Sunday, March 20, 2016

Messier 4 (M4) – The NGC 6121 Globular Cluster

Messier 4 (M4) – The NGC 6121 Globular Cluster:



This M4 globular cluster, as imaged by the Wide Field Imager at ESO’s La Silla Observatory. Credit: ESO


During the late 18th century, Charles Messier began to notice that a series of “nebulous” objects in the night sky that he originally mistook for comets. In time, he would notice that they were in fact something significantly different. With the hope of preventing other astronomers from making the same mistake, he began compiling a list of these in what would come to be known as the Messier Catalog.Consisting of 100 objects, the catalog became an important milestone in both astronomy and the research of Deep Sky objects. Among the many famous objects in this catalog is the M4 loose globular cluster (aka. NGC 6121). Located in the Scorpius (Scorpio) Constellation, this great cluster of ancient stars is one of the closest Messier Objects of its kind to Earth.

Description:

M4 is one of the most open, or loosely constructed of globular clusters, as its high-classification of IX indicates (the higher the number, the less dense the cluster).  Its central mass measures about 8 light years in diameter, but its full reach is 75 light years across. On top of that, its gravitational influence stretches for about 140 light years.At a distance of about 7,200 light-years from Earth, M4 is also one of the closest Messier Objects to Earth (the other being NGC 6397/Caldwell 88). Based on abundance readings, it is believed that the cluster is home to two distinct classes of stars, which could indicate that M4 underwent two separate cycles of stellar formation.M4 follows an orbital path that takes it through the Milky Way with a period of 116 ± 3 million years. When passing through the disk, this cluster passes the center of our galaxy at a distances of less than 5000 parsecs. This causes it to undergo tidal shock (a gravitational perturbation) each time it passes through, which can cause the repeated shedding of stars. Thus, the M4 cluster may currently be much smaller than it was in the past.The globular cluster is home to at least 43 known variable stars and to the first millisecond pulsar ever discovered inside a globular cluster. This neutron star - known as - is rotating (and pulsating) once every 3.0 milliseconds, or over 300 times per second. This about ten times faster than the Crab Pulsar, perhaps the most famous pulsar discovered.Between 1995 and 2001, the National Optical Astronomy Observatory (NOAO) and NASA also uncovered the oldest burned-out stars in our Milky Way Galaxy within this cluster. These small, burned-out stars - called white dwarfs - are about 12 to 13 billion years old, which has given  astronomers a fresh reading on the age of the universe.By adding the one billion years it took the cluster to form after the Big Bang, astronomers deduced that the age of the white dwarfs concurs with previous estimates of the universe being between 13 and 14 billion years old. Observations of the full cluster were performed by the Kitt Peak National Observatory's in March 1995.Subsequent examinations of a small region of the cluster (measuring only a light-year across) were performed by the HST's Wide Field and Planetary Camera 2 between January and April of 2001. These images revealed the presence of cool, aging white dwarf stars, which are circled in the image above (bottom right).Another interesting find was the binary star system which consists of a white dwarf and a pulsar companion (PSR B1620-26). This star also has a confirmed exoplanet, one which has 2.5 times the mass of Jupiter - making it a "Super Jupiter".

History of Observation:

Messier 4 was originally discovered by Philippe Loys de Chéseaux in 1746-46, and listed by him as Number 19 in his catalog. As he recorded of the object when first seeing it: "One which is near Antares, which I have found, for this year, at RA 242d 1' 45" and declination 25d 23' 30". It is white, round and smaller than the previous ones; I don't know anyone who noted it previously." It was also included in Nicholas Lacaille's catalog as Lacaille I.9. Said he of the object: "It resembles a small nucleus of a faint comet. [1763] Observed on April 13, 1752."It was Charles Messier who first resolved the object into individuals stars. And M4 was the first globular cluster where individual stars were resolved. When he cataloged it on May 8th, 1764, he recorded in his notes: "On May 8, 1764, I have discovered a nebula near Antares, and on its parallel, it is a light which has little extension, which is faint, and which is difficult to be seen: when employing a good telescope for viewing it, one can perceive very small stars. Its right ascension has been determined at 242d 16' 56", and its declination as 25d 55' 40" south."But again, it was English astronomer and naval officer Admiral Smyth that described it most eloquently:

"A compressed mass of very small stars, in the middle of the creature's body, with outliers and a few small stellar companions in the field. The place is carefully differentiated with Antares; from which it is only 1deg 1/2 distant to the west. This object is elongated vertically, and has the aspect of a large, pale, granulated nebula, running up to a blaze in the centre. It was discovered by Messier in the year 1764, and duly reported in the Connoissance des Temps. In 1783, Sir William Herschel resolved this object into stars; and gauging it by a modification of the method which he applied to fathom the Galaxy, he concluded that his 10-foot reflector, having the power to show stars exceeding that of the eye 28.67 times, gave the profundity of this cluster of the 344th order. He describes it as having a ridge of eight or ten pretty bright stars, running from the middle to the nf [north following, NE]; a description which I found very correct. Under the head of 80 Messier (which see, No. DLXIV [564]), a slight allusion was made to nebulae considered in their relations to the surrounding spaces. Like that singular mass, the group before us is also situated on the western edge of an area which contains no stars, i.e., none of which we can decry; and in such spaces invariably, according to the testimony of Sir William Herschel, are nebulae found.
Dominique François Jean Arago, a French astronomer who lived from the late 18th to the mid-19th century, had this to say about M4:

"Let us connect these facts with the observation which has shown that the stars are greatly condensed towards the centre of spherical nebulae, and with that which has afforded the proof that these stars sensibly obey a certain power of condensation (or clustering power), and we shall feel disposed to admit with Herschel, that nebulae are sometimes formed by the incessant operation of a great number of ages, at the expense of the scattered stars (etoiles dispersees) which originally occupied the surrounding regions; and the existence of empty, or ravaged spaces, to use the picturesque expression of the great astronomer, will no longer present anything which ought to confound our imagination."

Locating Messier 4:

Finding Messier Object 4 is quite easy, given its apparent luminosity and proximity to Earth. Even with the naked eye, all one needs to do is locate the red star Antares (Alpha Scorpii, aka. "the rival of Mars"), and you'll M4 located 1.3 degrees away to the west. Even the slightest optical aid (like binoculars) will reveal this magnificent globular cluster with ease on a dark night, provided that light pollution is not a significant factor.With favorable conditions, telescopes as small as 3" will begin resolving this huge ball of stars. With a large enough aperture, all one needs to do is look for the central "bar" structure in M4, which was first noted by William Herschel in 1783.For your convenience, here are the quick-facts about Messier 4:Object Name: Messier 4 Alternative Designations: NGC 6121 Object Type: Class IX Globular Cluster Constellation: Scorpius Right Ascension: 16 : 23.6 (h:m) Declination: -26 : 32 (deg:m) Distance: 7.2 (kly) Visual Brightness: 5.6 (mag) Apparent Dimension: 36.0 (arc min)Good luck seeking out this globular cluster, and may your view of it be clear and beautiful!We have written many interesting articles about Messier Objects here at Universe Today.  For instance, here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.Be to sure to check out our complete Messier Catalog.For more information, check out the SEDS Messier Database.

The post Messier 4 (M4) – The NGC 6121 Globular Cluster appeared first on Universe Today.

INSANE! Best UFO Sightings Of June 2015 [Breaking News] Share This!





How Aliens Built Pyramids - Full Documentary





Third Reich - Operation UFO (Nazi Base In Antarctica) Complete Documentary





UFO SIGHTINGS - The Suppressed 1974 Mexican UFO Crash





MASS UFO SIGHTINGS - Recent Mass UFO Sightings 2011





We Have Underestimated Our Sun’s Destructive Reach

We Have Underestimated Our Sun’s Destructive Reach:



Artists concept of a shredded asteroid getting too close to a star. (NASA/JPL-Caltech)


