Sunday, March 20, 2016

Farthest Galaxy Ever Seen Viewed By Hubble Telescope

Farthest Galaxy Ever Seen Viewed By Hubble Telescope:



Galaxy GN-z11 superimposed on an image from the GOODS-North survey. Credit: NASA/ESA/P. Oesch (Yale University)/G. Brammer (STScI)/P. van Dokkum (Yale University)/G. Illingworth (University of California, Santa Cruz)


Since it was first launched in 1990, the Hubble Space Telescope has provided people all over the world with breathtaking views of the Universe. Using its high-tech suite of instruments, Hubble has helped resolve some long-standing problems in astronomy, and helped to raise new questions. And always, its operators have been pushing it to the limit, hoping to gaze farther and farther into the great beyond and see what's lurking there.And as NASA announced with a recent press release, using the HST, an international team of astronomers just shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. In so doing, they have not only looked deeper into the cosmos than ever before, but deeper into it's past. And what they have seen could tell us much about the early Universe and its formation.Due to the effects of special relativity, astronomers know that when they are viewing objects in deep space, they are seeing them as they were millions or even billions of years ago. Ergo, an objects that is located 13.4 billions of light-years away will appear to us as it was 13.4 billion years ago, when its light first began to make the trip to our little corner of the Universe.This is precisely what the team of astronomers witnessed when they gazed upon GN-z11, a distant galaxy located in the direction of the constellation of Ursa Major. With this one galaxy, the team of astronomers - which includes scientists from Yale University, the Space Telescope Science Institute (STScI), and the University of California - were able to see what a galaxy in our Universe looked like just 400 million years after the Big Bang.Prior to this, the most distant galaxy ever viewed by astronomers was located 13.2 billion light years away. Using the same spectroscopic techniques, the Hubble team confirmed that GN-z11 was nearly 200 million light years more distant. This was a big surprise, as it took astronomers into a region of the Universe that was thought to be unreachable using the Hubble Space Telescope.In fact, astronomers did not suspect that they would be able to probe this deep into space and time without using Spitzer, or until the deployment the James Webb Space Telescope - which is scheduled to launch in October 2018. As Pascal Oesch of Yale University, the principal investigator of the study, explained:

“We’ve taken a major step back in time, beyond what we’d ever expected to be able to do with Hubble. We see GN-z11 at a time when the universe was only three percent of its current age. Hubble and Spitzer are already reaching into Webb territory."
In addition, the findings also have some implications for previous distance estimates. In the past, astronomers had estimated the distance of GN-z11 by relying on Hubble and Spitzer's color imaging techniques. This time, they relied on Hubble's Wide Field Camera 3 to spectroscopically measure the galaxies redshift for the first time. In so doing, they determined that GN-z11 was farther way than they thought, which could mean that some particularly bright galaxies who's distanced have been measured using Hubble could also be farther away.The results also reveal surprising new clues about the nature of the very early universe. For starters, the Hubble images (combined with data from Spitzer) showed that GN-z11 is 25 times smaller than the Milky Way is today, and has just one percent of our galaxy’s mass in stars. At the same time, it is forming stars at a rate that is 20 times greater than that of our own galaxy.As Garth Illingworth - one of the team's investigator's from the University of California, Santa Cruz - explained:

“It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon. This new record will likely stand until the launch of the James Webb Space Telescope."
Last, but not least, they provide a tantalizing clue as to what future missions - like the James Webb Space Telescope - will be finding. Once deployed, astronomers will likely be looking ever farther into space, and farther into the past. With every step, we are closing in on seeing what the very first galaxies that formed in our Universe looked like.https://youtu.be/vgQdQx3V1HYFurther Reading: NASA

The post Farthest Galaxy Ever Seen Viewed By Hubble Telescope appeared first on Universe Today.

Fast Radio Bursts On Repeat – Aliens, Or A Rotating Neutron Star?

Fast Radio Bursts On Repeat – Aliens, Or A Rotating Neutron Star?:



A fast radio burst detected in 2012 by the Arecibo Observatory has scientists searching for its source. Credit and Copyright: Danielle Futselaar


Very recently, a team of scientists from the Commonwealth Scientific and Industrial Research Organization (CSIRO) achieved an historic first by being able to pinpoint the source of fast radio bursts (FRBs). With the help of observatories around the world, they determined that these radio signals originated in an elliptical galaxy 6 billion light years from Earth. But as it turns out, this feat has been followed by yet another historic first.In all previous cases where FRBs were detected, they appeared to be one-off events, lasting for mere milliseconds. However, after running the data from a recent FRB through a supercomputer, a team of scientists at McGill University in Montreal have determined that in this instance, the signal was repeating in nature. This finding has some serious implications for the astronomical community, and is also considered by some to be proof of extra-terrestrial intelligence. FRBs have puzzled astronomers since they were first detected in 2007. This event, known as the Lorimer Burst, lasted a mere five milliseconds and appeared to be coming from a location near the Large Magellanic Cloud, billions of light years away. Since that time, a total of 16 FRBs have been detected. And in all but this one case, the duration was extremely short and was not followed up by any additional bursts.Because of their short duration and one-off nature, many scientists have reasoned that FRBs must be the result of cataclysmic events - such as a star going supernova or a neutron star collapsing into a black hole. However, after sifting through data obtained by the Arecibo radio telescope in Puerto Rico, a team of students from McGill University - led by PhD student Paul Scholz - determined that an FRB detected in 2012 did not conform to this pattern.In an article published in Nature, Scholz and his associates describe how this particular signal - FRB 121102 - was followed by several bursts with properties that were consistent with the original signal. Running the data which was gathered in May and June through a supercomputer at the McGill High Performance Computing Center, they determined that FRB 121101 had emitted a total of 10 new bursts after its initial detection.This would seem to indicate that FBRs have more than just one cause, which presents some rather interesting possibilities. As Paul Scholz told Universe Today via email:

"All previous Fast Radio Bursts have only been one-time events, so a lot of explanations for them have involved a cataclysmic event that destroys the source of the bursts, such as a neutron star collapsing into a black hole. Our discovery of repeating bursts from FRB 121102 shows that the source cannot have been destroyed and it must have been due to a phenomenon that can repeat, such as bright pulses from a rotating neutron star."
Another possibility which is making the rounds is that this signal is not natural in origin. Since their discovery, FRBs and other "transient signals" - i.e. seemingly random and temporary signals - from the Universe have been the subject of speculation. As would be expected, there have been some who have suggested that they might be the long sought-after proof that extra-terrestrial civilizations exist.For example, in 1967, after receiving a strange reading from a radio array in a Cambridge field, astrophysicist Jocelyn Bell Burnell and her team considered the possibility that what they were seeing was an alien message. This would later be shown to be incorrect - it was, in fact, the first discovery of a pulsar. However, the possibility these signals are alien in origin has remained fixed in the public (and scientific) imagination.This has certainly been the case since the discovery of FRBs. In an article published by New Scientists in April of 2015 - titled "Cosmic Radio Plays An Alien Tune" - writer and astrophysicist Sarah Scoles explores the possibility of whether or not the strange regularity of some FRBs that appeared to be coming from within the Milky Way could be seen as evidence of alien intelligence.However, the likelihood that these signals are being sent by extra-terrestrials is quite low. For one, FRBs are not an effective way to send a message. As Dr. Maura McLaughlin of West Virginia University - who was part of the first FRB discovery -  has explained, it takes a lot of energy to make a signal that spreads across lots of frequencies (which is a distinguishing feature of FRBs).And if these bursts came from outside of our galaxy, which certainly seems to be the case, they would have to be incredibly energetic to get this far. As Dr. McLaughlin explained to Universe Today via email:

