Saturday, July 2, 2016

GENERAL RELATIVITY - What is Time Dilation?

What is Time Dilation?:

172129main_gpb-earth-300dpi-copy-580x427



One of the most interesting topics in the field of science is the concept of General Relativity. You know, this idea that strange things happen as you near the speed of light. There are strange changes to the length of things, bizarre shifting of wavelengths. And most puzzling of all, there’s the concept of dilation: how you can literally experience more or less time based on how fast you’re traveling compared to someone else.

And even stranger than that? As we saw in the movie Interstellar, just spending time near a very massive object, like a black hole, can cause these same relativistic effects. Because mass and acceleration are sort of the same thing?

Honestly, it’s enough to give you a massive headache.

But just because I find the concept baffling, I’m still going to keep chipping away, trying to understand more about it and help you wrap your brain around it too. For my own benefit, for your benefit, but mostly for my benefit.

There’s a great anecdote in the history of physics – it’s probably not what actually happened, but I still love it.

One of the most famous astronomers of the 20th century was Sir Arthur Eddington, played by a dashing David Tennant in the 2008 movie, Einstein and Eddington. Which, you should really see, if you haven’t already.

So anyway, Doctor Who, I mean Eddington, had worked out how stars generate energy (through fusion) and personally confirmed that Einstein’s predictions of General Relativity were correct when he observed a total Solar Eclipse in 1919.

Arthur Eddington
Arthur Eddington
Apparently during a lecture by Sir Arthur Eddington, someone asked, “Professor Eddington, you must be one of the three people in the world who understands General Relativity.” He paused for a moment, and then said, “yes, but I’m trying to think of who the third person is.”

It’s definitely not me, but I know someone who does have a handle on General Relativity, and that’s Dr. Brian Koberlein, an astrophysics professor at the Rochester Institute of Technology. He covers this topic all the time on his blog, One Universe At A Time, which you should totally visit and read at briankoberlein.com.

In fact, just to demonstrate how this works, Brian has conveniently pushed his RIT office to nearly light speed, and is hurtling towards us right now.


Dr. Brian Koberlein:

Hi Fraser, thanks for having me. If you can hang on one second, I just have to slow down.

Fraser Cain:

What just happened there? Why were you all slowed down?

Brian:

It’s actually an interesting effect known as time dilation. One of the things about light is that no matter what frame of reference you’re in, no matter how you’re moving through the Universe, you’ll always measure the speed of light in a vacuum to be the same. About 300,000 kilometres per second.

And in order to do that, if you are moving relative to me, or if I’m moving relative to you, our references for time and space have to shift to keep the speed of light constant. As I move faster away from you, my time according to you has to appear to slow down. On the same hand, your time will appear to slow down relative to me.

And that time dilation effect is necessary to keep the speed of light constant.

Fraser:

Does this only happen when you’re moving?

172129main_gpb-earth-300dpi-copy-580x427
A representation of the coordinate system of the warped space around Earth. Credit: NASA
Brian:

Time dilation doesn’t just occur because of relative motion, it can also occur because of gravity. Einstein’s theory of relativity says that gravity is a property of the warping of space and time. So when you have a mass like Earth, it actually warps space and time.

If you’re standing on the Earth, your time appears to move a little bit more slowly than someone up in space, because of the difference in gravity.

Now, for Earth, that doesn’t really matter that much, but for something like a black hole, it could matter a great deal. As you get closer and closer to a black hole, your time will appear to slow down more and more and more.

Fraser:

What would this mean for space travel?

Brian:

In many times in science fiction, you’ll see the idea of a rocket moving very close to the speed of light, and using time dilation to travel to distant stars.

But you could actually do the same thing with gravity. If you had a black hole that was going out to another star or another galaxy, you could actually take your spaceship and orbit it very close to the black hole. And your time would seem to slow down. While you’re orbiting the black hole, the black hole would take its time to get to another star or another galaxy, and for you it would seem really quick.

Orbiting near a moving black hole doesn't seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ
Orbiting near a moving black hole doesn’t seem like the safest mode of transportation, but time dilation might make it worth the risk. Credit: NAOJ
So that’s another way that you could use time dilation to travel to the stars, at least in science fiction.

Fraser:

All right Brian, I’ve got one final question for you. If you get more massive as you get closer to the speed of light, could you get so much mass that you turn into a black hole? I’d like you to answer this question in the form of a blog post on briankoberlein.com and on the Google+ post we’re going to link right here.

Brian:

Thanks Fraser, I’ll have that answer up on my website.


Once again, we visited the baffling realm of time dilation, and returned relatively unscathed. It doesn’t mean that I understand it any better, but I hope you do, anyway. Once again, a big thanks to Dr. Koberlein for taking a few minutes out of his relativistic travel to answer our questions. Make sure you visit his blog and read his answer to my question.

The post What is Time Dilation? appeared first on Universe Today.

GOING TO THE MOON AGAIN - The Dutch Are Going To The Moon With The Chinese

The Dutch Are Going To The Moon With The Chinese:



Radio image of the night sky. Credit: Max Planck Institute for Radio Astronomy, generated by Glyn Haslam.


One of the defining characteristics of the New Space era is partnerships. Whether it is between the private and public sector, different space agencies, or different institutions across the world, collaboration has become the cornerstone to success. Consider the recent agreement between the Netherlands Space Office (NSO) and the Chinese National Space Agency (CNSA) that was announced earlier this week.



In an agreement made possible by the Memorandum of Understanding (MoU) signed in 2015 between the Netherlands and China, a Dutch-built radio antenna will travel to the Moon aboard the Chinese Chang’e 4 satellite, which is scheduled to launch in 2018. Once the lunar exploration mission reaches the Moon, it will deposit the radio antenna on the far side, where it will begin to provide scientists with fascinating new views of the Universe.



The radio antenna itself is also the result of collaboration, between scientists from Radboud University, the Netherlands Institute for Radio Astronomy (ASTRON) and the small satellite company Innovative Solutions in Space (ISIS). After years of research and development, these three organizations have produced an instrument which they hope will usher in a new era of radio astronomy.