The Sun has enormous destructive power. Any objects that collide with the Sun, such as comets and asteroids, are immediately destroyed.But now we're finding that the Sun has the ability to reach out and touch asteroids at a far greater distance than previously thought. The proof of this came when a team at the University of Hawaii Institute of Astronomy was looking at Near-Earth Objects (NEOs) catalogued by the Catalina Sky Survey, and trying to understand what asteroids might be missing from that survey.An asteroid is classified as an NEO when, at its closest point to the Sun, it is less than 1.3 times the distance from the Earth to the Sun. We need to know where these objects are, how many of them there are, and how big they are. They're a potential threat to spacecraft, and to Earth itself.The Catalina Sky Survey (CSS) detected over 9,000 NEOs in eight years. But asteroids are notoriously difficult to detect. They are tiny points of light, and they're moving.  The team knew that there was no way the CSS could have detected all NEOs, so Dr. Robert Jedicke, a team member from the University of Hawaii Institute of Astronomy, developed software that would tell them what CSS had missed in its survey of NEOs.This took an enormous amount of work—and computing power—and when it was completed, they noticed a discrepancy: according to their work, there should be over ten times as many objects within ten solar diameters of the Sun as they found. The team had a puzzle on their hands.The team spent a year verifying their work before concluding that the problem did not lay in their analysis, but in our understanding of how the Solar System works. University of Helsinki scientist Mikael Granvik, lead author of the Nature article that reported these results, hypothesized that their model of the NEO population would better suit their results if asteroids were destroyed at a much greater distance from the sun than previously thought.They tested this idea, and found that it agreed with their model and with the observed population of NEOs, once asteroids that spent too much time within 10 solar diameters of the Sun were eliminated. "The discovery that asteroids must be breaking up when they approach too close to the Sun was surprising and that's why we spent so much time verifying our calculations," commented Dr. Jedicke.There are other discrepancies in our Solar System between what is observed and what is predicted when it comes to the distribution of small objects. Meteors are small pieces of dust that come from asteroids, and when they enter our atmosphere they burn up and make star-gazing all the more eventful. Meteors exist in streams that come from their parent objects. The problems is, most of the time the streams can't be matched with their parent object. This study shows that the parent objects must have been destroyed when they got too close to the Sun, leaving behind a stream of meteors, but no apparent source.There was another surprise in store for the team. Darker asteroids are destroyed at a greater distance from the Sun than lighter ones are. This explains an earlier discovery, which showed that brighter NEOs travel closer to the Sun than darker ones do. If darker asteroids are destroyed at a greater distance from the Sun than their lighter counterparts, then the two must have differing compositions and internal structure."Perhaps the most intriguing outcome of this study is that it is now possible to test models of asteroid interiors simply by keeping track of their orbits and sizes. This is truly remarkable and was completely unexpected when we first started constructing the new NEO model," says Granvik.

The post We Have Underestimated Our Sun’s Destructive Reach appeared first on Universe Today.

IC 1848: The Soul Nebula

IC 1848: The Soul Nebula: APOD: 2016 February 28 - IC 1848: The Soul Nebula



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 February 28


See Explanation. Clicking on the picture will download the highest resolution version available.



IC 1848: The Soul Nebula
Image Credit & Copyright: Roberto Colombari
Explanation: Stars are forming in the Soul of the Queen of Aethopia. More specifically, a large star forming region called the Soul Nebula can be found in the direction of the constellation Cassiopeia, who Greek mythology credits as the vain wife of a King who long ago ruled lands surrounding the upper Nile river. The Soul Nebula houses several open clusters of stars, a large radio source known as W5, and huge evacuated bubbles formed by the winds of young massive stars. Located about 6,500 light years away, the Soul Nebula spans about 100 light years and is usually imaged next to its celestial neighbor the Heart Nebula (IC 1805). The featured image appears mostly red due to the emission of a specific color of light emitted by excited hydrogen gas.

Follow APOD on: Facebook, Google Plus, Twitter, or Instagram
Tomorrow's picture: caesar's bonus day

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


NGC 3310: A Starburst Spiral Galaxy

NGC 3310: A Starburst Spiral Galaxy:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 1


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The party is still going on in spiral galaxy NGC 3310. Roughly 100 million years ago, NGC 3310 likely collided with a smaller galaxy causing the large spiral galaxy to light up with a tremendous burst of star formation. The changing gravity during the collision created density waves that compressed existing clouds of gas and triggered the star-forming party. The featured image from the Gemini North Telescope shows the galaxy in great detail, color-coded so that pink highlights gas while white and blue highlight stars. Some of the star clusters in the galaxy are quite young, indicating that starburst galaxies may remain in star-burst mode for quite some time. NGC 3310 spans about 50,000 light years, lies about 50 million light years away, and is visible with a small telescope towards the constellation of Ursa Major.