"The total amount of power required to produce just one FRB pulse is as much as the Sun produces in a month! Although we might expect extraterrestrial civilizations to send short-duration signals, sending a signal over the very wide radio bandwidths over which FRBs are detected would require an improbably immense amount of energy. We expect that extraterrestrial civilizations would transmit over a very narrow range of radio frequencies, much like a radio station on Earth. 
But regardless of whether these signals are natural or extra-terrestrial in origin, they do present some rather exciting possibilities for astronomical research and our knowledge of the Universe. Moving forward, Scholz and his team hope to identify the galaxy where the radio bursts originated, and plans to use test out some recently-developed techniques in the process."Next we would like to localize the source of the bursts to identify the galaxy that they are coming from," he said. "This will let us know about the environment around the source. To do this, we need to use radio interferometry to get a precise enough sky location. But, to do this we need to detect a burst while we are looking at the source with such a radio telescope array. Since the source is not always bursting we will have to wait until we get a detection of a burst while we are looking with radio interferometry. So, if we're patient, eventually we should be able to pinpoint the galaxy that the bursts are coming from."In the end, we may find that rapid burst radio waves are a more common occurrence than we thought. In all likelihood, they are being regularly emitted by rare and powerful stellar objects, ones which we've only begun to notice. As for the other possibility? Well, we're not saying it's aliens, but we're quite sure others will be!

Further Reading: McGill University
The post Fast Radio Bursts On Repeat – Aliens, Or A Rotating Neutron Star? appeared first on Universe Today.

An Ancient Volcanic Cataclysm Spun Mars Off Its Poles

An Ancient Volcanic Cataclysm Spun Mars Off Its Poles:



A colorized image of the surface of Mars taken by the Mars Reconnaissance Orbiter. The line of three volcanoes is the Tharsis Montes, with Olympus Mons to the northwest. Valles Marineris is to the east. Image: NASA/JPL-Caltech/ Arizona State University


"What happened to Mars?" is one of the most compelling questions in space science. It probably wasn't always the dead, dry, cold place it is now. Did its core cool and stop rotating, allowing the full glare of the sun to blast away its atmosphere and water, and kill anything that may have lived there? Was it struck by a large body, which incinerated its atmosphere, and led to its demise? Were there other causes?According to a new research paper from Sylvain Bouley at the University of Paris-South, and his colleagues, it may have been a massive, ancient outpouring of molten rock that threw Mars off kilter and helped change Mars into what it is today.The Tharsis region is an ancient lava complex on Mars that dates back to between 4.1 billion and 3.7 billion years ago. It's located in Mars' Western Hemisphere, right near the equator. It's made up of three huge shield volcanoes—Arsia Mons, Pavonis Mons, and Ascraeus Mons. Collectively, they're known as Tharsis Montes. (Olympus Mons, the largest volcano in the Solar System, is not a part of the Tharsis complex, though it is near it.)Tharsis is over 5,000 km across and over 10 miles thick, making it the largest volcanic complex in the Solar System. That much mass positioned after Mars was already formed and had an established rotation would have been cataclysmic. Think what would happen to Earth if Australia rose up 10 miles.The new paper, published on March 2nd, 2016, in the journal Nature, says that the position of the Tharsis complex would have initiated a True Polar Wander (TPW.) Basically, what this means is that Tharsis' huge mass would have forced Mars to shift its rotation, so that the location of Tharsis became the new equator.It was thought that the emergence of Tharsis made Martian rivers—which formed later—flow the direction they do. But the study from Bouley and his colleagues shows that Martian rivers and valleys formed first—or maybe concurrently—and that the Tharsis TPW deformed the planet later.The authors of the study calculated where the Martian poles would have been prior to Tharsis, and looked for evidence of polar conditions at those locations. The location of this ancient north pole contains a lot of ice today, and the location of the ancient south polar region also shows evidence of water.What it all adds up to is that the disappearance of water on Mars probably happened at the same time as the TPW. Whether the appearance of the Tharsis lava complex, and the resulting cataclysmic shifting of Mars' rotational orientation, were the cause of Mars losing its climate is not yet known for sure. But this study shows that the ancient volcanic cataclysm did at least help shape Mars into what it is today.

The post An Ancient Volcanic Cataclysm Spun Mars Off Its Poles appeared first on Universe Today.

Surfing On Titan Would Be Best In Summer

Surfing On Titan Would Be Best In Summer:



The view from the beach on Titan? Image: NASA


Space is mostly vast and empty. So whenever we notice something like ripples on a lake, on the frozen moon of a gas giant, we take notice.At a meeting of the American Geophysical Union in San Francisco this week, it was reported that Cassini images of Saturn's moon Titan showed light being reflected from the Ligeia Mare, a frigid sea of hydrocarbons on that moon. Subsequent images showed the same phenomenon on two other seas of Titan, as well. These are thought to be waves, the first waves detected anywhere other than Earth, and suggest that Titan has more geophysical activity than previously thought.Surfers on Earth, known for seeking out remote and secretive locations, shouldn't get too excited. According to mathematical modelling and radar imagery, these waves are only 1.5 cm (0.6 inches) tall, and they're moving only 0.7 metres (2.3 feet) per second. Plus, they're on a sea of liquid hydrocarbons—mostly methane—that is a frigid -180 degrees Celsius (-292 F.)Planetary scientists are taking note, though, because these waves show that Titan has an active environment, rather than just being a moon frozen in time. It's thought that the change in seasons on Titan is responsible for these waves, as Titan begins its 7 year summer. Processes related to the changing seasons on Titan have created winds, which have cause these ripples.There's other evidence of active weather on Titan, including dunes, river channels, and shorelines. But this is the first observation of active weather phenomena, rather than just the results. All together, it shows that Titan is a more active, dynamic environment than previously thought.Titan's hydrocarbon lakes are thought to be up to 200 metres (656 ft.) deep, and are clustered around the north polar region. Just one of its lakes is thought to contain approximately 9,000 cubic km of methane, which is about 40 times more than the Earth's reserves of oil and gas.Titan is the second largest moon in the Solar System, second only to Ganymede, and both moons are larger than the planet Mercury. Titan was discovered in 1655 by Christiaan Huygens.   