Essentially, radio astronomy involves the study of celestial objects - ranging from stars and galaxies to pulsars, quasars, masers and the Cosmic Microwave Background (CMB) - at radio frequencies. Using radio antennas, radio telescopes, and radio interferometers, this method allows for the study of objects that might otherwise be invisible or hidden in other parts of the electromagnetic spectrum.



One drawback of radio astronomy is the potential for interference. Since only certain wavelengths can pass through the Earth's atmosphere, and local radio wave sources can throw off readings, radio antennas are usually located in remote areas of the world. A good example of this is the Very-Long Baseline Array (VLBA) located across the US, and the Square Kilometer Array (SKA) under construction in Australia and South Africa.



One other solution is to place radio antennas in space, where they will not be subject to interference or local radio sources. The antenna being produced by Radbound, ASTRON and ISIS is being delivered to the far side of the Moon for just this reason. As the latest space-based radio antenna to be deployed, it will be able to search the cosmos in ways Earth-based arrays cannot, looking for vital clues to the origins of the universe.



As Heino Falke - a professor of Astroparticle Physics and Radio Astronomy at Radboud - explained in a University press release, the deployment of this radio antenna on the far side of the Moon will be an historic achievement:



“Radio astronomers study the universe using radio waves, light coming from stars and planets, for example, which is not visible with the naked eye. We can receive almost all celestial radio wave frequencies here on Earth. We cannot detect radio waves below 30 MHz, however, as these are blocked by our atmosphere. It is these frequencies in particular that contain information about the early universe, which is why we want to measure them.”
As it stands, very little is known about this part of the electromagnetic spectrum. As a result, the Dutch radio antenna could be the first to provide information on the development of the earliest structures in the Universe. It is also the first instrument to be sent into space as part of a Chinese space mission.



Alongside Heino Falcke, Marc Klein Wolt - the director of the Radboud Radio Lab - is one of the scientific advisors for the project. For years, he and Falcke have been working towards the deployment of this radio antenna, and have high hopes for the project. As Professor Wolt said about the scientific package he is helping to create:



“The instrument we are developing will be a precursor to a future radio telescope in space. We will ultimately need such a facility to map the early universe and to provide information on the development of the earliest structures in it, like stars and galaxies.”
Together with engineers from ASTRON and ISIS, the Dutch team has accumulated a great deal of expertise from their years working on other radio astronomy projects, which includes experience working on the Low Frequency Array (LOFAR) and the development of the Square Kilometre Array, all of which is being put to work on this new project.







Other tasks that this antenna will perform include monitoring space for solar storms, which are known to have a significant impact on telecommunications here on Earth. With a radio antenna on the far side of the Moon, astronomers will be able to better predict such events and prepare for them in advance.



Another benefit will be the ability to measure strong radio pulses from gas giants like Jupiter and Saturn, which will help us to learn more about their rotational speed. Combined with the recent ESO efforts to map Jupiter at IR frequencies, and the data that is already arriving from the Juno mission, this data is likely to lead to some major breakthroughs in our understanding of this mysterious planet.



Last, but certainly not least, the Dutch team wants to create the first map of the early Universe using low-frequency radio data. This map is expected to take shape after two years, once the Moon has completed a few full rotations around the Earth and computer analysis can be completed.



It is also expected that such a map will provide scientists with additional evidence that confirms the Standard Model of Big Bang cosmology (aka. the Lambda CDM model). As with other projects currently in the works, the results are likely to be exciting and groundbreaking!



Further Reading: Radbound University

The post The Dutch Are Going To The Moon With The Chinese appeared first on Universe Today.

DISCOVER THE COSMOS - Sunrise Solstice over Stonehenge

Sunrise Solstice over Stonehenge:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 20


See Explanation. Clicking on the picture will download the highest resolution version available.


Sunrise Solstice over Stonehenge

Image Credit & Copyright: Max Alexander, STFC, SPL


Explanation: Today the Sun reaches its northernmost point in planet Earth's sky. Called a solstice, the date traditionally marks a change of seasons -- from spring to summer in Earth's Northern Hemisphere and from fall to winter in Earth's Southern Hemisphere. The featured image was taken during the week of the 2008 summer solstice at Stonehenge in United Kingdom, and captures a picturesque sunrise involving fog, trees, clouds, stones placed about 4,500 years ago, and a 4.5 billion year old large glowing orb. Even given the precession of the Earth's rotational axis over the millennia, the Sun continues to rise over Stonehenge in an astronomically significant way.

Tomorrow's picture: prickly pinwheel



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

SPIRAL GALAXY - NGC 6814: Grand Design Spiral Galaxy from Hubble

NGC 6814: Grand Design Spiral Galaxy from Hubble:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 21


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: In the center of this serene stellar swirl is likely a harrowing black-hole beast. The surrounding swirl sweeps around billions of stars which are highlighted by the brightest and bluest. The breadth and beauty of the display give the swirl the designation of a grand design spiral galaxy. The central beast shows evidence that it is a supermassive black hole about 10 million times the mass of our Sun. This ferocious creature devours stars and gas and is surrounded by a spinning moat of hot plasma that emits blasts of X-rays. The central violent activity gives it the designation of a Seyfert galaxy. Together, this beauty and beast are cataloged as NGC 6814 and have been appearing together toward the constellation of the Eagle (Aquila) for roughly the past billion years.

CIRRUS CLOUDS OVER PARIS - DISCOVER THE COSMOS

Cirrus over Paris:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 22


See Explanation. Clicking on the picture will download the highest resolution version available.


Cirrus over Paris

Image Credit & Copyright: Bertrand Kulik


Explanation: What's that over Paris? Cirrus. Typically, cirrus clouds appear white or gray when reflecting sunlight, can appear dark at sunset (or sunrise) against a better lit sky. Cirrus are among the highest types of clouds and are usually thin enough to see stars through. Cirrus clouds may form from moisture released above storm clouds and so may herald the arrival of a significant change in weather. Conversely, cirrus clouds have also been seen on Mars, Jupiter, Saturn, Titan, Uranus, and Neptune. The featured image was taken two days ago from a window in District 15, Paris, France, Earth. The brightly lit object on the lower right is, of course, the Eiffel Tower.

