Friday, July 7, 2017

The Corvus Constellation

The Corvus Constellation:

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at the “Raven” – the Corvus constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellation is the Corvus constellation, a southern constellation whose name in Latin means “the Raven”. Bordered by the constellations of Virgo, Crater and Hydra, it is visible at latitudes between +60° and -90° and is best seen at culmination during the month of May. Today, it is one of the 88 modern constellations recognized by the International Astronomical Union (IAU).

Name and Meaning:

In classical mythology, Corvus represents the Raven, and is both a charming and sad tale. Legend tells us that the constellation of Crater is the cup of the gods. This cup belonged to the god of the skies himself, the venerable archer-god Apollo. And who holds this cup, dressed in black? The Raven, Corvus.





“Noctua, Corvus, Crater, Sextans Uraniæ, Hydra, Felis, Lupus, Centaurus, Antlia Pneumatica, Argo Navis, and Pyxis Nautica”, plate 32 in Urania’s Mirror, by Sidney Hall. Credit: Library of Congress
The story of a creature sent to fetch water for his master, only to stop to eat figs. Corvus tarried too long, waiting on a fig to ripen. When he realized his mistake, the Raven returned to Apollo with his cup and brought along the serpent Hydra in his claws as well, claiming that the snake prevented him from filling the cup.

Realizing his feathered-friend’s lie, Apollo became angry and tossed the cup (Crater), the snake (Hydra) and the raven (Corvus) into the sky, where they became constellations for all eternity. He further punished the raven by making sure the cup would be out of reach, thus ensuring he would forever be thirsty.

History of Observation:

As with most of the 48 constellations recorded by Ptolemy, the Corvus constellation has roots that go back to ancient Mesopotamia. In the Babylonian star catalogues (dated to ca. 1100 BCE), Corvus was called the Babylonian Raven (MUL.UGA.MUSHEN), which sat on the tail of the Serpent – which was associated with Ningishzida, the Babylonian god of the underworld. This constellation was also sacred to the god of rains and storm (Adad).

By about 500 BCE, this constellation was introduced to the Greeks, along with Crater, Hydra, Aquila and Piscis Austrinus constellations. By the 2nd century CE, they were included by Ptolemy in his Almagest, which would remain the definitive source on astronomy and astrology to Medieval European and Islamic astronomers for many centuries.



In Chinese astronomy, the stars that make up Corvus are located within the Vermilion Bird of the South (Nán Fang Zhu Què). The four main stars depict a chariot (Zhen) while Alpha and Eta mark the linchpins for the wheels, and Zeta represents a coffin (Changsha).

In Indian astronomy, the first five stars in Corvus correspond to the Hast nakshatra – a lunar zodiacal constellation. This is one of is one of the 27 or 28 divisions of the sky, identified by the prominent stars in them, that the Moon passes through during its monthly cycle. While it is Hindu, it is still very similar to the divisions of the ecliptic plane referred to as the zodiac. The Moon takes approximately one day to pass through each nakshatra.

Notable Objects:

This small, box-like asterism has no bright star and consists of 11 stars which are visible to the unaided eye, yet Ptolemy only listed 7! There are 4 main stars and 10 which have Bayer/Flamsteed designations. For unaided eye observers, the Delta, Gamma, Epsilon and Beta (what appears to look like a figure 8, Y, E and B on the map) form an asterism that looks like a “sail”, and when connected seem to point to the bright star Spica.

The brightest star in Corvus is not even its alpha, but is Gamma Corvi. This giant star (which is thought to be a binary system) is located approximately 165 light years from Earth and is also known as Gienah, which comes from the Arabic phrase al-janah al-ghirab al-yaman (“the right wing of the crow”).





Antennae Galaxies – NGC 4038, NGC 4039. Credit: NASA, ESA, and the Hubble Heritage Team (STScI, AURA)-ESA, Hubble Collaboration
The second-brightest star, Beta Corvi, is a yellow-white G-type bright giant that is located about 140 light years from Earth. Its proper name, Kraz, was assigned to it in modern times, but the origin of the name is uncertain. Delta Corvi is a class A0 star in Corvus located approximately 87 light years distant from Earth whose traditional name (Algorab) comes from the Arabic word al-ghuraab – which means “the crow.”

Epsilon Corvi is a K2 III class star that is approximately 303 light-years from Earth. The star’s traditional name, (Minkar) comes from the Arabic word almánxar, which means “the nostril of the crow.” Alpha Corvi, which is only the fifth brightest star in the constellation, is a class F0 dwarf or subdwarf that is only 48.2 light years distant. The star’s traditional name (Alchiba) is derived from the Arabic al hibaa, which means “tent.”

Corvus is also home to many Deep Sky Objects. These include the Antennae Galaxies (NGC 4038/NGC 4039), a pair of interacting galaxies that were first discovered in the late 18th century. These colliding galaxies – which are located 45 million light years from Earth – are currently in the starburst stage, meaning they are experiencing an exceptionally high rate of star forming activity.

There’s also the NGC 4027 barred spiral galaxy, which is located about 83 million light years from Earth. This galaxy is peculiar, in that one of its spiral arm extends further than the other – possibly due to a past collision with another galaxy. Finally, there’s the large planetary nebula known as NGC 4361, which is located at the center of the constellation and resembled a faint elliptical galaxy.





The barred, spiral galaxy known as NGC 4027. Credit : ESO

Finding Corvus:

Let’s start with binoculars and look down at the southern corner, where we will find Alpha Corvi – aka. Alchiba. Alchiba belongs to the spectral class F0 and has apparent magnitude +4.00. This star is suspected of being a spectroscopic binary, although this has not yet been confirmed. Now take a look at Beta Corvi – aka. Kraz. Good old Kraz is approximately 140 light-years away and is a G-type bright giant star whose apparent visual magnitude varies between 2.60 and 2.66.

Head west and look at Epsilon. Although it doesn’t look any further away, spectral class K2 III – Minkar – is 303 light-years from Earth! Need a smile? Then take a look at Gamma, aka. Geinah. How about Delta? Algorab is a spectral class A0 and is about 87 light years from our solar system.

Now get out your telescope as we explore planetary nebula, NGC 4361 (RA 12 24 5 Dec -18 48). At around magnitude 10, this greenish disc is fairly easily spotted with smaller telescopes, but the 13th stellar magnitude central star requires larger aperture to be seen. It has a very symmetrical shape that is similar to a spiral galaxy.