UFO SIGHTINGS OR Unusual Clouds over Hong Kong ?

UFO SIGHTINGS OR Unusual Clouds over Hong Kong ?: APOD: 2016 March 2 - Unusual Clouds over Hong Kong



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 March 2


See Explanation. Clicking on the picture will download the highest resolution version available.



Unusual Clouds over Hong Kong
Image Credit & Copyright: Alfred Lee
Explanation: What's that in the sky? Earlier this month, in the sky high above Hong Kong, China, not just one unusual type of cloud appeared -- but two. In the foreground was a long lenticular cloud, a cloud that forms near mountains from uprising air and might appear to some as an alien spaceship. Higher in the sky, and further in the background, was a colorful iridescent cloud. Iridescent clouds are composed of water droplets of similar size that diffract different colors of sunlight by different amounts. Furthest in the background is the Sun, blocked from direct view by the opaque lenticular, but providing the light for the colors of the iridescent. Either type of cloud is unusual to see in Hong Kong, and unfortunately, after only a few minutes, both were gone.

Tomorrow's picture: Moons and Jupiter

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Sculptor Galaxy NGC 134

Sculptor Galaxy NGC 134:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 4


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: NGC 134 is probably not the best known spiral galaxy in the constellation Sculptor. Still, the tantalizing island universe is a clearly a telescopic treasure in southern skies. It shares a bright core, clumpy dust lanes, and loosely wrapped spiral arms with spiky foreground stars of the Milky Way and the more diminutive galaxy NGC 131 in this sharp cosmic vista. From a distance of about 60 million light-years, NGC 134 is seen tilted nearly edge-on. It spans some 150,000 light-years, making it even larger than our own Milky Way galaxy. NGC 134's warped disk and faint extensions give the appearance of past gravitational interactions with neighboring galaxies. Like the much closer and brighter Sculptor galaxy NGC 253, tendrils of dust appear to rise from a galactic disk sprinkled with blue star clusters and pinkish star forming regions.

Cities at Night

Cities at Night:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 5


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Looking toward the south from an altitude of 400 kilometers, this stunning snapshot from orbit finds bright lights of Tokyo and cities across central and southern Japan, planet Earth shining upward through broken clouds. The spacefaring perspective was captured last July by astronaut Scott Kelly during his stay on board the International Space Station. Thin stripes of airglow follow the curve of the planet's dark limb, while beyond lie stars of the constellation Centaurus and the southern sky. Their solar panels extended, a docked Soyuz (bottom) and Progress spacecraft are posed in the foreground. Kelly returned to planet Earth this week after his one-year mission in space.

Edge On Galaxy NGC 5866

Edge On Galaxy NGC 5866: APOD: 2016 March 9 - Edge On Galaxy NGC 5866



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 March 9


See Explanation. Clicking on the picture will download the highest resolution version available.



Edge-On Galaxy NGC 5866
Image Credit: NASA, ESA, Hubble Legacy Archive; Processed & Copyright: Hunter Wilson
Explanation: Why is this galaxy so thin? Many disk galaxies are actually just as thin as NGC 5866, pictured above, but are not seen edge-on from our vantage point. One galaxy that is situated edge-on is our own Milky Way Galaxy. Classified as a lenticular galaxy, NGC 5866 has numerous and complex dust lanes appearing dark and red, while many of the bright stars in the disk give it a more blue underlying hue. The blue disk of young stars can be seen extending past the dust in the extremely thin galactic plane, while the bulge in the disk center appears tinged more orange from the older and redder stars that likely exist there. Although similar in mass to our Milky Way Galaxy, light takes about 60,000 years to cross NGC 5866, about 30 percent less than light takes to cross our own Galaxy. In general, many disk galaxies are very thin because the gas that formed them collided with itself as it rotated about the gravitational center. Galaxy NGC 5866 lies about 50 million light years distant toward the constellation of the Dragon (Draco).