Tomorrow's picture: open space



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

FULL MOON - Solstice Dawn and Full Moonset

Solstice Dawn and Full Moonset:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 23


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: A Full Moon sets as the Solstice Sun rises in this June 20 dawn skyscape. Captured from a nearby peak in central California, planet Earth, the scene looks across the summit of Mount Hamilton and Lick Observatory domes on a calendar date that marks an astronomical change of seasons and hemispherical extremes of daylight hours. Earth's shadow stretches toward the Santa Cruz Mountains on the western horizon. Just above the atmospheric grey shadowband is a more colorful anti-twilight arch, a band of reddened, backscattered sunlight also known as the Belt of Venus. The interplay of solstice dates and lunar months does make this solstice and Full Moon a rare match-up. The next June solstice and Full Moon will fall on the same calendar date on June 21, 2062.

CONSTELLATION SAGITTARIUS - Sagittarius Sunflowers

Sagittarius Sunflowers:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 24


See Explanation. Clicking on the picture will download the highest resolution version available.


Sagittarius Sunflowers

Image Credit & Copyright: Andrew Campbell


Explanation: These three bright nebulae are often featured in telescopic tours of the constellation Sagittarius and the crowded starfields of the central Milky Way. In fact, 18th century cosmic tourist Charles Messier cataloged two of them; M8, the large nebula left of center, and colorful M20 near the bottom of the frame The third, NGC 6559, is right of M8, separated from the larger nebula by dark dust lanes. All three are stellar nurseries about five thousand light-years or so distant. The expansive M8, over a hundred light-years across, is also known as the Lagoon Nebula. M20's popular moniker is the Trifid. In the composite image, narrowband data records ionized hydrogen, oxygen, and sulfur atoms radiating at visible wavelengths. The mapping of colors and range of brightness used to compose this cosmic still life were inspired by Van Gogh's famous Sunflowers. Just right of the Trifid one of Messier's open star clusters, M21, is also included on the telescopic canvas.

Tomorrow's picture: strawberry to honey



< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

DISCOVER THE COSMOS - From Alpha to Omega in Crete

From Alpha to Omega in Crete:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 29


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: This beautiful telephoto composition spans light-years in a natural night skyscape from the island of Crete. Looking south, exposures both track the stars and record a fixed foreground in three merged panels that cover a 10x12 degree wide field of view. The May 15 waxing gibbous moonlight illuminates the church and mountainous terrain. A mere 18 thousand light-years away, huge globular star cluster Omega Centauri (NGC 5139) shining above gives a good visual impression of its appearance in binoculars on that starry night. Active galaxy Centaurus A (NGC 5128) is near the top of the frame, some 11 million light-years distant. Also found toward the expansive southern constellation Centaurus and about the size of our own Milky Way is edge on spiral galaxy NGC 4945. About 13 million light-years distant it's only a little farther along, and just above the horizon at the right.

SKY BRIGHTNESS - The New World Atlas of Artificial Sky Brightness

The New World Atlas of Artificial Sky Brightness:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 30


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: How far are you from a naturally dark night sky? In increasing steps, this world map (medium | large) shows the effect of artificial night sky brightness on the visual appearance of the night sky. The brightness was modeled using high resolution satellite data and fit to thousands of night sky brightness measurements in recent work. Color-coded levels are compared to the natural sky brightness level for your location. For example, artificial sky brightness levels in yellow alter the natural appearance of the night sky. In red they hide the Milky Way in an artificial luminous fog. The results indicate that the historically common appearance of our galaxy at night is now lost for more than one-third of humanity. That includes 60% of Europeans and almost 80% of North Americans, along with inhabitants of other densely populated, light-polluted regions of planet Earth.

JUPITER PLANET - Juno Approaching Jupiter

Juno Approaching Jupiter:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 July 1


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Approaching over the north pole after nearly a five-year journey, Juno enjoys a perspective on Jupiter not often seen, even by spacecraft from Earth that usually swing by closer to Jupiter's equator. Looking down toward the ruling gas giant from a distance of 10.9 million kilometers, the spacecraft's JunoCam captured this image with Jupiter's nightside and orbiting entourage of four large Galilean moons on June 21. JunoCam is intended to provide close-up views of the gas giant's cloudy zoned and belted atmosphere. On July 4 (July 5 UT) Juno is set to burn its main engine to slow down and be captured into its own orbit around the giant planet. If all goes well, it will be the first spacecraft to orbit the poles of Jupiter, skimming to within 5,000 kilometers of the Jovian cloud tops during the 20 month mission.

Thursday, June 30, 2016

UFOS IN RUSSIA - Top Secret Alien and UFO Base in Russia

UFO, HOW IT WORKS ? Lets go inside of alien spaceship!





Wednesday, June 22, 2016

UFO MADE AT HOME - UFO ANTI GRAVITY FROM HOUSEHOLD ITEMS





Monday, June 20, 2016

ASTRONOMICAL SUMMER - Seeking the Summer Solstice

Seeking the Summer Solstice:



A summer solstice sunset. Image credit and copyright: Sarah and Simon Fisher.


Can you feel the heat? If you find yourself north of the equator, astronomical summer kicks off today with the arrival of the summer solstice. In the southern hemisphere, the reverse is true, as today's solstice marks the start of winter.



Thank our wacky seasons, and the 23.4 degree tilt of the Earth's axis for the variation in insolation. Today, all along the Tropic of Cancer at latitude 23.4 degrees north, folks will experience what's known as Lahiana Noon, as the Sun passes through the zenith directly overhead. Eratosthenes first noted this phenomena in 3rd century BC from an account in the town of Syene (modern day Aswan), 925 kilometers to the south of Alexandria, Egypt. The account mentioned how, at noon on the day of the solstice, the Sun shined straight down a local well, and cast no shadows. He went on to correctly deduce that the differing shadow angles between the two locales is due to the curvature of the Earth, and went on to calculate the curvature of the planet for good measure. Not a bad bit of reasoning, for an experiment that you can do today.