The post Surfing On Titan Would Be Best In Summer appeared first on Universe Today.

Venus: 50 Years Since Our First Trip, and We’re Going Back

Venus: 50 Years Since Our First Trip, and We’re Going Back:



The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL


The first spacecraft to reach the surface of another world was the Soviet Venera 3 probe. Venera 3 crash-landed on the surface of Venus on March 1, 1966, 50 years ago. It was the 3rd in the series of Venera probes, but the first two never made it.Venera 3 didn't last long. It survived Venus' blistering heat and crushing atmospheric pressure for only 57 minutes. But because of that 57 minutes, its place in history is cemented.With a temperature of 462 degree C. (863 F.,) and a surface pressure 90 times greater than Earth's, Venus' atmosphere is the most hostile one in the Solar System. But Venus is still a tantalizing target for exploration, and rather than letting the difficult conditions deter them, Venus is a target that NASA thinks it can hit.The Venus Landsail—called Zephyr—could be the first craft to survive the hostile environment on Venus. If approved, it would launch in 2023, and spend 50 days on the surface of Venus. But to do so, it has to meet several challenges.NASA thinks they have the electronics that can withstand the heat, pressure, and corrosive atmosphere of Venus. Their development of sensors that can function inside jet engines proves this, and is the kind of breakthrough that really helps to advance space exploration. They also have solar cells that should function on the surface of Venus.But the thick cloud cover will prevent the Zephyr's solar cells from generating much electricity; certainly not enough for mobility. They needed another solution for traversing the surface of Venus: the land sail.Venus has very slow winds—less than one meter per second—but the high density of the atmosphere means that even a slow wind will allow Zephyr to move effectively around the Venusian surface. But a land sail will only work on a surface without large rocks in the way. Thanks to the images of the surface of Venus sent back to Earth from the Venera probes, we know that a land sail will work, at least in some parts of the Venusian surface.So Venus is back on the menu. With all the missions to other places in the Solar System, Venus is kind of forgotten, right here in our own backyard. But there's actually a pretty rich history of missions to Venus, even though an extended visit to the surface has been out of reach. Since it's been 50 years since Venera 3 reached the surface, now is a good time to look back at the history of the exploration of Venus.The Soviet Union dominated the exploration of Venus. The Venera probes went all the way up to Venera 16, though some were orbiters rather than landers. From one perspective, the whole Venera program was plagued with problems. Many of the craft failed completely, or else had malfunctions that crippled them. But they still returned important information, and achieved many firsts, so the Venera program overall has to be considered a success.The Soviet Union did not like to acknowledge or talk about space missions that failed. They often changed the name of a mission if it failed, so the names and numbers can get a little confusing.Venera 4 was actually the first spacecraft to transmit any data from another world. On October 18th, 1967, it transmitted data from Venus' atmosphere, but none from the surface. There were actually ten Venera missions before it, but most of them didn't make it to Venus, suffering explosions or failing to leave Earth's orbit and crashing back to the surface of Earth. Two of the Venera probes, numbers 1 and 2, suffered a loss of communications, so their fate is unknown. After Venera 4's relative success, there was another failed craft that fell back to Earth. Then on May 16th, 1969, Venera 5 successfully entered Venus' atmosphere, and made it to within 26 kilometers of the surface before being crushed by the pressure. The next day—the Soviets often launched missions in pairs—Venera 6 entered the atmosphere of Venus and successfully transmitted data. It made it deeper into the atmosphere before being crushed within 11 kilometers of the surface.Venera 7 was a successful mission. On December 15th, 1970, it landed on the surface of Venus and survived for 23 minutes. Venera 7 was the very first broadcast from the surface of another planet.In 1972 Venera 8 survived for 50 minutes on the surface, followed by Venera 9 in 1975. Venera 9 survived for 53 minutes and sent back the first black and white images of the surface of Venus. Venera 10 landed 3 days after Venera 9 and survived 65 minutes, and also sent photos back. Grainy and blurry, but still amazing!

Venera_9_-_Venera_10_-_venera9-10
December 1978 saw the arrival of Venera 11 and 12, surviving 95 and 112 minutes respectively. Venera 11's camera failed, but Venera 12 recorded what is thought to be lightning.In March 1982, Venera 13 and 14 arrived. 13 took the first color images of the surface of Venus, and both craft took soil samples. Venera 15 and 16—both orbiters—arrived in 1983 and mapped the northern hemisphere.The Soviet Unions final missions to Venus were Vega 1 and Vega 2, in 1985, which combined landings on Venus and flybys of Halley's comet into each mission. Vega 1's surface experiments failed, while Vega 2 transmitted data from the surface for 56 minutes.The United States has also launched several mission to Venus, though none have been landers. Spacecraft in the Mariner series studied Venus from orbit and during flybys, sometimes getting quite close to the cloud tops.In 1962 and 1967, Mariner 2 and 5 completed flybys of Venus and transmitted data back to Earth. Mariner 5 came as close as 4094 km of the surface. In February 1974, Mariner 10 approached Venus and came to within 5,768 km. It returned color images of Venus, and then used gravitational assist—the first spacecraft to ever do so—to propel itself to Mercury.In December 1978, the Pioneer Venus Orbiter reached Venus and studied the atmosphere, surface, and other aspects of Venus. It lasted until August 1992, when its fuel ran out and it was destroyed when it entered the atmosphere.On August 1990, the Magellan mission reached Venus and used radar to map the surface of the planet. On October 1994, Magellan entered the Venusian atmosphere and was destroyed, but not before successfully mapping over 99% of the planet's surface.Messenger was a NASA mission to Mercury that was launched in August 2004. It did two flybys of Venus, in October 2006 and June 2007.The Venus Express, a European Space Agency mission, orbited Venus and studied the atmosphere and plasma of Venus. Of special interest to Venus Express was the study of what role greenhouse gases played in the formation of the atmosphere.In 2010, the Japanese Space Agency launched Akatsuki, also known as the Venus Climate Orbiter. It's role is to orbit Venus and study the atmospheric dynamics. It will also look for evidence of lightning and volcanic activity.If there's one thing that space exploration keeps teaching us, it's to expect the unexpected. Who knows what we'll find on Venus, if the Land Sail mission is approved, and it survives for its projected 50 days.

The post Venus: 50 Years Since Our First Trip, and We’re Going Back appeared first on Universe Today.

NASA’s New X-Plane Program to Bring Quiet Supersonic Flight

NASA’s New X-Plane Program to Bring Quiet Supersonic Flight:



An illustration of what a quiet supersonic passenger aircraft might look like. Image: Lockheed Martin.