For galaxy fans, have a look at interacting galaxy pair, NGC 4038 and NGC 4039 – the “Ringtail Galaxy” (RA 12 01 53 Dec -18 52-3). This peculiar galaxy (also referred to as the “Antennae Galaxies”) were both discovered by Friedrich Wilhelm Herschel in 1785. Even in relatively small telescopes, you can see two long tails of stars, gas and dust thrown out of the galaxies as a result of the collision that resemble the antennae of an insect.





Map of the Corvus Constellation. Credit: IAU and Sky&Telescope magazine
As explained by Vázquez (et al.) in a 1999 study:

“The morphology of this object is complex given the highly filamentary structure of the envelope, which is confirmed to possess a low mass. The halo has a high expansion velocity that yields incompatible kinematic and evolutionary ages, unless previous acceleration of the nebular expansion is considered. However, the most remarkable result from the present observations is the detection of a bipolar outflow in NGC 4361, which is unexpected in a PN with a Population II low-mass-core progenitor. It is shown that shocks resulting from the interaction of the bipolar outflow with the outer shell are able to provide an additional heating source in this nebula.”
Most galaxies probably undergo at least one significant collision in their lifetimes. This is likely the future of our Milky Way when it collides with the Andromeda Galaxy. Two supernovae have been discovered in the galaxy: SN 2004GT and SN 2007sr. A recent study finds that these interacting galaxies are closer to the Milky Way than previously thought – at 45 million light-years instead of 65 million light-years. Geez… What’s 20 million light years between friends?

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The post The Corvus Constellation appeared first on Universe Today.

Tuesday, July 4, 2017

Composite Messier 20 and 21

Composite Messier 20 and 21:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2017 June 28


See Explanation. Clicking on the picture will download the highest resolution version available.


Composite Messier 20 and 21

Image Credit & Copyright: Martin Pugh


Explanation: The beautiful Trifid Nebula, also known as Messier 20, lies about 5,000 light-years away, a colorful study in cosmic contrasts. It shares this nearly 1 degree wide field with open star cluster Messier 21 (top left). Trisected by dust lanes the Trifid itself is about 40 light-years across and a mere 300,000 years old. That makes it one of the youngest star forming regions in our sky, with newborn and embryonic stars embedded in its natal dust and gas clouds. Estimates of the distance to open star cluster M21 are similar to M20's, but though they share this gorgeous telescopic skyscape there is no apparent connection between the two. M21's stars are much older, about 8 million years old. M20 and M21 are easy to find with even a small telescope in the nebula rich constellation Sagittarius. In fact, this well-composed scene is a composite from two different telescopes. Using narrowband data it blends a high resolution image of M20 with a wider field image extending to M21.



Tomorrow's picture: symbiotic stars



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

Symbiotic R Aquarii

ymbiotic R Aquarii:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2017 June 29


See Explanation. Clicking on the picture will download the highest resolution version available.


Symbiotic R Aquarii

Image Credit: X-ray - NASA,CXC,SAO, R. Montez et al.; Optical - Adam Block, Mt. Lemmon SkyCenter, U. Arizona


Explanation: A long recognized naked-eye variable star, R Aquarii is actually an interacting binary star system, two stars that seem to have a close, symbiotic relationship. About 710 light years away, it consists of a cool red giant star and hot, dense white dwarf star in mutual orbit around their common center of mass. The binary system's visible light is dominated by the red giant, itself a Mira-type long period variable star. But material in the cool giant star's extended envelope is pulled by gravity onto the surface of the smaller, denser white dwarf, eventually triggering a thermonuclear explosion and blasting material into space. Optical image data (red) shows the still expanding ring of debris originating from a blast that would have been seen in the early 1770s. The evolution of less understood energetic events producing high energy emission in the R Aquarii system has been monitored since 2000 using Chandra X-ray Observatory data (blue). The composite field of view is less that a light-year across at the estimated distance of R Aquarii.



Tomorrow's picture: the little sombrero



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

NGC 7814: The Little Sombrero in Pegasus

NGC 7814: The Little Sombrero in Pegasus:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2017 June 30


See Explanation. Clicking on the picture will download the highest resolution version available.


NGC 7814: The Little Sombrero in Pegasus

Image Credit & Copyright: CHART32 Team, Processing - Johannes Schedler


Explanation: Point your telescope toward the high flying constellation Pegasus and you can find this expanse of Milky Way stars and distant galaxies. Dominated by NGC 7814, the pretty field of view would almost be covered by a full moon. NGC 7814 is sometimes called the Little Sombrero for its resemblance to the brighter more famous M104, the Sombrero Galaxy. Both Sombrero and Little Sombrero are spiral galaxies seen edge-on, and both have extensive halos and central bulges cut by a thin disk with thinner dust lanes in silhouette. In fact, NGC 7814 is some 40 million light-years away and an estimated 60,000 light-years across. That actually makes the Little Sombrero about the same physical size as its better known namesake, appearing smaller and fainter only because it is farther away. Very faint dwarf galaxies, potentially satellites of NGC 7814, have been discovered in deep exposures of the Little Sombrero.



Tomorrow's picture: Stereo Saturday



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

Mountains of Dust in the Carina Nebula

Mountains of Dust in the Carina Nebula:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2017 July 2


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: It's stars versus dust in the Carina Nebula and the stars are winning. More precisely, the energetic light and winds from massive newly formed stars are evaporating and dispersing the dusty stellar nurseries in which they formed. Located in the Carina Nebula and known informally as Mystic Mountain, these pillar's appearance is dominated by the dark dust even though it is composed mostly of clear hydrogen gas. Dust pillars such as these are actually much thinner than air and only appear as mountains due to relatively small amounts of opaque interstellar dust. About 7,500 light-years distant, the featured image was taken with the Hubble Space Telescope and highlights an interior region of Carina which spans about three light years. Within a few million years, the stars will likely win out completely and the entire dust mountain will evaporate.

Astronomers Measure the Mass of a White Dwarf, and Prove Einstein was Right… Again

Astronomers Measure the Mass of a White Dwarf, and Prove Einstein was Right… Again:

It’s been over a century since Einstein firs proposed his Theory of General Relativity, his groundbreaking proposal for how gravity worked on large scales throughout the cosmos. And yet, after all that time, experiments are still being conducted that show that Einstein’s field equations were right on the money. And in some cases, old experiments are finding new uses, helping astronomers to unlock other astronomical mysteries.

Case in point: using the Hubble Space Telescope, NASA astronomers have repeated a century-old test of General Relativity to determine the mass of a white dwarf star. In the past, this test was used to determine how it deflects light from a background star. In this case, it was used to provide new insights into theories about the structure and composition of the burned-out remnants of a star.