Follow APOD on: Facebook, Google Plus, Twitter, or Instagram
Tomorrow's picture: pixels in space

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Dark Sun over Ternate

Dark Sun over Ternate: APOD: 2016 March 10 - Dark Sun over Ternate



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 March 10


See Explanation. Clicking on the picture will download the highest resolution version available.



Dark Sun over Ternate
Image Credit & Copyright: Babak Tafreshi (TWAN)
Explanation: A dark Sun hangs in the clearing sky over a volcanic planet in this morning sea and skycape. It was taken during this week's total solar eclipse, a dramatic snapshot from along the narrow path of totality in the dark shadow of a New Moon. Earth's Indonesian isle of Ternate, North Maluku lies in the foreground. The sky is still bright near the eastern horizon though, beyond the region's flattened volcanic peaks and outside the Moon's umbral shadow. In fact, near the equator the dark lunar umbra is rushing eastward across Earth's surface at about 1,700 kilometers (1,100 miles) per hour. Shining through the thin clouds, around the Sun's silhouette is the alluring glow of the solar corona, only easily seen during totality. An inspiring sight for eclipse watchers, this solar corona is the tenuous, hot outer atmosphere of the Sun.

Tomorrow's picture: Lunar Shadow Transit

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Lunar Shadow Transit

Lunar Shadow Transit:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 11
See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: This snapshot from deep space captures planet Earth on March 9. The shadow of its large moon is falling on the planet's sunlit hemisphere. Tracking toward the east (left to right) across the ocean-covered world the moon shadow moved quickly in the direction of the planet's rotation. Of course, denizens of Earth located close to the shadow track centerline saw this lunar shadow transit as a brief, total eclipse of the Sun. From a spacebased perspective between Earth and Sun, the view of this shadow transit was provided by the Deep Space Climate Observatory (DSCOVR) spacecraft's Earth Polychromatic Imaging Camera (EPIC).

Neon Saturn

Neon Saturn: APOD: 2016 March 13 - Neon Saturn



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 March 13


See Explanation. Clicking on the picture will download the highest resolution version available.



Neon Saturn
Image Credit: VIMS Team, U. Arizona, ESA, NASA
Explanation: If seen in the right light, Saturn glows like a neon sign. Although Saturn has comparatively little of the element neon, a composite image false-colored in three bands of infrared light highlights features of the giant ringed planet like a glowing sign. At the most blue band of the infrared light featured, false-colored blue in the above image, Saturn itself appears dark but Saturn's thin rings brightly reflect light from our Sun. Conversely, Saturn's B ring is so thick that little reflected light makes it through, creating a dark band between Saturn's A and C rings. At the most red band of the infrared, false-colored red above, Saturn emits a surprisingly detailed thermal glow, indicating planet-wide bands, huge hurricane-like storms, and a strange hexagon-shaped cloud system around the North Pole. In the middle infrared band, false-colored green, the sunlit side of Saturn's atmosphere reflects brightly. The above image was obtained in 2007 by the robotic Cassini spacecraft orbiting about 1.6 million kilometers out from Saturn.

Follow APOD on: Facebook, Google Plus, Twitter, or Instagram
Tomorrow's picture: beautiful dust

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Dark Nebulas across Taurus

Dark Nebulas across Taurus:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 14


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Sometimes even the dark dust of interstellar space has a serene beauty. One such place occurs toward the constellation of Taurus. The filaments featured here can be found on the sky between the Pleiades star cluster and the California Nebula. This dust is not known not for its bright glow but for its absorption and opaqueness. Several bright stars are visible with their blue light seen reflecting off the brown dust. Other stars appear unusually red as their light barely peaks through a column of dark dust, with red the color that remains after the blue is scattered away. Yet other stars are behind dust pillars so thick they are not visible here. Although appearing serene, the scene is actually an ongoing loop of tumult and rebirth. This is because massive enough knots of gas and dust will gravitationally collapse to form new stars -- stars that both create new dust in their atmospheres and destroy old dust with their energetic light and winds.