NASA has plans to develop new supersonic passenger aircraft that are not only quieter, but also greener and less expensive to operate. If NASA's 2017 budget is approved, the agency will re-start their X-Plane program, the same program which was responsible for the first supersonic flight almost 70 years ago. And if all goes according to plan, the first test-model could be flying as soon as 2020.The problem with supersonic flight—and the reason it's banned— is the uber-loud boom that it creates. When an aircraft passes the speed of sound, a shockwave is created in the air it passes through. This shockwave can travel up to 40 kilometres (25 miles), and can even break windows. NASA thinks new aircraft designs can prevent this, and it starts with abandoning the 'tube and wings' model that current passenger aircraft design adheres to. It's hoped that new designs will avoid the sonic booms that cause so much disturbance, and instead produce more of a soft thump, or supersonic 'heartbeat.'The image above shows what a hybrid wing-body aircraft might look like. Rather than a tube with wings attached, this design uses a unified body and wings built together. It's powered by turbofan engines, and has vertical fins on the rear to direct sound up and away from the ground. (Just don't ask for a window seat.)Lockheed Martin Aeronautics has been chosen to complete a preliminary design for Quiet Supersonic Technology (QueSST.) They will have about 17 months to produce a design, which will then lead to a more detailed designing, building, and testing of a new QueSST jet, about half the size of a production aircraft. This aircraft will then have to undergo analytical testing and wind-tunnel validation. After the design and build of QueSST will come the Low Boom Flight Demonstration (LBFD) phase. During the LBFD phase, NASA will seek community input on the aircraft's performance and noise factor.But noise reduction is not the only goal of NASA's new X-Plane program. NASA administrator Charles Bolden acknowledged this when he said, "NASA is working hard to make flight greener, safer and quieter—all while developing aircraft that travel faster, and building an aviation system that operates more efficiently."

NASA has been working in recent years to reduce aircraft fuel consumption by 15%, and engine nitrogen oxide emissions by 75%. These goals are part of their Environmentally Responsible Aviation (ERA) project, which began in 2009. Other goals of ERA include reducing aircraft drag by 8% and aircraft weight by 10%. These goals dovetail nicely with their revamped X-Plane initiative.It's hard to bet against NASA. They're one of the most effective organizations on Earth, and when they set goals, they tend to meet them. If their X-Plane program can achieve its goals, it will be a win for aircraft design, for paying customers, and for the environment.For a look at the history of the X-Plane project, look here.

The post NASA’s New X-Plane Program to Bring Quiet Supersonic Flight appeared first on Universe Today.

By Jove: Our 2016 Guide to Jupiter at Opposition

By Jove: Our 2016 Guide to Jupiter at Opposition:



Getting closer... Jupiter, imaged on February 24th. Image credit and copyright: Efrain Morales


Ready to explore the largest planet in our solar system? The month of March heralds the return of Jupiter to evening skies. Early March 2016 sees the planet Jupiter starting off the month less than one degree from the star Sigma Leonis. Opposition occurs on March 8th, at 11:00 Universal Time (UT). Watch out for those double shadow transits, as we're in the midst of a season of favorable events involving the Jovian moons (See last week's post). During opposition, the four large major moons of Jupiter cast their shadows nearly straight back onto the Jovian cloud-tops as seen from our Earthly perspective. At quadrature—the point when Jupiter stakes out a 'quadrant' of the sky 90 degrees east or west of the Sun as seen from the Earth –the moons and the planet Jupiter itself casts their shadows off to one side.The Moon occults Jupiter three times in 2016: July 9th, August 6th and September 2nd. The very best is the final event on September 2nd, which occurs during daylight hours for Mexico and the western US, just 18 degrees east of the Sun in the evening sky. Jupiter also passes just 4' from Venus the month prior on August 27th. Solar opposition for Jupiter in 2016 occurs on September 26th.Every ancient culture noticed five 'wandering stars' that stubbornly refused to maintain their station, and instead moved across the sky. The four major points that describe a planet's apparent motion are: opposition, solar conjunction, and the east and west quadrature points.As the name suggests, opposition is simply the point at which a given outer planet rises 'opposite' to the setting Sun. Jupiter orbits the Sun once every 11.9 years, meaning it has moved roughly one zodiacal constellation eastward per every 399 days between oppositions. Oppositions falling during northern hemisphere winter place a planet high in the sky, a position which the Sun will occupy six months before and hence. Jupiter's opposition in 2016 falls just 11 days prior to the March northward equinox on March 20th, placing Jupiter on the Leo-Virgo border very near the September equinoctial point in the astronomical constellation Virgo. In fact, Jupiter plunges south of the celestial equator on September 21st 2016, not to cross northward again until May 24th, 2022.Visually, Jupiter shines at its brightest this season at magnitude -2.5. Jupiter is the fourth brightest natural object in the skies of the Earth, right behind the Sun, Moon and Venus. Place Jupiter at the Moon's distance from the Earth, and it would span a terrifying 20 degrees across the sky. By coincidence, the innermost large Moon Io orbits Jupiter at nearly the same distance as the Moon does from the Earth. Is Jupiter a friend or foe? There's been a recent suggestion that we've perhaps overstated the giant planet's alleged role as a cosmic goal tender, warding off potentially hazardous comets. Any inbound cometary body crossing Jupiter's orbit stands a 40% chance of having its orbit altered, a good or bad outcome from the view of the Earth.Here, from our current base camp in Rota, Spain, Jupiter sits high over the Atlantic in the early morning hours, a beacon marking a warning of the supposed 'ends of the Earth' to medieval sailors daring to strike out westward.Though Jupiter is sometimes fancied as a 'failed star,' it also fails this definition miserably: Jupiter would need about a dozen times its current mass to rate as even a sub-stellar brown dwarf.In the eyepiece of even a small 60mm refractor, the main two equatorial cloud bands are immediately visible, striping the ochre disk of the bloated world. One major mystery is just why the Southern Equatorial Belt pulls a vanishing act every decade or so, as it last did in 2010, while the other Northern Equatorial Belt seems permanent. And speaking of which, the famous 'Great Red Spot' is now not as 'grand' in recent times, appearing a salmon-to-brick brown colored.First noted by Giovanni Cassini in 1665, the intervening centuries have seen the massive storm shrink. Will this iconic planetary atmospheric feature disappear entirely in our lifetimes? We'll surely miss the Great Red Spot if so, as it made a good 'tick mark' to gauge Jupiter's rotation. Spinning around once every 9.9 hours, the Jovian 'day' is the shortest of any planet in the solar system. In fact, if you follow Jupiter from sunset to sunrise during opposition, you can just about witness one full rotation... in a single night!At opposition, Jupiter appears 45” in size, 1/40th the diameter of a Full Moon. The Moon also pairs with Jupiter on the evening of March 21st/22nd, sitting two degrees from the planet.And get set to explore Jupiter this summer, as NASA's Juno spacecraft enters orbit around the giant planet on July 4th. Launched in August, 2011, Juno will become the seventh spacecraft to visit the planet and only the second (after Galileo) to enter orbit.2016 is an amazing year for all things Jovian!