White dwarfs are what become of a star after it has exited the Main Sequence of its lifespan after exhausting their nuclear fuel. This is followed by the star expelling most of its outer material, usually through a massive explosion (aka. a supernova). What is left behind is a small and extreme dense (second only to a neutron star) which exerts an incredible gravitational force.





Illustration revealing how the gravity of a white dwarf star warps space and bends the light of a distant star behind it. Credits: NASA, ESA, and A. Feild (STScI)
This attribute is what makes white dwarfs a good means for testing General Relativity. By measuring how much they deflect the light from a background star, astronomers are able to see the effect gravity has on the curvature of spacetime. This is precisely similar to what British astronomer Sir Arthur Eddington did in 1919, when he led an expedition to determine how much the Sun’s gravity deflected the light of a background star during a solar eclipse.

Known as gravitational microlensing, this same experiment was repeated by the NASA team. Using the Hubble Space Telescope, they observed Stein 2051B – a white dwarf located just 17 light-years from Earth – on seven different occasions during a two-year period. During this period, it passed in front of a background star located about 5000 light-years distant, which produced a visible deviation in the path of the star’s light.

The resulting deviation was incredibly small – only 2 milliarseconds from its actual position – and was only discernible thanks to the optical resolution of Hubble’s Wide Field Camera 3 (WFC3). Such a deviation would have been impossible to detect using instruments that predate Hubble. And more importantly, the results were consistent with what Einstein predicted a century ago.

As Kailash Sahu, an astronomer at the Space Telescope Science Institute (STScI) and the lead researcher on the project, explained in a NASA press release, this method is also an effective way to test a star’s mass. “This microlensing method is a very independent and direct way to determine the mass of a star,” he said. “It’s like placing the star on a scale: the deflection is analogous to the movement of the needle on the scale.”





Animation showing the white dwarf star Stein 2051B as it passes in front of a distant background star. Credit: NASA
The deflection measurement yielded highly-accurate results concerning the mass of the white dwarf star – roughly 68 percent of the Sun’s mass (aka. 0.68 Solar masses) – which was also consistent with theoretical predictions. This is highly significant, in that it opens the door to a new and interesting method for determining the mass of distant stars that do not have companions.

In the past, astronomers have typically determined the mass of stars by observing binary pairs and calculating their orbital motions. Much in the same way that radial velocity measurements are used by astronomers to determine if a planet has a system of exoplanets, measuring the influence two stars have on each other is used to determine how much mass each possesses.

This was how astronomers determined the mass of the Sirius star system, which is located about 8.6 light years from Earth. This binary star system consists of a white supergiant (Sirius A) and a white dwarf companion (Sirius B) which orbit each other with a radial velocity of 5.5 km/s. These measurements helped astronomers determine that Sirius A has a mass of about 2.02 Solar masses while Sirius B weighs in at 0.978 Solar masses.

And while Stein 2051B has a companion (a bright red dwarf), astronomers cannot accurately measure its mass because the stars are too far apart – at least 8 billion km (5 billion mi). Hence, this method could be used in the future wherever companion stars are unavailable or too distant. The Hubble observations also helped the team to independently verify the theory that a white dwarf’s radius can be determined by its mass.





Artist’s impression of the binary pair made up by a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)
This theory was first proposed by Subrahmanyan Chandrasekhar in 1935, the Indian-American astronomer whose theoretical work on the evolution of stars (and black holes) earned him the Nobel Prize for Physics in 1983. They could also help astronomers to learn more about the internal composition of white dwarfs. But even with an instrument as sophisticated as the WFC3, obtaining these measurements was not without its share of difficulties.

As Jay Anderson, an astronomer with the STScI who led the analysis to precisely measure the positions of stars in the Hubble images, explained:

“Stein 2051B appears 400 times brighter than the distant background star. So measuring the extremely small deflection is like trying to see a firefly move next to a light bulb. The movement of the insect is very small, and the glow of the light bulb makes it difficult to see the insect moving.”
Dr. Sahu presented his team’s findings yesterday (June 7th) at the American Astronomical Society meeting in Austin, Texas. The team’s result will also appear in the journal Science on June 9th. And in the future, the researchers plan to use Hubble to conduct a similar microlensing study on Proxima Centauri, our solar system’s closest stellar neighbor and home to the closest exoplanet to Earth (Proxima b).

It is important to note that this is by no means the only modern experiment that has validated Einstein’s theories. In recent years, General Relativity has been confirmed through observations of rapidly spinning pulsars, 3D simulations of cosmic evolution, and (most importantly) the discovery of gravitational waves. Even in death, Einstein is still making valued contributions to astrophysics!

Further Reading: NASA

The post Astronomers Measure the Mass of a White Dwarf, and Prove Einstein was Right… Again appeared first on Universe Today.

Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur

Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur:



By popular request, Isaac Arthur and I have teamed up again to bring you a vision of the future of human space exploration. This time, we bring you practical construction tips from a pair of Type 2 Civilization engineers.

To make this collaboration even better, we’ve teamed up with two artists, Kevin Gill and Sergio Botero. They’re going to help create some special art, just for this episode, to help show what some of these megaprojects might look like.

I’d also like to congratulate Gannon Huiting for suggesting the topic for this collaboration. We both asked our Patreon communities to brainstorm ideas, and his core idea sparked the idea for the episode. You get one of my precious metal meteorites, which I guarantee will give you a mostly worthless superpower.

We’ll tell you the story of what it took to go from our first tentative steps into space to the vast Solar System spanning civilization we have today. How did we extract energy and resources from the Moon, planets and even gas giants of the Solar System? How did we shift around and dismantle the worlds to provide the raw resources of our civilization?

Lunar Rover Concept. Credit: Sergio Botero
Humanity’s ability to colonize the Solar System was unleashed when we harvested deposits of helium 3 from the Moon. This isotope of helium is rare on Earth, but the constant solar wind from the Sun has deposited a layer across the Moon, though its regolith.

Helium 3 was the best, first energy source we got our hands on, and it changed everything. Although other kinds of fusion reactors can produce more energy with more efficiency, the advantage of helium 3 is that the fusion reaction releases no neutrons. This means you can have a fusion reactor on your starship or on your base with much less shielding.

Multi-dome base being constructed. Credit: ESA/Foster + Partners
We still use helium-3 reactors when living creatures need to be close the reactor, or the ship can’t afford to carry around heavy shielding.

