By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.
This illustration shows landmarks on Dawn’s voyage. After leaving Earth, the spacecraft flew past Mars to the giant protoplanet Vesta, where it spent 14 months in orbit. Now it is on its way to orbit dwarf planet Ceres. Image credit: NASA/JPL
On the seventh anniversary of embarking upon its extraordinary extraterrestrial expedition, the Dawn spacecraft is far from the planet where its journey began. While Earth has completed its repetitive loops around the sun seven times, its ambassador to the cosmos has had a much more varied itinerary. On most of its anniversaries, including this one, it reshapes its orbit around the sun, aiming for some of the last uncharted worlds in the inner solar system. (It also zipped past the oft-visited Mars, robbing the red planet of some of its orbital energy to help fling the spacecraft on to the more distant main asteroid belt.) It spent its fourth anniversary exploring the giant protoplanet Vesta, the second most massive object in the asteroid belt, revealing a fascinating, complex, alien place more akin to Earth and the other terrestrial planets than to typical asteroids. This anniversary is the last it will spend sailing on the celestial seas. By its eighth, it will be at its new, permanent home, dwarf planet Ceres.
The mysterious world of rock and ice is the first dwarf planet discovered (129 years before Pluto) and the largest body between the sun and Pluto that a spacecraft has not yet visited. Dawn will take up residence there so it can conduct a detailed investigation, recording pictures and other data not only for scientists but for everyone who has ever gazed up at the night sky in wonder, everyone who is curious about the nature of the universe, everyone who feels the burning passion for adventure and the insatiable hunger for knowledge and everyone who longs to know the cosmos.
Dawn is the only spacecraft ever to orbit a resident of the asteroid belt. It is also the only ship ever targeted to orbit two deep-space destinations. This unique mission would be quite impossible without its advanced ion propulsion system, giving it capabilities well beyond what conventional chemical propulsion provides. That is one of the keys to how such a voyage can be undertaken.
For those who would like to track the probe’s progress in the same terms used on previous (and, we boldly predict, subsequent) anniversaries, we present here the seventh annual summary, reusing text from last year with updates where appropriate. Readers who wish to reflect upon Dawn’s ambitious journey may find it helpful to compare this material with the logs from its first, second, third, fourth, fifth and sixth anniversaries. On this anniversary, as we will see below, the moon will participate in the celebration.
In its seven years of interplanetary travels, the spacecraft has thrust for a total of 1,737 days, or 68 percent of the time (and about 0.000000034 percent of the time since the Big Bang). While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 808 pounds (366 kilograms) of its supply of xenon propellant, which was 937 pounds (425 kilograms) on Sep. 27, 2007.
Dawn launched at dawn (7:34 a.m. EDT) from Cape Canaveral Air Force Station on Sep. 27, 2007. Its mission is to learn about the dawn of the solar system by studying the giant asteroid Vesta and dwarf planet Ceres. Image credit: KSC/NASA
Since launch, our readers who have remained on or near Earth have completed seven revolutions around the sun, covering 44.0 AU (4.1 billion miles, or 6.6 billion kilometers). Orbiting farther from the sun, and thus moving at a more leisurely pace, Dawn has traveled 31.4 AU (2.9 billion miles, or 4.7 billion kilometers). As it climbed away from the sun to match its orbit to that of Vesta, it continued to slow down to Vesta’s speed. It has been slowing down still more to rendezvous with Ceres. Since Dawn’s launch, Vesta has traveled only 28.5 AU (2.6 billion miles, or 4.3 billion kilometers), and the even more sedate Ceres has gone 26.8 AU (2.5 billion miles, or 4.0 billion kilometers). (To develop a feeling for the relative speeds, you might reread this paragraph by paying attention to only one set of units, whether you choose AU, miles, or kilometers. Ignore the other two scales so you can focus on the differences in distance among Earth, Dawn, Vesta and Ceres over the seven years. You will see that as the strength of the sun’s gravitational grip weakens at greater distance, the corresponding orbital speed decreases.)
