane of the ecliptic. This means that the Moon’s orbit is in motion as well, and can wander anywhere from declination 28.6 degrees north to south as it cycles from a shallow to steep path every 18.6 years. We’re actually in a shallow year in 2015 (known as a minor lunar standstill) after which the apparent path of the Moon through the sky begins to widen again until April 2025.

An occultation is celestial motion that you can see in real time as a star or planet is photobomb’d by the onrushing Moon like a January snowplow… but those background stars are in motion as well.



The Hyades themselves — along with our own solar system — are moving around the galactic center. The nearest open cluster to us at 153 light years distant, the Hyades provided a unique object of study for 19th century astronomers. Astronomer Lewis Boss of the Dudley observatory spent several decades studying the proper motion — the apparent motion that a star seems to be moving across the sky from our solar system-bound perspective, measured in arc seconds — of the Hyades, and found the entire group was converging on a point in the constellation Orion near 6 hours 7’ right ascension and +7 degrees declination.

Starry Night


The imaginary convergent point of the Hyades in the night sky. Credit: Starry Night Education software.
Of course, this motion is relative and demonstrates a changing perspective, as the Hyades recedes from our solar system like a defensive line rushing to sack a quarterback.

OK, enough with the sports similes. The Hyades are so close that the actual Hyades Stream — often referred to as the Hyades Moving Group — is actually strewn across the constellations Orion, Taurus and Aries and more.

Some stars, such as 20 Arietis in the adjacent constellation Aries and Iota Horologii in the southern hemisphere may actually members as well. There’s always a bit of ongoing controversy when it comes to actual moving group membership, which is usually pegged by determining proper motion, coupled with the age and metallicity of prospective stars. Growing up in the Milky Way galaxy, our Sun was once a member of some unnamed ancient open cluster that has since long dispersed, like the Hyades are in the process of doing now.

Photo by author


The asterism of the Hyades and the ‘eye of the Bull.’ Photo by author.
The Hyades contains hundreds of stars and ironically, Aldebaran is not a member of the cluster, but is merely 65 light years away from us in the foreground. The V-shaped asterism of the Hyades gives the Head of Taurus the Bull its distinctive shape. The Hyades are named after the rain nymph daughters of Atlas from Greek mythology, whose half daughters the Pleiades also adorn the nearby sky.

And as an added bonus, don’t miss comet C/2014 Q2 Lovejoy crossing the constellation Triangulum, also nearby. Q2 Lovejoy reaches perihelion this week on January 30th, and although it’s completing with the evening Moon, it’s still holding out at a respectable magnitude +4.5.

Credit:


Comet Q2 Lovejoy skirts by  the Hyades and the Pleiades. Credit and Copyright: John Chumack.
All reasons to get out these chilly January evenings and ponder a hurried universe continually in motion, both fast and slow.

-Check out Q2 Lovejoy on January 30th courtesy of the Virtual Telescope project.



About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.

Share this:

No comments:

Post a Comment