The Helium 3 is found within the first 100 cm of the lunar regolith. Harvesting it started slowly, but in time, our mining machines grew larger, and we stripped this layer completely off the Moon. There are other repositories across the Solar System, in the regolith of Mercury, other moons and asteroids across the Solar System, and in the atmospheres of the giant planets. We later switched to getting our Helium 3 from Uranus and Neptune, but the Moon got everything started.

A huge lunar miner, with astronaut for scale. Credit: Sergio Botero
One of our big problems with building in space was getting raw materials. Just about every place that has the supplies we needed was at the bottom very deep gravity wells which made accessing those materials a lot harder. Asteroid and moons offered us a large supply of material that was not locked inside such deep gravity wells.

These asteroids also gave us a big initial head start on developing space-based infrastructure as they contained a great deal of precious metals that we could bring home to help fund our endeavors.

For all that, the entire Asteroid Belt contains much less material than Earth’s own Moon. The ease of mining and transport on these bodies made them a critical source of raw materials for building up the early Solar Infrastructure and many of them became homes to rotating habitats buried deep inside the asteroid, where millions of people live comfortably shielded from the hazards of space and support themselves mining the asteroid around them.

Artist’s impression of the asteroid belt. Image credit: NASA/JPL-Caltech
These asteroids and moons often contained water in the form of ice, which is vital to creating life-bearing habitats in space, as well as fuel and propellant for many early-era spaceships.

However, even if the entire Asteroid Belt was ice, instead of it being a fairly smaller percent of the mass, that would still only be the approximate mass of Earth’s Oceans. There was a plentiful supply for early efforts but not enough for major terraforming efforts on places like Mars or creating many artificial habitats.

Water is incredibly scarce in the inner Solar System, but becomes more plentiful as we make our way further out, past the Solar System’s Frost Line. Deeper out past the planets we find enough water to make whole planets out of, as hydrogen and oxygen are the first and third most abundant elements in the Universe. Also, for the most part these come in convenient iceberg-sized packages, low enough in mass to have a small gravity well and to be movable.

Mastering the Solar System required moving very large objects in space. For the less massive objects, we could put a big thruster on it, but for the largest projects, such as moving planets with atmospheres (which we’ll get to later in this article), another technique was required.

Concept for a possible gravity tractor. Credit: JPL
To move large objects around, without touching them, you need a Gravity Tractor.

Want to move an asteroid? Use the gravity of a less massive object, like a spaceship. Hold the spaceship close to the asteroid, and their gravity will put them together. Fire your rocket’s thrusters to keep the distance, and you slowly pull the asteroid in any direction you like. It takes a long time, and does require fuel, but you can use this technique to move anything anywhere in the Solar System.

Put a massive satellite into orbit around an asteroid. When the satellite is on one side of the asteroid it fires its thrusters towards the satellite. And then on the other side of its orbit, it fires its thrusters away from the satellite. The satellite will have been pushed twice in the same direction. To an outside observer that satellite has moved, though on the asteroid it will seem to have been nudged closer than put back.

Don’t forget that the satellite pulls on the asteroid with just as much force as the asteroid exerts on the satellite. Earth pulls on the Sun just as hard as it pulls on us, but it’s more massive so it doesn’t move as much. But it does move, and so by pushing on the satellite towards the primary then pushing away on the opposite side, we move the primary body.

We can also take advantage of momentum transfers from gravity to alter the course of an object by making a close flyby. You can use this gravitational slingshot to use the gravity of a planet to change the move large objects into a new trajectory.

Over time, we put gravitational tugs into orbit around every chunk of rock and ice that we wanted to move, shifting their locations to the best places in the Solar System.

Artist view of an asteroid passing Earth. Credit: ESA/P.Carril
Some places gave us raw materials. Other places would serve as our homes.

Earth is the third closest planet to the Sun and it will always be the environment we’re trying to replicate. Earth is, well, it was… home.

For all the millions of other worlds across the Solar System, we made them capable of hosting life  with a little work. Often we could make them habitable just by increasing the amount of energy they received from the Sun.

Creating artificial gravity by spinning a habitat or breathable air by doming it over did us no good if there wasn’t enough light to melt ice into water or let plants grow.

The farther you get from the Sun, the less light you get, but we bounce light that would have been lost, concentrating it to let life flourish. The Sun gives off over a billion times the light that actually reaches Earth, so there’s no shortage in quantity, just concentration.

This was the first sunset observed in color by Curiosity on Mars. Credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.
To double the light reaching a planet like Mars, you would need a mirror surface area of twice the size of Mars. But not twice the mass of Mars. For every square meter of land on Earth, there’s about 10 billion kilograms of mass under our feet. A mirror on Earth wouldn’t weigh much more than a kilogram a square meter, but in space we can go far thinner. Any one of millions of small asteroids in the solar system contains enough material to make a planetary surface’s worth of mirrors.

Lenses or parabolic reflectors let us move light in from far more densely concentrated locations closer to the Sun. Reflecting light also allows us to remove harmful or less useful invisible wavelengths like ultraviolet or x-rays.

This allowed us to make almost any place warm and bright enough. We took distant moons and asteroids far from the Sun, and gave them a collar of thin mirrors bouncing light into a parabolic dish. By bouncing this light into rotating habitats safely buried inside the asteroid, we created warm, lush garden worlds in environments so cold that air itself would condense into a liquid.

Artist’s concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center
For most of the Solar System we wanted to warm planets up. But for Venus and Mercury, we needed to cool them down. We did this by placing shades between them and the Sun to reflect away some of the light hitting them.

The easiest way to do this was to position an opaque material between the planet and the Sun, at the L1 Lagrange point. At this point the gravitational pull of the planet counteracts the pull of the Sun allowing a large thin solar shade to remain in position with minimal energy. This way the planet is cooled.

A solar shade above Venus. Credit: Kevin Gill
But we did better than merely cool, we shaped the light to our needs. With a collection of many small shades, we avoided putting a visible dark spot on the Sun. Sunlight comes in many frequencies, from radio to x-rays; some were more valuable to us than others. Plants mostly use red and blue light, while green light doesn’t help with photosynthesis. So blocked a decent amount of green light, some blue, and no red, and cooled the planet without harming plant life and without really altering how the light looked to our eyes.

We engineered the perfect material for our shades which was mostly transparent to the wavelengths of light we wanted and mostly reflective or absorptive to the ones we didn’t.