And although we call it the Tropic of Cancer, and the astrological sign of the Crab begins today as the Sun passes 90 degrees longitude along the ecliptic plane as seen from Earth, the Sun now actually sits in the astronomical constellation of Taurus on the June northward solstice. Thank precession; live out a normal 72 year human life span, and the solstice will move one degree along the ecliptic—stick around about 26,000 years, and it will complete one circuit of the zodiac. That's something that your astrologer won't tell you.







The solstice in the early 21st century actually falls on June 20th, thanks to the 'reset' the Gregorian calendar received in 2000 from the addition of a century year leap day. The actual moment the Sun reaches its northernmost declination today and slowly reverses its apparent motion is 22:34 Universal Time (UT).  In 2016, the Moon reaches Full just 11 hours to the solstice. The last time a Full Moon fell within 24 hours of a solstice was December 2010, and we had a total lunar eclipse to boot. Such a coincidence won't occur again until December 2018. You get a good study in celestial mechanics 101 tonight, as the Full Moon rises opposite to the setting Sun. The Moon occupies the southern region of the sky where the Sun will reside this December during the other solstice, when the Full Moon will then ride high in the night sky, and gets ever higher as we head towards a Major Lunar Standstill in 2025.







Of course, this motion of the Sun through the year is all an illusion from our terrestrial biased viewpoint. We're actually racing around the Sun to the tune of 30 kilometers per second. You wouldn't know it at summer heats up in the northern hemisphere, but we're headed towards aphelion or the farthest point from the Sun for the Earth on July 4th at 152 million kilometers or 1.017 astronomical units (AU) distant. And the latest sunset as seen from latitude 40 degrees actually occurs on June 27th at 7:33 PM (not accounting for Daylight Saving Time) go much further north (like the Canadian Maritimes or the UK) and true astronomical darkness never occurs in late June.



And speaking of the Sun, we're wrapping up the end of the 11 year solar cycle this year... and there are hints that we may be in for another profound solar minimum similar to 2009. We've already had a brief spotless stretch last month, and some solar astronomers have predicted that solar cycle #25 may be absent all together. This means a subsidence in aurorae, and an uncharacteristically blank Sol.



But don't despair and pack it in for the summer. As a consolation prize, high northern latitudes have in recent years played host to electric blue noctilucent clouds near the June solstice. Also, the International Space Station enters a second period of full illumination through the entire length of its orbit from July 26th to 28th, making for the possibility of seeing multiple passes in a single night.







And folks in the Islamic world (and travelers such as ourselves currently in Morocco) can rejoice, as the Full Moon means that we're half way through the fasting lunar month Ramadan. This is an especially tough one, as Ramadan 2016 goes right through the summer solstice, making for only a brief six hour span to break the fast each  night and prepare for another 18 hour long stretch... and to repeat this pattern for 29 days straight. It's a fascinating time of night markets and celebration, but for travelers, it also means odd opening hours and delays.







See any curious solstice shadow alignments in your neighborhood today?



Happy Lahiana Noon... from here on out, northern viewers slowly start to take back the night!





The post Seeking the Summer Solstice appeared first on Universe Today.

GALAXY AND PLANETS - Beyond Bristlecone Pines

Galaxy and Planets Beyond Bristlecone Pines:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 19



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: What's older than these ancient trees? Nobody you know -- but almost everything in the background of this picture. The trees are impressively old -- each part of the Ancient Bristlecone Pine Forest located in eastern California, USA. There, many of the oldest trees known are located, some dating as far back as about 5,000 years. Seemingly attached to tree branches, but actually much farther in the distance, are the bright orbs of Saturn (left) and Mars. These planets formed along with the Earth and the early Solar System much earlier -- about 4.5 billion years ago. Swooping down diagonally from the upper left is the oldest structure pictured: the central band of our Milky Way Galaxy -- dating back around 9 billion years. The featured image was built from several exposures all taken from the same location -- but only a few weeks ago.

Sunday, June 19, 2016

CROP CIRCLES MYSTERY - Secret Messages in 2016's first 6 crop circles

CROP CIRCLES FROM ALIENS - - Crop formations - Messages for Humanity. Lecture by Alan Foster

MYSTERY - Unexplained Dimmings in KIC 8462852

Unexplained Dimmings in KIC 8462852:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 13


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Why does star KIC 8462852 keep wavering? Nobody knows. A star somewhat similar to our Sun, KIC 8462852 was one of many distant stars being monitored by NASA's robotic Kepler satellite to see if it had planets. Citizen scientists voluntarily co-inspecting the data along with computers found this unusual case where a star's brightness dropped at unexpected times by as much as 20 percent for as long as months -- but then recovered. Common reasons for dimming -- such as eclipses by orbiting planets or stellar companions -- don't match the non-repetitive nature of the dimmings. A currently debated theory is dimming by a cloud of comets or the remnants of a shattered planet, but these would not explain data indicating that the star itself has become slightly dimmer over the past 125 years. Nevertheless, featured here is an artist's illustration of a planet breaking up, drawn to depict NGC 2547-ID8, a different system that shows infrared evidence of such a collision. Recent observations of KIC 8462852 did not detect the infrared glow of a closely orbiting dust disk, but gave a hint that the system might have such a disk farther out. Future observations are encouraged and creative origin speculations are sure to continue.

GW151226: A Second Confirmed Source of Gravitational Radiation

GW151226: A Second Confirmed Source of Gravitational Radiation:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 15


GW151226: A Second Confirmed Source of Gravitational Radiation

Illustration Credit: LIGO, NSF


Explanation: A new sky is becoming visible. When you look up, you see the sky as it appears in light -- electromagnetic radiation. But just over the past year, humanity has begun to see our once-familiar sky as it appears in a different type of radiation -- gravitational radiation. Today, the LIGO collaboration is reporting the detection of GW151226, the second confirmed flash of gravitational radiation after GW150914, the historic first detection registered three months earlier. As its name implies, GW151226 was recorded in late December of 2015. It was detected simultaneously by both LIGO facilities in Washington and Louisiana, USA. In the featured video, an animated plot demonstrates how the frequency of GW151226 changed with time during measurement by the Hanford, Washington detector. This GW-emitting system is best fit by two merging black holes with initial masses of about 14 and 8 solar masses at a redshift of roughly 0.09, meaning, if correct, that it took roughly 1.4 billion years for this radiation to reach us. Note that the brightness and frequency -- here mapped into sound -- of the gravitational radiation peaks during the last second of the black hole merger. As LIGO continues to operate, as its sensitivity continues to increase, and as other gravitational radiation detectors come online in the next few years, humanity's new view of the sky will surely change humanity's understanding of the universe.