The post By Jove: Our 2016 Guide to Jupiter at Opposition appeared first on Universe Today.

Are Supermassive Black Holes Hiding Matter?

Are Supermassive Black Holes Hiding Matter?:



Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris


Mapping the Universe with satellites and ground-based observatories have not only provided scientists with a pretty good understanding of its structure, but also of its composition. And for some time now, they have been working with a model that states that the Universe consists of 4.9% "normal" matter (i.e. that which we can see), 26.8% "dark matter" (that which we can't), and 68.3% "dark energy".From what they have observed, scientists have also concluded that the normal matter in the Universe is concentrated in web-like filaments, which make up about 20% of the Universe by volume. But a recent study performed by the Institute of Astro- and Particle Physics at the University of Innsbruck in Austria has found that a surprising amount of normal matter may live in the voids, and that black holes may have deposited it there.In a paper submitted to the Royal Astronomical Society, Dr. Haider and his team described how they performed measurements of the mass and volume of the Universe's filamentary structures to get a better idea of where the Universe's mass is located. To do this, they used data from the Illustris project - a large computer simulation of the evolution and formation of galaxies.As an ongoing research project run by an international collaboration of scientists (and using supercomputers from around the world), Illustris has created the most detailed simulations of our Universe to date. Beginning with conditions roughly 300,000 years after the Big Bang, these simulations track how gravity and the flow of matter changed the structure of the cosmos up to the present day, roughly 13.8 billion years later.The process begins with the supercomputers simulating a cube of space in the universe, which measures some 350 million light years on each side. Both normal and dark matter are dealt with, particularly the gravitational effect that dark matter has on normal matter. Using this data, Haider and his team noticed something very interesting about the distribution of matter in the cosmos.Essentially, they found that about 50% of the total mass of the Universe is compressed into a volume of 0.2%, consisting of the galaxies we see. A further 44% is located in the enveloping filaments, consisting of gas particles and dust. The remaining 6% is located in the empty spaces that fall between them (aka. the voids), which make up 80% of the Universe.However, a surprising faction of this normal matter (20%) appears to have been transported there, apparently by the supermassive black holes located at the center of galaxies. The method for this delivery appears to be in how black holes convert some of the matter that regularly falls towards them into energy, which is then delivered to the sounding gas, leading to large outflows of matter.These outflows stretch for hundreds of thousands of lights years beyond the host galaxy, filling the void with invisible mass. As Dr. Haider explains, these conclusions supported by this data are rather startling. "This simulation," he said, "one of the most sophisticated ever run, suggests that the black holes at the center of every galaxy are helping to send matter into the loneliest places in the universe. What we want to do now is refine our model, and confirm these initial findings."The findings are also significant because they just may offer an explanation to the so-called "missing baryon problem". In short, this problem describes how there is an apparent discrepancy between our current cosmological models and the amount of normal matter we can see in the Universe. Even when dark matter and dark energy are factored in, half of the remaining 4.9% of the Universe's normal matter still remains unaccounted for.For decades, scientists have been working to find this "missing matter", and several suggestions have been made as to where it might be hiding. For instance, in 2011, a team of students at the Monash School of Physics in Australia confirming that some of it was in the form of low-density, high energy matter that could only be observed in the x-ray wavelength.https://youtu.be/NjSFR40SY58In 2012, using data from the Chandra X-ray Observatory, a NASA research team reported that our galaxy, and the nearby Large and Small Magellanic Clouds, were surrounded by an enormous halo of hot gas that was invisible at normal wavelengths. These findings indicated that all galaxies may be surrounded by mass that, while not visible to the naked eye, is nevertheless detectable using current methods.And just days ago, researchers from the Commonwealth Scientific and Industrial Research Organization (CSIRO) described how they had used fast radio bursts (FRBs) to measure the density of cosmic baryons in the intergalactic medium - which yielded results that seem to indicate that our current cosmological models are correct.Factor in all the mass that is apparently being delivered to the void by supermassive black holes, and it could be that we finally have a complete inventory of all the normal matter of the Universe. This is certainly an exciting prospect, as it means that one of the greatest cosmological mysteries of our time could finally be solved.Now if we could just account for the "abnormal" matter in the Universe, and all that dark energy, we'd be in business!Further Reading: Royal Astronomical Society

The post Are Supermassive Black Holes Hiding Matter? appeared first on Universe Today.

Missing Matter Found! Fast Radio Bursts Confirm Cosmological Model

Missing Matter Found! Fast Radio Bursts Confirm Cosmological Model:



Researchers at the CSIRO have managed to pinpoint the location of an FRB for the first time, yielding valuable information about our universe. Credit: csiro.au


In July of 2012, researchers at the CERN laboratory made history when they announced the discovery of the Higgs Boson. Though its existence had been hypothesized for over half a century, confirming its existence was a major boon for scientists. In discovering this one particle, the researchers were also able to confirm the Standard Model of particle physics. Much the same is true of our current cosmological model.For decades, scientists been going by the theory that the Universe consists of about 70% dark energy, 25% dark matter and 5% "luminous matter" - i.e. the matter we can see. But even when all the visible matter is added up, there is a discrepancy where much of it is still considered "missing". But thanks to the efforts of a team from the Commonwealth Scientific and Industrial Research Organization (CSIRO), scientists now know that we have it right.This began on April 18th, 2015, when the CSIRO's Parkes Observatory in Australia detected a fast radio burst (FRB) coming from space. An international alert was immediately issued, and within a few hours, telescopes all around the world were looking for the signal. The CSIRO team began tracking it as well with the Australian Telescope Compact Array (ATCA) located at the Paul Wild Observatory (north of Parkes).With the help of the National Astronomical Observatory of Japan's (NAOJ) Subaru telescope in Hawaii, they were able to pinpoint where the signal was coming from. As the CSIRO team described in a paper submitted to Nature, they identified the source, which was an elliptical galaxy located 6 billion light years from Earth.This was an historic accomplishment, since pinpointing the source of FRBs have never before been possible. Not only do the signals last mere milliseconds, but they are also subject to dispersion - i.e. a delay caused by how much material they pass through. And while FRBs have been detected in the past, the teams tracking them have only been able to obtain measurements of the dispersion, but never the signal's redshift.Redshift occurs as a result of an object moving away at relativistic speeds (a portion of the speed of light). For decades, scientists have been using it to determine how fast other galaxies are moving away from our own, and hence the rate of expansion of the Universe. Relying on optical data obtained by the Subaru telescope, the CSIRO team was able to obtain both the dispersion and the redshift data from this signal.https://www.skatelescope.org/wp-content/uploads/2016/02/FRBs.FinalCandidate5-HD.mp4As stated in their paper, this information yielded a "direct measurement of the cosmic density of ionized baryons in the intergalactic medium". Or, as Dr. Simon Johnston - of the CSIRO’s Astronomy and Space Science division and the co-author of the study - explains, the team was not only to locate the source of the signal, but also obtain measurements which confirmed the distribution of matter in the Universe.“Until now, the dispersion measure is all we had," he said. "By also having a distance we can now measure how dense the material is between the point of origin and Earth, and compare that with the current model of the distribution of matter in the Universe. Essentially this lets us weigh the Universe, or at least the normal matter it contains.”Dr. Evan Keane of the SKA Organization, and lead author on the paper, was similarly enthused about the team's discovery. "[W]e have found the missing matter," he said. "It's the first time a fast radio burst has been used to conduct a cosmological measurement."As already noted, FRB signals are quite rare, and only 16 have been detected in the past. Most of these were found by sifting through data months or years after the signal was detected, by which time it would be impossible for any follow-up observations. To address this, Dr. Keane and his team developed a system to detect FRBs and immediately alert other telescopes, so that the source could be pinpointed.It is known as the Square Kilometer Array (SKA), an international effort led by the SKA Organization to build the world’s largest radio telescope. Combining extreme sensitivity, resolution and a wide field of view, the SKA is expected to trace many FRBs to their host galaxies. In so doing, it is hoped the array will provide more measurements confirming the distribution of matter in the Universe, as well as more information on dark energy.In the end, these and other discoveries by the SKA could have far-reaching consequences. Knowing the distribution of matter in the universe, and improving our understanding of dark matter (and perhaps even dark energy) could go a long way towards developing a Theory Of Everything (TOE). And knowing how all the fundamental forces of our universe interact will go a long way to finally knowing with certainty how it came to be.These are exciting time indeed. With every step, we are peeling back the layers of our universe!Further Reading: CSIRO, SKA Organization, Nature.