Ultraviolet is a good example. We wanted some to get to our planet, as it does help as a sterilizing agent to biological processes and it helps make ozone, but we wanted to cut most of that out. Even better, about half of the light coming from the Sun is in infrared, which we can’t see and which plants don’t use.

We blocked most of that and seriously lowered temperatures on Venus and Mercury.



We set up shades to block the light from reaching our planets. And we did the same with dangerous radiation streaming from the Sun. We set up a concentrated magnetic shield at the Mars-Sun L1 Lagrange point, which catches and redirects high energy particles. This protects a world from the Sun, but it doesn’t prevent harmful cosmic rays, which can come from any part of the sky.

Our own planet Earth has a robust magnetosphere, and it’s the main reason we have air to breath and don’t absorb dangerous radiation from the Sun and space.

Places like Mars don’t. For this purpose, we created artificial magnetospheres. We considered trying to get Mars’ core spinning fast and hot so that rapid spinning molten ferromagnetic materials would generate a protective magnetosphere.

But that was too much effort. We didn’t actually care what generated the magnetic field, we just wanted the magnetic field. In the end we deployed a constellation of electromagnetic satellites around every world exposed to space. These satellites could do double duty, harvesting solar radiation and generating an artificial magnetosphere.

Mars used to have a natural magnetic field, but restarting it wasn’t worth it. Credit: NASA/JPL/GSFC
Cosmic rays and radioactive particles from the Sun were captured and redirected safely away from the world, allowing us to roam freely on the surface.

Once we had made acquired the resources of every world in the Solar System, we began our next great engineering effort. To move and dismantle the worlds themselves. To create the optimal configuration that gave us the most living space and the most usable energy. We began the construction of our Dyson swarm.

Moving planets is almost impossible. But not completely impossible. How do you get all that energy to move a world without melting it? The orbital energy of Earth around the Sun is approximately 30 million, trillion, trillion joules. That’s equal to all the energy the Sun puts out over a few months.

Of course, the Sun is slowly warming up, and while estimates vary, it’s generally accepted that in about a billion years it will have warmed up enough that Earth would be uninhabitable. Moving the Earth was inevitable.

To move the Earth outward to counteract the increased solar luminosity, we needed to add orbital energy. A lot of energy.

Earlier, we discussed using gravity tractors and gravitational slingshots to slowly and steadily move objects around the Solar System. This technique works at the largest scales too.

A gravity tractor could slowly and steadily move an entire planet if you had enough time and fuel. Because we already had mastery of all the asteroids in the Solar System, we put them into orbits that swept past worlds.

Credit: NASA/JPL-Caltech
Each gravitational slingshot gave or stole orbital momentum from the world, pushing it closer or farther from the Sun.

We also used orbital mirrors to bounce sunlight from the Sun. With enough of them, deflecting their light in the same general directional while maintaining an orbit around the planet, we could move worlds without touching them or heating them up from the light beams.

With enough satellites to keep the net gravitational force on the planet homogenous, we didn’t have to worry about tidal heating, allowing us to move a planet far faster.

In the future, we’ll use a king-size version of this to move the entire Solar System, using the star as the power source, called a Shkadov Thruster. We will push the Sun and every star we control into a constellation that matches our needs. But that’s a problem our Type III civilization engineers will have to worry about.

Like a cosmic lava lamp, a large section of Pluto’s icy surface in Sputnik Planum is being constantly renewed by a process called convection that replaces older surface ices with fresher material. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.
We always needed ice. For water, for fuel and for air. And the outer Solar System had all the ice we could ever need. We brought comets and other icy bodies in from the outer Solar System to bring water to the planets we’re terraforming – Mars, Venus, and the large moons of the Solar System.

Pushing ice is a tricky process, but the comet itself is the source of fuel, either liquid hydrogen and oxygen as the propellants or using the hydrogen for a fusion torch drive. However we have an alternative trick we can use.

We just talked about using energy beams, focused sunlight, lasers, or microwave beams to push objects outward from the sun. You can also move inward by reflecting the beam off at an angle, removing orbital momentum. This lowers their orbit into the Solar System.

Credit: NASA/Denise Watt
By setting up energy collectors on comets, we could beam power out them, and use that energy to melt atoms into gas and accelerate them away with a magnetic field, just like an ion drive. This let us take high-strength lasers and microwave beams powered from the inner Solar System and use it to tractor comets inward. The propellant melted off the comets could carry away far more momentum than the energy beam added, though at the cost of losing some of your mass in the process.

One by one we identified the icy bodies in the Kuiper Belt and Oort Cloud, installed an ice engine, and pulled them inward, to the places we needed that water the most.

The day to day energy for our civilization comes from the Sun. Solar collectors power the machines, computers and systems that make day-to-day life spanning the Solar System possible.

Just as the ancient Earth civilizations used hydrocarbons as a store of fuel, we depend on hydrogen. We use it for our rocket fuel, to manufacture drinking water, and most importantly, for our fusion reactors. We always need more hydrogen.

Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus
Fortunately, the Solar System has provided us with vast repositories of hydrogen: the giant planets, Jupiter, Saturn, Uranus and Neptune all made up of at least 80% hydrogen. But harvesting the planets for their hydrogen isn’t without its challenges.

For starters, the gravity on the surface of Jupiter is nearly 25 m/s2, which is nearly three times the surface gravity of Earth. On top of that, Jupiter’s magnetosphere produces intense radiation fields through its entire system. You can’t spend much time near Jupiter without receiving a lethal radiation dose.

Gas Giant Harvesting Concept. Credit: Sergio Botero
We deploy huge robotic scoopers to swoop down into Jupiter’s gravity well, skim across the upper cloud tops, funneling in as much hydrogen as they can. On board compressors liquefy the hydrogen, or refine it into the more energy dense metallic hydrogen. The fuel is then distributed across the Solar System through the interplanetary transport network.

For Uranus and Neptune, where the gravity well is less extreme, we have permanent mining stations which float in the cloud tops, harvesting raw materials for return back to space. These factories are a huge improvement over the more expensive scoop ships. Smaller cargo ships ferry the deuterium, helium-3 and hydrogen up to orbit, for an energy hungry Solar System.

Gas Giant Harvesting Concept. Credit: Gas Giant Harvesting Concept. Credit: Sergio Botero
In order to construct our Dyson Swarm, we will eventually need to dismantle almost all the planets and moons in the Solar System to provide the raw materials to house countless people.

This process has begun, and we we have a number of options. For some worlds, we plan to just keep mining and refining them with robotic factories until they are gone, but this can be quite time consuming and often we would rather do our refining and manufacturing elsewhere.