Tomorrow's picture: open space



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

AURORA BOREALIS - Northern Lights above Lofoten

Northern Lights above Lofoten:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 16


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The Aurora Borealis or northern lights are familiar visitors to night skies above the village of Reine in the Lofoten Islands, Norway, planet Earth. In this scene, captured from a mountaintop camp site, the auroral curtains do seem to create an eerie tension with the coastal lights though. A modern perspective on the world at night, the stunning image was chosen as the over all winner in The World at Night's 2016 International Earth and Sky Photo Contest. Selections were made from over 900 entries highlighting the beauty of the night sky and its battle with light pollution.

NASA IMAGES - Comet PanSTARRS in the Southern Fish

Comet PanSTARRS in the Southern Fish:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 June 17


See Explanation. Clicking on the picture will download the highest resolution version available.


Comet PanSTARRS in the Southern Fish

Image Credit & Copyright: José J. Chambó


Explanation: Now approaching our fair planet this Comet PanSTARRS (C/2013 X1) will come closest on June 21-22, a mere 5.3 light-minutes away. By then its appearance low in northern hemisphere predawn skies (high in the south), will be affected by the light of a nearly Full Moon, though. Still the comet's pretty green coma is about the apparent size of the Full Moon in this telescopic portrait, captured on June 12 from the southern hemisphere's Siding Spring Observatory. The deep image also follows a broad, whitish dust tail up and toward the left in the frame, sweeping away from the Sun and trailing behind the comet's orbit. Buffeted by the solar wind, a fainter, narrow ion tail extends horizontally toward the right. On the left edge, the brightest star is bluish Iota Piscis Austrini. Shining at about fourth magnitude, that star is visible to the unaided eye in the constellation of the Southern Fish.

Tomorrow's picture: light meets dark



< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

GORGEOUS PHOTOS - Earth and the Night Sky: TWAN Photo Contest Winners Announced

Gorgeous Photos of Earth and the Night Sky: TWAN Photo Contest Winners Announced:



'Northern Lights above Lofoten,' a photo taken by Alex Conu, won first prize in the 'Against the Lights' category  in the 2016 International Earth & Sky Photo Contest. The image was taken from a mountaintop in Lofoten Islands, Norway.  Credit and copyright: Alex Conu.


The winners of the 7th annual Earth & Sky Photo Contest have been announced, and wow, these images are absolutely stunning! The contest really highlights the beauty of the night sky, and its mission is to spread the message to cut down on light pollution while helping to preserve the last remaining natural night environments and night skies in the world. The contest was organized by The World at Night (TWAN) and other sister organizations.



"The sky above us is an essential part of our nature, a heritage for us and other species on this planet,” said TWAN founder and contest chair, Babak Tafreshi.”The contest main goal is to present the night sky in this broader context that helps preserving the natural night sky by reconnect it with our modern life."



See more winning photos below:











Just last week, a group of Italian and American scientists unveiled a new global atlas of light pollution, and sadly, they said the results show the Milky Way is “but a faded memory to one-third of humanity and 80 percent of Americans.”



“We’ve got whole generations of people in the United States who have never seen the Milky Way,” said Chris Elvidge, a scientist with NOAA’s National Centers for Environmental Information. “It’s a big part of our connection to the cosmos — and it’s been lost.”



These photos from Earth & Sky Contest really display that important connection, with people and places on Earth being a big part of many of the images – the classic definition of “TWAN-style” photography. According to the contest theme of “Dark Skies Importance,” the submitted photos were judged in two categories: “Beauty of The Night Sky” and “Against the Lights.”



“The selected images are those most effective in impressing public on both how important and delicate the starry sky is as an affecting part of our nature, and also how bad the problem of light pollution has become,” TWAN said in their press release. “Today, most city skies are virtually devoid of stars. Light pollution (excessive light that scatters to the sky instead of illuminating the ground) not only is a major waste of energy, it also obscures the stars, disrupts ecosystems and has adverse health effects.”







The winning images were chosen on their "aesthetic merit and technical excellence," said David Malin of the judging panel, who is well-known pioneer in scientific astrophotography. "We believe they accurately reflect the state of the art in TWAN-style photography. The competition encourages photographers with imagination to push their cameras to their technical limits, and to produce eye-catching images that appear perfectly natural and are aesthetically pleasing."













The contest was open to anyone of any age, anywhere in the world; to both professional and amateur/hobby photographers. It has been an annual event since 2009 (initially for the International Year of Astronomy) by TWAN, the National Optical Astronomy Observatory, and Global Astronomy Month from Astronomers Without Borders. The contest supports efforts of the International Dark Sky Association (IDA) and other organizations that seek to preserve the night sky.



The images were taken in 57 countries and territories including Algeria, Antarctica, Australia, Austria, Bahamas, Belgium, Bolivia, Brazil, Canada, China, Colombia, Croatia, Czech Republic, Egypt, England, Estonia, Finland, France, Germany, Greece, Guatemala, Guam, Hungary, Iceland, India, Indonesia, Iran, Ireland, Italy, Japan, Jordan, Kenya, Lithuania, Madagascar, Malaysia, Malta, Morocco, Norway, New Zealand, Paraguay, Peru, Philippines, Poland, Reunion (France), Romania, Russia, Scotland, Sri Lanka, South Africa, Spain, South Africa, Sri Lanka, Sweden, Switzerland, Tanzania, Thailand, Ukraine, and USA.



See all the images and more information about them at TWAN. Click on each image for larger versions. A larger version of the lead image can be found here.