Another way to investigate the progress of the mission is to chart how Dawn’s orbit around the sun has changed. This discussion will culminate with a few more numbers than we usually include, and readers who prefer not to indulge may skip this material, leaving that much more for the grateful Numerivores. (If you prefer not to skip it, click here.) In order to make the table below comprehensible (and to fulfill our commitment of environmental responsibility), we recycle some more text here on the nature of orbits.
Orbits are ellipses (like flattened circles, or ovals in which the ends are of equal size). So as members of the solar system family follow their paths around the sun, they sometimes move closer and sometimes move farther from it.
In addition to orbits being characterized by shape, or equivalently by the amount of flattening (that is, the deviation from being a perfect circle), and by size, they may be described in part by how they are oriented in space. Using the bias of terrestrial astronomers, the plane of Earth’s orbit around the sun (known as the ecliptic) is a good reference. Other planets and interplanetary spacecraft may travel in orbits that are tipped at some angle to that. The angle between the ecliptic and the plane of another body’s orbit around the sun is the inclination of that orbit. Vesta and Ceres do not orbit the sun in the same plane that Earth does, and Dawn must match its orbit to that of its targets. (The major planets orbit closer to the ecliptic, and part of the arduousness of the journey is changing the inclination of its orbit, an energetically expensive task.)
Now we can see how Dawn has been doing by considering the size and shape (together expressed by the minimum and maximum distances from the sun) and inclination of its orbit on each of its anniversaries. (Experts readily recognize that there is more to describing an orbit than these parameters. Our policy remains that we link to the experts’ websites when their readership extends to one more elliptical galaxy than ours does.)
The table below shows what the orbit would have been if the spacecraft had terminated ion thrusting on its anniversaries; the orbits of its destinations, Vesta and Ceres, are included for comparison. Of course, when Dawn was on the launch pad on Sep. 27, 2007, its orbit around the sun was exactly Earth’s orbit. After launch, it was in its own solar orbit.
Minimum distance from the Sun (AU) | Maximum distance from the Sun (AU) | Inclination | |
---|---|---|---|
Earth’s orbit | 0.98 | 1.02 | 0.0° |
Dawn’s orbit on Sep. 27, 2007 (before launch) | 0.98 | 1.02 | 0.0° |
Dawn’s orbit on Sep. 27, 2007 (after launch) | 1.00 | 1.62 | 0.6° |
Dawn’s orbit on Sep. 27, 2008 | 1.21 | 1.68 | 1.4° |
Dawn’s orbit on Sep. 27, 2009 | 1.42 | 1.87 | 6.2° |
Dawn’s orbit on Sep. 27, 2010 | 1.89 | 2.13 | 6.8° |
Dawn’s orbit on Sep. 27, 2011 | 2.15 | 2.57 | 7.1° |
Vesta’s orbit | 2.15 | 2.57 | 7.1° |
Dawn’s orbit on Sep. 27, 2012 | 2.17 | 2.57 | 7.3° |
Dawn’s orbit on Sep. 27, 2013 | 2.44 | 2.98 | 8.7° |
Dawn’s orbit on Sep. 27, 2014 | 2.46 | 3.02 | 9.8° |
Ceres’ orbit | 2.56 | 2.98 | 10.6° |
This illustration shows Dawn’s interplanetary trajectory (in blue). The dates in white show Dawn’s location every September 27, starting on Earth in 2007. Note that Earth returns to the same location, taking one year to complete each revolution around the sun. As Dawn climbs farther from the sun, it orbits more slowly. Image credit: NASA/JPL
› Continue reading Marc Rayman’s Dawn Journal
- FASHION WEEK - USA Fashion and Music News
- GOOGLE NEWS - Google News Blogger
- PINTEREST ACROSS THE UNIVERSE - Google Images Nasa Images
- LAST FM - Download Music Legally Direct From Artist
- WOMEN COMMUNITY - Women Communty Photography Videos Beauty
- DISNEY CHANNEL - Photos and Music News
- BABY JUSTIN BIEBER - Google Images Google News
- LADY GAGA - Google Images Google News
- ACROSS THE UNIVERSE - Google Images Universe Pictures
- VICTORIA´S SECRET COMMUNITY - Victoria´s Secret Fashion Show Photos
No comments:
Post a Comment