Instead, we have set up very large mass drivers running around the object to launch material directly towards its desired destination. To avoid building up angular momentum inside the shrinking mass of the planetoid, we run these giant cannons in both directions. This prevents it spinning so fast that it tears itself apart. There’s very little gravity holding these objects together after all.

For the smaller objects that’s actually just fine. When we want to disassemble a smaller asteroid or moon into rock and dirt for the inside of a cylinder habitat, we construct a cylindrical shell around the asteroid, and spray material from the asteroid onto the cylinder, giving it some spin and artificial gravity to hold the material up, or rather down to its surface. We spin the asteroid faster and faster until it flies apart, transferring its material and its angular momentum to the cylinder.

Credit: NASA.
With larger asteroids we send a series of cylinders past them in a chain, painting their interiors with the material we will turn into dirt later on, until we run out of asteroid.

For full blown minor planets and moons, which are much more massive but still fairly low in gravity and lacking an atmosphere, we pump matter up tubes to high above the planetoid to fill freighters, get compacted into cannon balls to be launched elsewhere, or simply pumped into rotating habitats being built nearby.

Mercury is already half consumed. In a few more generations, it will be a distant memory.

Perhaps our greatest accomplishment is the work underway at Jupiter and Saturn. We are now in the process of dismantling these worlds to harvest their resources.

Jupiter and Io. Image Credit: NASA/JPL
Jupiter and Io. Image Credit: NASA/JPL
The largest machines humanity has ever built, fusion candles, have been deployed into the atmospheres of Jupiter and Saturn. These enormous machines scoop up raw hydrogen from Jupiter to run their fusion reactors. One side of the fusion candle fires downward, keeping the machine aloft. The other end blasts out into space, spewing material that can be harvested from orbit.

Not only that, but these candles provide thrust, pushing Jupiter and Saturn slowly but steadily into safer, more useful orbits for our civilization. As we use up the hydrogen, their mass will decrease. Uranus and Neptune will follow slowly, from farther out in the Solar System.

Eventually, eons into the future, we will have dismantled them down to their cores. There is more than a dozen times the mass of the Earth in rock and metal down at the core of Jupiter. More raw materials than any other place in the Solar System.

Credit: Kevin Gill
The long awaited construction of our fully operational Dyson swarm will finally begin. We’ll miss the presence of Jupiter and Saturn in the Solar System, and remember them fondly, but humanity needs room to stretch its legs.

Of course, as huge as the gas giants are compared to Earth, the Sun is far bigger, and contains not just hydrogen and helium but thousands of planets worth of heavier elements, which are spread around the sun, not just concentrated deep down.

Trying to scoop matter off a star is much harder than out of gas giant, though conveniently, we can take advantage of all that energy the Sun is giving off to power our extraction.

The Sun loses mass via the solar wind, mass ejections and simply by emitting energy (Credit: NASA)
The material on the Sun is also ionized, so it reacts strongly to magnetic forces, and the Sun generates a massively powerful magnetic field too. In fact, our Sun ejects about a billion kilograms of matter a second as solar wind. We have a few ways to increase this flow and harvest it.

The first is called Thermal Driven Outflow. We hover mirrors over the surface, reflecting and concentrating light down on spots on the Sun’s surface to heat it up and increase the mass being ejected. This kicks up an eruption much like a solar flare, feeding more solar wind.

Credit: NASA/SDO, AIA
We then place a large ring of satellites around the Sun’s equator, connected to each other by a stream of ionized particles generating a huge current, themselves running that stream off solar power. This ring creates a powerful magnetic field pushing outward toward the Sun’s poles, and sending the super-heated matter in that direction.

Hovering over the poles further out, we have a giant ring sucking up sunlight and generating a huge toroidal magnetic field. All the matter we stir up on the sun and off the poles is sucked through that and slowed down for collection. It’s a lot like the VASIMR Drive, using a magnetic nozzle, so that nothing has to touch the ultra hot plasma. Giant Plasma Thrusters essentially acting as the pump to gather the matter, it stays in place using the momentum it’s stealing from the particles it is slowing down, again it’s a giant plasma thruster.

We will eventually build far more of these rings around the Sun, spaced up and down from the equator, and intermittently shut off the power beam holding them aloft. As all the satellites in that ring drop, building up speed, we switch the power for the beam back on and their plummet stops and they push back up to their original position. We do this with all the rings, in sequence, pushing much larger waves of matter toward the poles than the Thermal Driven Outflow method provides, and we call this option the Huff-n-Puff Method.

A montage of planets and other objects in the solar system. Credit: NASA/JPL
And there you have it, our tips and techniques to harvest all the resources from the Solar System. To push and pull worlds, to heat them up, cool them down and use their raw materials to house humanity’s growing, ever expanding population.

As we nearly achieve our Type II civilization status, and control all the energy from our Sun and all the resources of the Solar System, we set our sights on a new goal: doing the same thing for the entire Milky Way Galaxy.

Perhaps in a few million years, we’ll create another guide for you, to help you make this transition as efficiently as possible.

Good luck!

The post Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur appeared first on Universe Today.

The Corona Australis Constellation

The Corona Australis Constellation:

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “Southern Crown” – the Corona Australis constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these was the Coronoa Australis constellation, otherwise known as the “Southern Crown”.  This small, southern constellation is one of the faintest in the night sky, where it is bordered by the constellations of Sagittarius, Scorpius, Ara and Telescopium. Today, it is one of the 88 modern constellations recognized by the International Astronomical Union.

Name and Meaning:

Corona Australis – the “Southern Crown” – is the counterpart to Corona Borealis – the “Northern Crown”. To the ancient Greeks, this constellation wasn’t seen as a crown, but a laurel wreath. According to some myths, Dionysus was supposed to have placed a wreath of myrtle as a gift to his dead mother into the underworld as well. Either way, this small circlet of dim stars definitely has the appearance of a wreath – or crown – and belongs to legend!





False-colour image from the ESO’s Very Large Telescope of the star-forming region NGC 6729. Credit: ESO

History of Observation:

Like many of the Greek constellations, it is believed that Corona Australis was recorded by the ancient Mesopotamian in the MUL.APIN – where it may have been called MA.GUR (“The Bark”). While recorded by the Greeks as early as the 3rd century BCE, it was not until Ptolemy’s time (2nd century CE) that it was recorded as the “Southern Wreath”, a name that has stuck ever since.