You can see the global atlas of light pollution here, which was created from data from the NOAA/NASA Suomi National Polar-orbiting Partnership satellite and calibrated by thousands of ground observations.



And here's a video that includes all the winning images:





The post Gorgeous Photos of Earth and the Night Sky: TWAN Photo Contest Winners Announced appeared first on Universe Today.

PLUTO PLANET - Peering for Pluto: Our Guide to Opposition 2016

Peering for Pluto: Our Guide to Opposition 2016:



An enviable view, of the most distant eclipse seen yet, as New Horizons flies through the shadow of Pluto. Image credit: NASA/JPL.


What an age we live in. This summer marks the very first opposition of Pluto since New Horizons' historic flyby of the distant world in July 2015. If you were like us, you sat transfixed during the crucial flyby phase, the climax of a decade long mission. We now live in an era where Pluto and its massive moon Charon are a known worlds, something that even Pluto discoverer Clyde Tombaugh never got to see.



Pluto in 2016



And this summer, with a little skill and patience and a good-sized telescope, you can see Pluto for yourself. Opposition 2016 sees the remote world looping through the star-rich fields of eastern Sagittarius. Hovering around declination 21 degrees south, +14.1 magnitude Pluto is higher in the June skies for observers in the southern hemisphere than the northern, but don't let that stop you from trying. Opposition occurs on July 7th, when Pluto rises opposite from the setting Sun and rides across the meridian at 29 degrees above the southern horizon for observers based along 40 degrees north latitude at local midnight.







Pluto actually crossed the plane of the galactic equator in 2009, and won't cross the celestial equator northward until 2109. Fun fact: astronomer Clyde Tombaugh discovered Pluto as it drifted through the constellation Gemini in 1930. Here we are 86 years later, and Pluto has only moved six zodiacal constellations along the ecliptic eastward in its 248 year orbit around the Sun.







And Pluto is getting tougher to catch in a backyard scope, as well. The reason: Pluto passed perihelion or its closest point to the Sun in 1989 inside the orbit of Neptune, and it's now headed out to aphelion about a century from now in 2114. Pluto is in a fairly eccentric orbit, ranging from 29.7 astronomical units (AU) to 49.4 AU from the Sun. This also means that Pluto near opposition can range from a favorable magnitude +13.7 near perihelion, to three magnitudes (16 times) fainter near aphelion hovering around magnitude +16.3. Clyde was lucky, in a way. Had Pluto been near aphelion in the 20th century rather than headed towards perihelion, it might have waited much longer for discovery.



2016 sees Pluto shining at +14.1, one magnitude (2.5 times) above the usual quoted mean. See Mars over in the constellation Libra shining at magnitude -1.5? It's 100^3 (a 5-fold change in magnitude is equal to a factor of 100 in brightness), or over a million times brighter than Pluto.







You often see Pluto quoted as visible in a telescope aperture of 'six inches or larger,' but for the coming decade, we feel this should be amended to 8 inches and up. We once nabbed Pluto during public viewing using the 14” reflector at the Flandrau observatory.



And how about Pluto's large moon, Charon? Shining at an even fainter +16th magnitude, Charon never strays more than 0.9” from Pluto... still, diligent amateurs have indeed caught the elusive moon... as did Wendy Clark just last year.







Lacking a telescope? Hey, so are we, as we trek through Morocco this summer... never fear, you can still wave in the general direction of Pluto and New Horizons on the evening of June 21st, one day after the northward solstice and the Full Moon, which passes three degrees north of Pluto.







And follow that spacecraft, as New Horizons is set to make a close pass by Kuiper Belt Object 2014 MU69 in January 2019 on New Year's Day.



A key date to make your quest for Pluto is June 26th, when Pluto sits just 3' minutes to the south of the +2.9 magnitude star Pi Sagittarii (Albaldah), making a great guidepost.



Does the region of Sagittarius near Pi Sagittarii sound familiar? That's because the Wow! Signal emanated from a nearby region of the sky on August 15th, 1977. Pluto will cross the border into the constellation Capricornus in 2024.



After opposition, Pluto heads into the evening sky, towards solar conjunction on January 7th, 2017.



Observing Pluto requires patience, dark skies, and a good star chart plotted down to about +15th magnitude. One key problem: many star charts don't go down this faint. We use Starry Night Pro 7, which includes online access to the USNO catalog and a database of 500 million stars down to magnitude +21, more than enough for most backyard scopes.



Don't miss a chance to see Pluto for yourself this summer!

The post Peering for Pluto: Our Guide to Opposition 2016 appeared first on Universe Today.

UNDERSTANDING THE UNIVERSE - Second Gravitational Wave Source Found By LIGO

Second Gravitational Wave Source Found By LIGO:



This image depicts two black holes just moments before they collided and merged with each other, releasing energy in the form of gravitational waves.  Image credit: Numerical Simulations: S. Ossokine and A. Buonanno, Max Planck Institute for Gravitational Physics, and the Simulating eXtreme Spacetime (SXS) project. Scientific Visualization: T. Dietrich and R. Haas, Max Planck Institute for Gravitational Physics.


Lightning has struck twice – maybe three times – and scientists from the Laser Interferometer Gravitational-wave Observatory, or LIGO, hope this is just the beginning of a new era of understanding our Universe. This “lightning” came in the form of the elusive, hard-to-detect gravitational waves, produced by gigantic events, such as a pair of black holes colliding. The energy released from such an event disturbs the very fabric of space and time, much like ripples in a pond. Today’s announcement is the second set of gravitational wave ripples detected by LIGO, following the historic first detection announced in February of this year.



“This collision happened 1.5 billion years ago,” said Gabriela Gonzalez of Louisiana State University at a press conference to announce the new detection, “and with this we can tell you the era of gravitational wave astronomy has begun.”



LIGO’s first detection of gravitational waves from merging black holes occurred Sept. 14, 2015 and it confirmed a major prediction of Albert Einstein’s 1915 general theory of relativity. The second detection occurred on Dec. 25, 2015, and was recorded by both of the twin LIGO detectors.