The post Missing Matter Found! Fast Radio Bursts Confirm Cosmological Model appeared first on Universe Today.

Spotlight On Pluto’s Frozen Polar Canyons

Spotlight On Pluto’s Frozen Polar Canyons:



This enhanced color view Long canyons run vertically across the polar area—part of the informally named Lowell Regio, named for Percival Lowell, who founded Lowell Observatory and initiated the search that led to Pluto’s discovery. The widest of the canyons is about 45 miles (75 kilometers) wide and runs close to the north pole. Roughly parallel subsidiary canyons to the east and west are approximately 6 miles (10 kilometers) wide.


Pluto's frozen nitrogen custard "heart" has certainly received its share of attention. Dozens of wide and close-up photos homing on this fascinating region rimmed by mountains and badlands have been relayed back to Earth by NASA's New Horizons probe after last July's flyby. For being only 1,473 miles (2,370 km) in diameter, Pluto displays an incredible diversity of landscapes.This week, the New Horizons team shifted its focus northward, re-releasing an enhanced color image of the north polar area that was originally part of a high-resolution full-disk photograph of Pluto. Inside of the widest canyon, you can trace the sinuous outline of a narrower valley similar in outward appearance to the Moon's Alpine Valleycut by a narrow, curvy rill that once served as a conduit for lava.We see multiple canyons in Pluto's polar region, their walls broken and degraded compared to canyons seen elsewhere on the planet. Signs that they may be older and made of weaker materials and likely formed in ancient times when Pluto was more tectonically active. Perhaps they're related to that long-ago dance between Pluto and its largest moon Charon as the two transitioned into their current tidally-locked embrace.In the lower right corner of the image, check out those funky-shaped pits that resemble the melting outlines of boot prints in the snow. They reach 45 miles (70 km) across and 2.5 miles (4 km) deep and may indicate locations where subsurface ice has melted or sublimated (vaporized) from below, causing the ground to collapse.Notice the variation in color across the landscape from yellow-orange to pale blue. High elevations show up in a distinctive yellow, not seen elsewhere on Pluto, with lower elevations and latitudes a bluish gray. New Horizons' infrared measurements show abundant methane ice across the Lowell Region, with relatively little nitrogen ice. The yellow terrains may be older methane deposits that have been more processed by solar UV light than the bluer terrain. The color variations are especially striking in the area of the collapse pits.Pluto's icy riches include not only methane and nitrogen but also water, which forms the planet's bedrock. NASA poetically refers to the water ice as "the canvas on which (Pluto's) more volatile ices paint their seasonally changing patterns". Recent images made in infrared light shows little or no water ice in the informally named places called Sputnik Planum (the left or western region of Pluto's "heart") and Lowell Regio. This indicates that at least in these regions, Pluto's bedrock remains well hidden beneath a thick blanket of other ices such as methane, nitrogen and carbon monoxide.To delve more deeply into Pluto, visit the NASA's photojournal archive, where you'll find 130 photos (and counting!) of the dwarf planet and its satellites.

The post Spotlight On Pluto’s Frozen Polar Canyons appeared first on Universe Today.

We Explored Pluto, Now Let’s Explore The Nearest Star!

We Explored Pluto, Now Let’s Explore The Nearest Star!:



Artist’s impression of the planet around Alpha Centauri B. Credit: ESO


On July 14th, 2015, the New Horizons space probe made history when it became the first spacecraft to conduct a flyby of the dwarf planet of Pluto. Since that time, it has been making its way through the Kuiper Belt, on its way to joining Voyager 1 and 2 in interstellar space. With this milestone reached, many are wondering where we should send our spacecraft next.Naturally, there are those who recommend we set our sights on our nearest star - particularly proponents of interstellar travel and exoplanet hunters. In addition to being Earth's immediate neighbor, there is the possibility of one or more exoplanets in this system. Confirming the existence of exoplanets would be one of the main reasons to go. But more than that, it would be a major accomplishment!Located 4.3 light years from Earth, the Alpha Centauri system consists of three stars - Alpha Centauri A, B, and C (aka. Proxima Centauri). For many years now, exoplanet hunters have been divided on the issue of whether or not it has a system of planets. This began in February of 2008, when a team of European observers working at the European Southern Observatory's La Silla facility in Chile began searching for a possible exoplanet in orbit of Alpha Centauri B - which was designated Alpha Centauri Bb.Using the Doppler spectroscopy method, they recorded measurements of Alpha Centauri B's radial velocity and color spectrum over a four-year period. They then applied statistical filters to remove known sources of variance to be sure that what they were detecting was indeed a planet, and not background noise.In October of 2012, in an article submitted to the scientific journal Nature, they officially announced the existence of Alpha Centauri Bb. According to the team, the planet was similar in mass to Earth and orbited Alpha Centauri B within its habitable zone (aka. "Goldilocks zone"). This made it the closest Earth-like exoplanet discovered to date.However, three years after the announcement, in October 2015, researchers from the University of Oxford published a paper entitled "Ghost in the Time Series" which indicated that there were flaws in the original analysis. According to the paper, the signal that was observed by the ESO team naturally arose from the "window function" of the original data - aka. it was a ghost signal.However, in March of 2015, the same scientific team published a paper that proposed the existence of other alien world orbiting Alpha Centauri B. Using data from the Hubble Space Telescope, they discovered evidence of a possible transit in front of the B star. If confirmed, this planet would be called Alpha Centauri Bc, and is apparently located too close to its parent star to support life.Hence why scientists like Dr. Debra Fischer - a professor of astronomy at Yale University, and a member of the Planetary Society who has discovered hundreds of exoplanets - are advocating for a mission to the Alpha Centauri system. As she told Universe Today via email:

"The Kepler mission demonstrated that almost every star has planets and we have found planets orbiting stars that are in binary systems not too different from Alpha Centauri. It's a good bet that there are planets there that we just have not been able to find yet, given current precision... It will likely take a spacecraft in a low Earth orbit with sufficient measurement precision to detect small rocky planets in the system.  Once we find them, then we will be highly motivated to send robotic spacecraft to look for life."
Naturally, sending a spaceship to the nearest star system represents a major challenge. As we explained in a recent article - How Long Would It Take To Get To The Nearest Star? - even with our most advanced technology, it still would take thousands of years to reach Alpha Centauri - between 72,000 and 81,000 to be exact. Considering that 3000 to 4000 generations would pass between launch and arrival, that hardly seems worth it.Even reckoning for the fastest speed ever achieved by a spacecraft - 240,000 km/hr (150,000 miles/hr), which was accomplished by the Helios 2 probe in the late 1970s - the trip would still take a whopping 19,000 years. In order to make this trip is a single lifetime, during which the spacecraft could reach Alpha Centauri and radio back its findings, something new and experimental would need to be developed.For decades now, ideas ranging from nuclear-thermal propulsion and solar sails have been considered, and some of these proposals are within the realm of possibility. At the more radical end of things, concepts such as nuclear-pulse spacecraft (i.e. Project Orion), fusion containment (i.e. Project Daedalus, shown above) and fusion ramjets have been suggested - ideas that, while possible, would be incredibly expensive to build.And whereas some of these concepts are feasible in the near-term (and using current technology) others are still very much in the theoretical phase, like the Alcubierre "Warp" Drive. Others still, such as the Radio Frequency Cavity Thruster (aka. the Cannae, or EM Drive), have been tested, but not to satisfaction of many in the scientific community.But as Fischer explains, these sorts of challenges have not stopped us before. And there are several options on the table, the development of which could have beneficial applications here on Earth."When you study the energy requirements, it is a daunting goal," she said. "But needing to beat the odds has never stopped us before. We would need to figure out how to accelerate a swarm of networked robotic spacecraft so that they can reach this star system in something like 40 years. "We will have to build receivers with the sensitivity to pick up messages from the Alpha Cen bots. The pathway to solving those questions will have technology spinoffs as impactful as cell phones, lap tops, or GPS."Regardless of the destination, any bold new step in the field of space exploration will have to involve serious planning and careful consideration. Now that we have effectively explored the Solar System, reaching beyond will be a major challenge. But as the history of space exploration teaches us, accepting a major challenge is a great way to bring out the very best in us.Even when the goal seems insurmountable at first glance, working towards it can lead to many great and interesting breakthroughs, some of which have far-reaching benefits. As Fischer added, setting Alpha Centauri as our next goal is every bit as ambitious as our ancestors decision to go to the Moon, and offers similar rewards."The exploration of Alpha Centauri is a grand vision for humanity," she said. "In the 1960's, we sent Apollo missions to explore the moon, and humanity just took another big leap with the New Horizons mission, traveling to the outermost reaches of our solar system. Sending a mission to Alpha Centauri could be the next big stepping stone."Here's hoping some of our more radical ideas start bearing fruit in the coming years. Otherwise, any missions to Alpha Centauri will be very "slow boat" in nature, and I for one would like to live to see what's really there!

The post We Explored Pluto, Now Let’s Explore The Nearest Star! appeared first on Universe Today.

Search Narrows For Planet Nine

Search Narrows For Planet Nine:



Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones.  Source: CNRS, Cote d'Azur and Paris observatories. Created by the author


Last month, planetary scientists Mike Brown and  Konstantin Batygin of the California Institute of Technology found evidence of a giant planet tracing a bizarre, highly elongated orbit in the outer Solar System. Nicknamed Planet Nine, it's estimated to be 10 times more massive than Earth with a diameter as large as 16,000 miles (25,750 km).  The putative planet orbits about 20 times farther from the Sun on average than Neptune or some 56 billion miles away; at that tremendous distance it would take between 10,000 and 20,000 years to complete one orbit around the Sun.Planet Nine's existence is inferred through mathematical modeling and computer simulations based on the clustering of six remote asteroids in the Kuiper Belt, a vast repository of icy asteroids and comets beyond Neptune. Brown and Batyginsay there’s only a 0.007% chance or about 1 in 15,000 that the clustering could be a coincidence.All well and good. But with such an enormous orbit, astronomers face the daunting task of searching vast swaths of space for this needle in a haystack. Where to begin? A study done by a team of French scientists may help narrow the search. In a recent paper appearing in Astronomy and Astrophysics, astronomer Agnes Fienga and colleagues looked at what effect a large Kuiper Belt planet would have on the orbits of other planets in the Solar System, focusing their study on Saturn. Thanks to NASA's Cassini orbiter, which has been orbiting Saturn since 2004, we can precisely calculate Saturn's position along its orbit.Based on the planet's "residuals", the difference between the calculated position of Saturn versus what was actually observed, the team was able to exclude two sections of its potential orbit and home in on "probable" swath and a much larger "possible" section of the orbit. The process may sound familiar, since it was the one used to discover another planet more than 150 years ago — Neptune. Back then, irregularities (residuals) in the motion of Uranus led astronomers in 1847 to predict a more distant 8th planet as the cause. On September 24, 1846, Johann Galle discovered Neptune only 1° from its position predicted by French mathematician Urbain LeVerrier.While the current solution for Planet Nine doesn't come anywhere near as close, it's a step in the right direction.

The post Search Narrows For Planet Nine appeared first on Universe Today.