In Chinese astronomy, the stars of Corona Australis are located within the Black Tortoise of the North and were known as ti’en pieh (“Heavenly Turtle”). During the Western Zhou period, the constellation marked the beginning of winter. To medieval Islamic astronomers, Corona Australis was known alternately as Al Kubbah (“the Tortoise”), Al Hiba (“the Tent”) or Al Udha al Na’am (“the Ostrich Nest”).

In 1920, the constellation was included in the list of 88 constellations formally recognized by the IAU.

Notable Objects:

Corona Australis is a small, faint constellation that has no bright stars, consists of 6 primary stars and contains 14 stellar members with Bayer/Flamsteed designations. There is one meteor shower associated with Corona Australis – the Corona-Australids which peak on or about March 16 each year and are active between March 14th through the 18th. The fall rate is minimal, with an average of about 5 to 7 per hour.



It’s brightest star, Alpha Coronae Australis (Alphekka Meridiana), is a class A2V star located about 130 light years from Earth. It is also the only properly-named star in the constellation. It’s second brightest star, Beta Coronae Australis, is a K-type bright giant located approximately 510 light years distant.

And then there’s R Coronae Australis, a well-known variable star that is located approximately 26.8 light years from Earth. This relatively young star is still in the process of formation – accreting material onto its surface from a circumstellar disk – and is located within a star forming region of dust and gas known as NGC 6726/27/29.

Corona Australis is also home to several Deep Sky Objects, such as the Corona Australis Nebula. This bright reflection nebula, which is located about 420 light years away, was formed when several bright stars became entangled with a dark cloud of dust. The cloud is a star-forming region, with clusters of young stars embedded inside, and consists of three nebulous regions – NGC 6726, NGC 6727, and NGC 6729.

Other reflection nebulas include NGC 6726/6727 and the fan-shaped NGC 6729. Corona Australis also boasts many star clusters, such as the large, bright globular cluster known as NGC 6541. There’s also the Coronet cluster, a small open star cluster that is located approximately 420 light years from Earth. The cluster lies at the heart of the constellation and is one of the nearest known regions that experiences ongoing star formation.





Color image of the Coronet Australis Nebula, taken by NASA’s WISE (Wide-field Infrared Survey Explorer). Credit: NASA/Caltech

Finding Corona Australis:

Corona Australis is visible at latitudes between +40° and -90° and is best seen at culmination during the month of August. It can be explored using both binoculars and small telescopes. Let’s start with binoculars and a look at Alpha Coronae Australis – the only star in the constellation to have a proper name.

Called Alfecca Meridiana – or “the sixth star in the river Turtle” – Alpha is a spectral class A2V star which is located about 160 light years from Earth. Alfecca Meridiana is a fast rotator, spinning at least at 180 kilometers per second at its equator, 90 times faster than our Sun and making a full rotation in about 18 hours.

Even more interesting is the fact that Alpha is a Vega-like star, pouring out excess infrared radiation that appears to be coming from a surrounding disk of cool dust. Just what does that mean? It means that Alfecca Meridiana could possibly have a planetary system!

Now have a look at Beta. Although this orange class K (K0) giant star is rather ordinary, where it’s at is not. It’s sitting on the edge of the Corona Australis Molecular Cloud, a dusty, dark star-forming region which contains huge amounts of nebulae. While Beta does seem pretty plain, it is almost 5 times larger than our Sun and 730 times brighter. Not bad for a star that’s about a hundred million years old!





Image of the globular cluster NGC 6541 in Corona Australis, based on observations made with the NASA/ESA Hubble Space Telescope. Credit: STScI/NASA/ST-ECF/ESA/CADC/NRC/CSA.
Now, take a look at a really bizarre star – Epsilon Coronae Australis. At a distance of 98 light years, there doesn’t seem to be much going on with this fifth magnitude, faint stellar point, but there is. That’s because Epsilon isn’t one star – but two. Epsilon is an eclipsing binary with two very similar eclipses that take place within an orbital period of 0.5914264 days, as first a faint star passes in front of the bright one that gives us 95 or so percent of the light, and then the bright one passes in front of the fainter.

So what does that mean? It means that if you sit right there at watch, you can see the changes in less than 7 hours. While watching for hours for a half magnitude drop might not seem like your cup of tea, think about what you’re watching…. These two stars are actually contacting each other as they go by! Can you imagine stars spinning so fast that they produce huge amounts of magnetic activity and dark starspots that also add to the variation as they swing in and out of view? Sharing mass and pulling at each other in just a matter of hours? Now that’s a show worth watching…

Now try variable star R Coronae Borealis (RA 19 53 65 Dec -36 57 97). Here we have another unusual one – a “Herbig Ae/Be” pre-main sequence star. The star is an irregular variable with more frequent outbursts during times of greater average brightness, but it also has a long-term periodic variation of about 1,500 days and about 1/2 magnitude that may be linked to changes in its circumstellar shell, rather than to stellar pulsations. Although R Coronae Australis is 40 times brighter than Sol, and about 2 to 10 times larger, most of its stellar luminosity is obscured because the star is still accreting matter. Protoplanetary bodies? Maybe!

Keep your binoculars handy and get out the telescope as we start deep sky first with NGC 6541. Also known as Caldwell 78 and Bennett 104, this beautiful 6th magnitude globular cluster was first discovered by N. Cacciatore on March 19, 1826. It belongs in our Milky Way galaxy’s inner halo structure and it is rather metal poor in structure – but beautifully resolved in a telescope. In binoculars, this splendid southern sky study will appear as a large faint globular with a bright star to the northeast.





The location of the southern constellation of Corona Astralis. Credit: IAU/ Sky&Telescope magazine
Now head for the telescope and NGC 6496 (RA 17 59 0 Dec -44 16). At right around magnitude 9, this globular cluster also has a bonus nebula attached to it. Collectively known as Bennett 100, Dreyer described it as a “nebula plus cluster” but it will take dark skies to make out both. Look for 5th magnitude star SAO 228562 that accompanies it. In a small telescope, only a hazy, faint patch can be seen, but larger aperture does get some resolution.

Try emission/reflection nebula NGC 6729 (RA 19 01 55 Dec -36 57 30) next. In a wide field, you can place NGC 6726, NGC 6727, NGC 6729 and the double star BSO 14 in the same eyepiece. The three nebulae NGC 6726-27, and NGC 6729 were discovered by Johann Friedrich Julius Schmidt, during his observations at Athen Observatory in 1861. The nebula are very faint and almost comet-like in appearance and the double star is easily split. Don’t forget to mark your notes as having captured Caldwell 68!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The post The Corona Australis Constellation appeared first on Universe Today.