While the first detection of the gravitational waves released by the violent black hole merger was just a little “chirp” that lasted only one-fifth of a second, this second detection was more of a “whoop” that was visible for an entire second in the data. Listen in this video:









“This is what we call gravity’s music,” said González as she played the video at today’s press conference.



While gravitational waves are not sound waves, the researchers converted the gravitational wave’s oscillation and frequency to a sound wave with the same frequency. Why were the two events so different?



From the data, the researchers concluded the second set of gravitational waves were produced during the final moments of the merger of two black holes that were 14 and 8 times the mass of the Sun, and the collision produced a single, more massive spinning black hole 21 times the mass of the Sun. In comparison, the black holes detected in September 2015 were 36 and 29 times the Sun’s mass, merging into a black hole of 62 solar masses.



The scientists said the higher-frequency gravitational waves from the lower-mass black holes hit the LIGO detectors’ “sweet spot” of sensitivity.



“It is very significant that these black holes were much less massive than those observed in the first detection,” said Gonzalez. “Because of their lighter masses compared to the first detection, they spent more time—about one second—in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe.”







LIGO allows scientists to study the Universe in a new way, using gravity instead of light. LIGO uses lasers to precisely measure the position of mirrors separated from each other by 4 kilometers, about 2.5 miles, at two locations that are over 3,000 km apart, in Livingston, Louisiana, and Hanford, Washington. So, LIGO doesn’t detect the black hole collision event directly, it detects the stretching and compressing of space itself. The detections so far are the result of LIGO’s ability to measure the perturbation of space with an accuracy of 1 part in a thousand billion billion. The signal from the lastest event, named GW151226, was produced by matter being converted into energy, which literally shook spacetime like Jello.



LIGO team member Fulvio Ricci, a physicist at the University of Rome La Sapienzaa said there was a third “candidate” detection of an event in October, which Ricci said he prefers to call a “trigger,” but it was much less significant and the signal to noise not large enough to officially count as a detection.



But still, the team said, the two confirmed detections point to black holes being much more common in the Universe than previously believed, and they might frequently come in pairs.



“The second discovery “has truly put the ‘O’ for Observatory in LIGO,” said Albert Lazzarini, deputy director of the LIGO Laboratory at Caltech. “With detections of two strong events in the four months of our first observing run, we can begin to make predictions about how often we might be hearing gravitational waves in the future. LIGO is bringing us a new way to observe some of the darkest yet most energetic events in our universe.”



LIGO is now offline for improvements. Its next data-taking run will begin this fall and the improvements in detector sensitivity could allow LIGO to reach as much as 1.5 to two times more of the volume of the universe compared with the first run. A third site, the Virgo detector located near Pisa, Italy, with a design similar to the twin LIGO detectors, is expected to come online during the latter half of LIGO’s upcoming observation run. Virgo will improve physicists’ ability to locate the source of each new event, by comparing millisecond-scale differences in the arrival time of incoming gravitational wave signals.



In the meantime, you can help the LIGO team with the Gravity Spy citizen science project through Zooniverse.



Sources for further reading:

Press releases:

University of Maryland

Northwestern University

West Virginia University

Pennsylvania State University

Physical Review Letters: GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

LIGO facts page, Caltech



For an excellent overview of gravitational waves, their sources, and their detection, check out Markus Possel's excellent series of articles we featured on UT in February:



Gravitational Waves and How They Distort Space



Gravitational Wave Detectors and How They Work



Sources of Gravitational Waves: The Most Violent Events in the Universe



The post Second Gravitational Wave Source Found By LIGO appeared first on Universe Today.

NASA IMAGES - What Are Virtual Particles?

What Are Virtual Particles?:



Credit: NASA/Dana Berry/SkyWorks Digital

Sometimes I figure out the weak spot in my articles based on the emails and comments they receive.

One popular article we did was all about Stephen Hawking’s realization that black holes must evaporate over vast periods of time. We talked about the mechanism, and mentioned how there are these virtual particles that pop in and out of existence.

Normally these particles self annihilate, but at the edge of a black hole’s event horizon, one particle falls in, while another is free to wander the cosmos. Since you can’t create particles from nothing, the black hole needs to sacrifice a little bit of itself to buy this newly formed particle’s freedom.

But my short article wasn’t enough to clarify exactly what virtual particles are. Clearly, you all wanted more information. What are they? How are they detected? What does this mean for black holes?

In situations like this, when I know the actual Physics Police are watching, I like to call in a ringer. Once again, I’m going to go back and talk to my good friend, and actual working astrophysicist, Dr. Paul Matt Sutter. He has written papers on subjects like the Bayesian Analysis of Cosmic Dawn and MHD Simulations of Magnetic Outflows. He really knows his stuff.


Fraser Cain:

Hey Paul, first question: What are virtual particles?

Paul Matt Sutter:

Alright. No pressure, Fraser. Okay, okay.

To get the concept of virtual particles you actually have to take a step back and think about the field, especially the electromagnetic field. In our current view of how the universe works all of space and time is filled up with this kind of background field. And this field can wibble and wabble around, and sometimes these wibbles and wabbles are like waves that propagate forward, and we call these waves photons or electromagnetic radiation, but sometimes it can just sit there and you know bloop bloop bloop, just you know pop fizzle in and out, or up and down, and kind of boil a little all on its own.

In fact all the time space is kind of wibbling/wabbling around this field even in a vacuum. A vacuum isn’t the absence of everything. The vacuum is just where this field is in its lowest energy state. But even though it’s in that lowest energy state, even though maybe on average there is nothing there. There’s nothing stopping it from just bloop bloop bloop you know bubbling around.

Credit: NASA, ESA, Q.D. Wang (University of Massachusetts, Amherst), and S. Stolovy (Caltech)


Credit: NASA, ESA, Q.D. Wang (University of Massachusetts, Amherst), and S. Stolovy (Caltech)
So actually the vacuum is kind of boiling with these fields. In particular the electromagnetic field which is what we are talking about right now.

And we know that photons, that light, can turn into particle, anti-particle pairs. It can turn into say an electron and a positron. It can just do this. It can happen to normal photons, and it can happen to these kind of temporary wibbly wobbly photons.