The Future of Gravitational Wave Astronomy: Pulsar Webs, Space Interferometers and Everything

The Future of Gravitational Wave Astronomy: Pulsar Webs, Space Interferometers and Everything:



A merging of two massive objects, sending ripples through the fabric of space and time.  Image credit: R. Hurt/Caltech JPL


It's the hot new field in modern astronomy. The recent announcement of the direct detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) ushers in a new era of observational astronomy that is completely off the electromagnetic spectrum. This detection occurred on September 14th, 2015 and later earned itself the name GW150914. This occurred shortly after Advanced LIGO turned on in early September, a great sign concerning the veracity of the equipment.Expect more to come. Perhaps the second gravitational wave detection won't be as ground breaking as the first, but it is certainly a strange universe out there. LIGO didn't happen overnight. The original LIGO ran for about a decade starting in 2002, with nary a gravitational chirp heard that managed to pass scientific scrutiny. There were actually Vegas odds placed on the direct detection of gravitational waves (along with CERN's discovery of the Higgs-boson particle) way back in 2013: we hope no one lost their shirt on that one.And yes, you could trace the tale all the way back to Einstein's general theory of relativity a century ago in 1916, positing the existence of gravitational ripples in the fabric of space-time. Early attempts to detect gravitational waves using giant cylindrical Weber bars in the 1960s and 70s highlighted just how difficult the hunt for the little buggers would ultimately prove to be. The type of motion LIGO is looking for is tiny, on the order of a 1/1000th the diameter of a proton. Everything in LIGO's local environment shakes it more than that, the prime reason two geographically separate detectors are needed. The indirect detection of gravitational waves seen in the timing glitches of binary pulsar PSR B1913+16 earned Russell Hulse and Joseph Taylor the Nobel Prize in Physics in 1993.LIGO is now open for business, but isn't the only game in town when it comes to gravitational wave astronomy.Gravitational-wave astronomy is going international, as LIGO India (sometimes referred to as INDIGO) received the green light recently in the wake of the detection announcement. Set to begin science operations around 2019, the third LIGO detector will be constructed in India. This will give LIGO the 'third vector' it was initially envisioned with, allowing researchers to pin down the source direction in the sky. Other detectors are on the hunt as well, including VIRGO near Pisa, Italy, GEO600 in Germany, and KAGRA Japan.Engineers aren't stopping with the current version of LIGO. Just as Advanced LIGO built on the hard lessons learned by old school original LIGO and Enhanced LIGO, later versions will hone those skills and techniques, featuring ever greater sensitivity.LISA Pathfinder also started science operations this week. Launched on December 3rd, 2015 from Kourou, French Guiana, LISA Pathfinder won't detect gravitational waves. It will, however, pave the way for a full-up space based gravitational wave detector, set to launch sometime in the 2030s. Yes, its hard to imagine that 2030 is now closer to us in time than Y2K. eLISA stands for the evolved Laser Interferometer Space Antenna, and will feature three free flying variants of the LISA Pathfinder spacecraft with an interferometry baseline of a million kilometers on a side. The gold-platinum test masses are in free flight starting this week, a first. eLISA was born out the original joint NASA/ESA LISA mission, after NASA pulled out of the project in 2011. JAXA also has plans for a space-based gravitational wave detector dubbed the Deci-hertz Interferometer Gravitational-wave Observatory (DECIGO), planned for launch sometime around 2027.-And finally; could 'pulsar webs' be used to detect low frequency gravitational waves? It's not as outlandish an idea as it sounds. A recent study from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is looking at using radio observations of millisecond pulsars. Unlike the violent event witnessed by LIGO – a merger of two black holes each about 30 times the mass of our Sun — low frequency gravitational waves should be generated by orbiting massive black holes resulting from galactic mergers. Such a ripple in space-time would sweep slowly past the Earth, but reveal itself in minute timing variations from remote pulsars. Imagine the Earth at the center of such a web, gently 'rocking' like a leaf on a pond as ripples pass by. Seeing this tell-tale variation across hundreds of pulsars would provide the smoking gun for this unique sort of detection.All amazing stuff. We now live in an era where gravitational wave astronomy is now a reality.Expect more amazing finds to come!

The post The Future of Gravitational Wave Astronomy: Pulsar Webs, Space Interferometers and Everything appeared first on Universe Today.

Your Favorite Planet May Soon Turn Up In The Mail

Your Favorite Planet May Soon Turn Up In The Mail:



The Postal Service will showcase some of the more compelling historic, full-disk images of the planets obtained during the last half-century of space exploration. Some show the planets’ “true color” like Earth and Mars — what one might see if traveling through space. Others, such as Venus, use colors to represent and visualize certain features of a planet based in imaging data. Still others (red storms on Uranus) use the near-infrared spectrum to show things that cannot be seen by the human eye. Credits: USPS/Antonio Alcalá © 2016 USPS


Whenever I go to the post office to pick up stamps I always ask for the most colorful ones. No dead president heads for me. Mailing letters is a rare thing nowadays — might as well choose something colorful and interesting. How sweet then that we'll soon be able to pick and stick our favorite planets (and dwarf planet!) on the mail and send them flying off to far places.The U.S. Postal Service sneak-previewed a new series of stamps earlier this year highlighting NASA’s Planetary Science program, including a do-over of a famous Pluto stamp commemorating the New Horizons’ historic 2015 flyby. Also in the works are eight new colorful Forever stamps featuring NASA images of the planets, a Global Forever stamp dedicated to Earth’s moon and a tribute to 50 years of Star Trek.The New Horizons team, which placed a 29-cent 1991 "Pluto: Not Yet Explored" stamp on board the New Horizons spacecraft, is thrilled at the updated stamp recognizing the mission.“The New Horizons project is proud to have such an important honor from the U.S. Postal Service,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute. “Since the early 1990s the old, ‘Pluto Not Explored’ stamp served as a rallying cry for many who wanted to mount this historic mission of space exploration. Now that NASA’s New Horizons has accomplished that goal, it’s a wonderful feeling to see these new stamps join others commemorating first explorations of the planets.”In the upcoming planet series, we're treated to a color-enhanced Mercury taken by MESSENGER highlighting the planet's varied terrains. Venus appears in all its naked volcanic glory courtesy of the Magellan probe which mapped the planet using cloud-penetrating radar. Like Mercury, it's also color-enhanced since it's impossible to see the surface in visual light even from orbit. Earth and Mars were photographed in natural light with orbiting satellites in tow.The Hubble Space Telescope photographed Jupiter in infrared light in 2004, capturing a rare triple transit of the moons Ganymede, Io and Callisto. Saturn comes to us from the Cassini probe, still in good health and routinely sending gorgeous images every month of the ringed planet and its moons. Pity the rings had to be trimmed, but it had to be done to keep all the globes close to the same relative size. Hubble took Uranus' picture in infrared light, while the Neptune close-up was sent by the Voyager 2 spacecraft in 1989.2016 also marks the 50th anniversary of the television premier of Star Trek, which the post office will commemorate with the new Star Trek Forever stamps. They feature four digital illustrations inspired by the television program: the Starship Enterprise inside the outline of a Starfleet insignia, the silhouette of a crewman in a transporter, the silhouette of the Enterprise from above and the Enterprise inside the outline of the Vulcan salute.The Global Moon stamp was issued on Feb. 22. You can pre-order the Pluto and planet stamps from USPS.com 30 days before their dedication between May 28 and June 4 at the World Stamp Show in New York. Expect the Star Trek series sometime this summer.

The post Your Favorite Planet May Soon Turn Up In The Mail appeared first on Universe Today.