These 25 Billion Galaxies are Definitely Living in a Simulation

These 25 Billion Galaxies are Definitely Living in a Simulation:

Understanding the Universe and how it has evolved over the course of billions of years is a rather daunting task. On the one hand, it involves painstakingly looking billions of light years into deep space (and thus, billions of years back in time) to see how its large-scale structure changed over time. Then, massive amounts of computing power are needed to simulate what it should look like (based on known physics) and seeing if they match up.

That is what a team of astrophysicists from the University of Zurich (UZH) did using the “Piz Daint” supercomputer. With this sophisticated machine, they simulated the formation of our entire Universe and produced a catalog of about 25 billion virtual galaxies. This catalog will be launched aboard the ESA’s Euclid mission in 2020, which will spend six years probing the Universe for the sake of investigating dark matter.

The team’s work was detailed in a study that appeared recently in the journal Computational Astrophysics and Cosmology. Led by Douglas Potter, the team spent the past three years developing an optimized code to describe (with unprecedented accuracy) the dynamics of dark matter as well as the formation of large-scale structures in the Universe.



The code, known as PKDGRAV3, was specifically designed to optimally use the available memory and processing power of modern super-computing architectures. After being executed on the “Piz Daint” supercomputer – located at the Swiss National Computing Center (CSCS) – for a period of only 80 hours, it managed to generate a virtual Universe of two trillion macro-particles, from which a catalogue of 25 billion virtual galaxies was extracted.

Intrinsic to their calculations was the way in which dark matter fluid would have evolved under its own gravity, thus leading to the formation of small concentrations known as “dark matter halos”. It is within these halos – a theoretical component that is thought to extend well beyond the visible extent of a galaxy – that galaxies like the Milky Way are believed to have formed.

Naturally, this presented quite the challenge. It required not only a precise calculation of how the structure of dark matter evolves, but also required that they consider how this would influence every other part of the Universe. As Joachim Stadel, a professor with the Center for Theoretical Astrophysics and Cosmology at UZH and a co-author on the paper, told Universe Today via email:

“We simulated 2 trillion such dark matter “pieces”, the largest calculation of this type that has ever been performed. To do this we had to use a computation technique known as the “fast multipole method” and use one of the fastest computers in the world, “Piz Daint” at the Swiss National Supercomputing Centre, which among other things has very fast graphics processing units (GPUs) which allow an enormous speed-up of the floating point calculations needed in the simulation. The dark matter clusters into dark matter “halos” which in turn harbor the galaxies. Our calculation accurately produces the distribution and properties of the dark matter, including the halos, but the galaxies, with all of their properties, must be placed within these halos using a model. This part of the task was performed by our colleagues at Barcelona under the direction of Pablo Fossalba and Francisco Castander. These galaxies then have the expected colors, spatial distribution and the emission lines (important for the spectra observed by Euclid) and can be used to test and calibrate various systematics and random errors within the entire instrument pipeline of Euclid.”




Artist impression of the Euclid probe, which is set to launch in 2020. Credit: ESA
Thanks to the high precision of their calculations, the team was able to turn out a catalog that met the requirements of the European Space Agency’s Euclid mission, whose main objective is to explore the “dark universe”. This kind of research is essential to understanding the Universe on the largest of scales, mainly because the vast majority of the Universe is dark.

Between the 23% of the Universe which is made up of dark matter and the 72% that consists of dark energy, only one-twentieth of the Universe is actually made up of matter that we can see with normal instruments (aka. “luminous” or baryonic matter). Despite being proposed during the 1960s and 1990s respectively, dark matter and dark energy remain two of the greatest cosmological mysteries.

Given that their existence is required in order for our current cosmological models to work, their existence has only ever been inferred through indirect observation. This is precisely what the Euclid mission will do over the course of its six year mission, which will consist of it capturing light from billions of galaxies and measuring it for subtle distortions caused by the presence of mass in the foreground.

Much in the same way that measuring background light can be distorted by the presence of a gravitational field between it and the observer (i.e. a time-honored test for General Relativity), the presence of dark matter will exert a gravitational influence on the light. As Stadel explained, their simulated Universe will play an important role in this Euclid mission – providing a framework that will be used during and after the mission.





Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation
“In order to forecast how well the current components will be able to make a given measurement, a Universe populated with galaxies as close as possible to the real observed Universe must be created,” he said. “This ‘mock’ catalogue of galaxies is what was generated from the simulation and will be now used in this way. However, in the future when Euclid begins taking data, we will also need to use simulations like this to solve the inverse problem. We will then need to be able to take the observed Universe and determine the fundamental parameters of cosmology; a connection which currently can only be made at a sufficient precision by large simulations like the one we have just performed. This is a second important aspect of how such simulation work [and] is central to the Euclid mission.”

From the Euclid data, researchers hope to obtain new information on the nature of dark matter, but also to discover new physics that goes beyond the Standard Model of particle physics – i.e. a modified version of general relativity or a new type of particle. As Stadel explained, the best outcome for the mission would be one in which the results do not conform to expectations.

“While it will certainly make the most accurate measurements of fundamental cosmological parameters (such as the amount of dark matter and energy in the Universe) far more exciting would be to measure something that conflicts or, at the very least, is in tension with the current ‘standard lambda cold dark matter‘ (LCDM) model,” he said. “One of the biggest questions is whether the so called ‘dark energy’ of this model is actually a form of energy, or whether it is more correctly described by a modification to Einstein’s general theory of relativity. While we may just begin to scratch the surface of such questions, they are very important and have the potential to change physics at a very fundamental level.”

In the future, Stadel and his colleagues hope to be running simulations on cosmic evolution that take into account both dark matter and dark energy. Someday, these exotic aspects of nature could form the pillars of a new cosmology, one which reaches beyond the physics of the Standard Model. In the meantime, astrophysicists from around the world will likely be waiting for the first batch of results from the Euclid mission with baited breath.

Euclid is one of several missions that is currently engaged in the hunt for dark matter and the study of how it shaped our Universe. Others include the Alpha Magnetic Spectrometer (AMS-02) experiment aboard the ISS, the ESO’s Kilo Degree Survey (KiDS), and CERN’s Large Hardon Collider. With luck, these experiments will reveal pieces to the cosmological puzzle that have remained elusive for decades.

Further Reading: UZH, Computational Astrophysics and Cosmology

The post These 25 Billion Galaxies are Definitely Living in a Simulation appeared first on Universe Today.