So sometimes a photon or sometimes the electromagnetic field can propagate from one place to another, and we call it a photon. And that photon can split off into a positron and an electron, and other times it can just wibble wobble kind of in place and then wibble wobble POP POP. It pops into a positron and an electron and then they crash into each other or whatever, and they just simmer back down. So, wibble wobble, pop pop, fizz fizz is kind of what’s going on in the vacuum all they time, and that’s the name we give these virtual particles are just the normal kind of background fuzz or background static to the vacuum.

Fraser:

Okay. So how do we see evidence for virtual particles?

Paul:

Yeah, great question. We know that the vacuum has an energy associated with it. We know that these virtual particles are always fizzing in and out of existence for a few reasons.

One is the transition of the electron in different states of the atom. If you excite the atom the electron pops up to a higher energy state. There is kind of no reason for that electron to pop back down to a lower energy state. It’s already there. It’s actually a stable state. There is no reason for it to leave unless there is little wibble wobbles in the electromagnetic field and it can giggle around that electron and knock it out of that higher energy state and send it crashing down into a lower state

Another thing is called the Lamb Shift, and this is when the wibbly wobbly electromagnetic field or the virtual particles interact again with electrons in say a hydrogen atom. It can gently nudge them around, and this shift effects some states of the electron and not other states. And there are actually states that you would say have the exact same say energy properties, they are just kind of identical, but because the Lamb Shift, because of this wibbly wobbly electromagnetic field interacts with one of those states and not the other, it actually subtly changes the energy levels of those states even though you’d expect them to be completely the same.

And another piece of evidence is in photon photon scattering usually two photons just, phweeet, fly by each other. They are electrically neutral, so they have no reason to interact, but sometimes the photons can wibble wobble into say electron/positron pairs, and that electron/positron pair can interact with the other photons. So sometimes they bounce off each other. It’s super rare because you have to wait for the wibble wobble to happen at just the right time, but it can happen.

Credit: NASA/Dana Berry/SkyWorks Digital
Credit: NASA/Dana Berry/SkyWorks Digital
Fraser:

So how do they interact with black holes?

Paul:

Alright, this is the heart of the matter. What do all of these virtual particles or wibbly wobbly electromagnetic fields have to do with black holes, and specifically Hawking radiation? But check this out. Hawkings original formulation of this idea that black holes can radiate and lose mass actually has nothing to do with virtual particles. Or it doesn’t speak directly about virtual particle pairs, and in fact no other formulations or more modern conceptions of this process talk about virtual particle pairs.

Instead, they talk more about the field itself and specifically what’s happening to the field before the black hole is there, what’s happening to it as the black hole forms, and then what happens to the field after it’s formed. And it kind of asks a question: What happens to these wibbly wobbly bits of the field, these like transient kind of boiling nature of the vacuum of the electromagnetic field? What happens to it as that black hole is forming?

Well what happens is that some of the wibbly wobbly bits just get caught near the black hole, near the event horizon as it is forming, and they spend a long time there, and eventually they do escape. So it takes awhile, but when they escape because of the intense curvature there, the intense curvature of space-time, they can get boosted or promoted. So instead of being temporarily wibbly wobbly’s, in the field they get boosted to become “real” particles or “real” photons. So it’s really like an interaction of the formation of the black hole itself with the wibbly wobbly background field, that eventually escapes because it’s not quite trapped by the black hole.

Eventually it escapes and gets turned into real particles, and you can calculate like what happens with say the expected number of particles near the event horizon of the black hole. The answer is the negative number, which means the black hole is losing mass and spitting out particles.

Now this popular conception of virtual particle pairs popping into existence and one getting caught inside the event horizon. That’s is not exactly tied to the mathematics of Hawking radiation but it’s not exactly wrong either. Remember the wibbly wobbly’s in the electromagnetic field are related to these pairs of particles and anti-particles that are constantly popping in and out of existence. They kind of go hand in hand. So by talking about wibbly wobbly’s in the field you’re also kind of talking about the production of virtual particles. And it’s not exactly the math, but you know close enough.

An artist's conception of a supermassive black hole's jets. Image Credit: NASA / Dana Berry / SkyWorks Digital
An artist’s conception of a supermassive black hole’s jets. Image Credit: NASA / Dana Berry / SkyWorks Digital
Fraser:

Okay, and finally, Paul. I need you to just randomly blow the minds of the viewers. Something about virtual particles that is just amazing!

Paul:

Alright. So you want to bend people’s minds? All right. I was saving this for the last. Something juicy, just for you, Fraser.

Check this out, it’s one other big piece of evidence we have for the existence of these background fluctuations and the existence of virtual particles, and that’s something we call the Casimir Effect, or Casimir Force.

You take two neutral metal plates, and what happens is this field that permeates all of space-time is inside the plates and it’s outside the plates. Inside the plates, you can only have certain wavelengths of modes. Almost like the inside of a trumpet can only have certain modes that make sound. The ends of the wavelengths must connect to the plates, because that’s what metal plates do to electromagnetic fields.

Outside the plates you can have any wavelength you want. It doesn’t matter.

So it means outside the plates you have an infinite number of possible wavelengths of modes. Every kind of possible kind of fluctuation, wibble wabble in the electromagnetic field is there, but inside the plates it’s only certain wavelengths that can fit inside the plates.

Now, outside there’s an infinite number of modes. Inside, there is still an infinite number of modes, just slightly fewer infinite number of modes. And you can take the infinity on the outside, and subtract the infinite infinity on the inside, and actually get a finite number, and what you end up with is a pressure or a force that brings the plates together. And we have actually measured this. This is a real thing, and yes, I am not kidding around, you can take infinity minus a different infinity, and get a finite number. It’s possible. One example is the Euler Mascheroni Constant. I dare you to look it up!


So there you go, now I hope you understand what these virtual particles are, how they’re detected, and how they contribute to the evaporation of a black hole.

And if you haven’t already, make sure you click here and go to his channel. You’ll find dozens of videos answering equally mind-bending questions. In fact, send your questions and he might just make a video and answer them.

The post What Are Virtual Particles? appeared first on Universe Today.