Close Comet and Large Magellanic Cloud

Close Comet and Large Magellanic Cloud:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 March 17



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Sporting a surprisingly bright, lovely green coma Comet 252P/Linear poses next to the Large Magellanic Cloud in this southern skyscape. The stack of telephoto exposures was captured on March 16 from Penwortham, South Australia. Recognized as a Jupiter family periodic comet, 252P/Linear will come close to our fair planet on March 21, passing a mere 5.3 million kilometers away. That's about 14 times the Earth-Moon distance. In fact, it is one of two comets that will make remarkably close approaches in the next few days as a much fainter Comet Pan-STARRS (P/2016 BA14) comes within 3.5 million kilometers (9 times the Earth-Moon distance) on March 22. The two have extremely similar orbits, suggesting they may have originally been part of the same comet. Sweeping quickly across the sky because of their proximity to Earth, both comets will soon move into northern skies.

Sunday, February 28, 2016

NGC 2403 in Camelopardalis

NGC 2403 in Camelopardalis:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 February 19


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Magnificent island universe NGC 2403 stands within the boundaries of the long-necked constellation Camelopardalis. Some 10 million light-years distant and about 50,000 light-years across, the spiral galaxy also seems to have more than its fair share of giant star forming HII regions, marked by the telltale reddish glow of atomic hydrogen gas. The giant HII regions are energized by clusters of hot, massive stars that explode as bright supernovae at the end of their short and furious lives. A member of the M81 group of galaxies, NGC 2403 closely resembles another galaxy with an abundance of star forming regions that lies within our own local galaxy group, M33 the Triangulum Galaxy. Spiky in appearance, bright stars in this colorful galaxy portrait of NGC 2403 are in the foreground, within our own Milky Way.

M82: Galaxy with a Supergalactic Wind

M82: Galaxy with a Supergalactic Wind: APOD: 2016 February 21 - M82: Galaxy with a Supergalactic Wind



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 February 21


See Explanation. Clicking on the picture will download the highest resolution version available.



M82: Galaxy with a Supergalactic Wind
Image Credit: NASA, ESA, The Hubble Heritage Team, (STScI/AURA)
Acknowledgement: M. Mountain (STScI), P. Puxley (NSF), J. Gallagher (U. Wisconsin)
Explanation: What's lighting up the Cigar Galaxy? M82, as this irregular galaxy is also known, was stirred up by a recent pass near large spiral galaxy M81. This doesn't fully explain the source of the red-glowing outwardly expanding gas, however. Evidence indicates that this gas is being driven out by the combined emerging particle winds of many stars, together creating a galactic superwind. The featured photographic mosaic highlights a specific color of red light strongly emitted by ionized hydrogen gas, showing detailed filaments of this gas. The filaments extend for over 10,000 light years. The 12-million light-year distant Cigar Galaxy is the brightest galaxy in the sky in infrared light, and can be seen in visible light with a small telescope towards the constellation of the Great Bear (Ursa Major).

Tomorrow's picture: frozen underworld

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


A Supernova through Galaxy Dust

A Supernova through Galaxy Dust: APOD: 2016 February 23 - A Supernova through Galaxy Dust



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 February 23


See Explanation. Clicking on the picture will download the highest resolution version available.



A Supernova through Galaxy Dust
Image Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA);
Inset Image: Howard Hedlund & Dave Jurasevich, Las Campanas Obs.
Explanation: Telescopes around the world are tracking a bright supernova that occurred in a nearby dusty galaxy. The powerful stellar explosion was first noted earlier this month. The nearby galaxy is the photogenic Centaurus A, visible with binoculars and known for impressive filaments of light-absorbing dust that cross its center. Cen A is featured here in a high-resolution archival Hubble Space Telescope image, with an inset image featuring the supernova taken from the ground only two days after discovery. Designated SN2016adj, the supernova is highlighted with crosshairs in the inset, appearing just to the left of a bright foreground star in our Milky Way Galaxy. This supernova is currently thought to be of Type IIb, a stellar-core-collapse supernova, and is of high interest because it occurred so nearby and because it is being seen through a known dust filament. Current and future observations of this supernova may give us new clues about the fates of massive stars and how some elements found on our Earth were formed.

Tomorrow's picture: megalopolis USA

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


The Tarantula Nebula

The Tarantula Nebula: APOD: 2016 February 26 - The Tarantula Nebula



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2016 February 26


See Explanation. Clicking on the picture will download the highest resolution version available.



The Tarantula Nebula
Image Credit & Copyright: Processing - Robert Gendler, Roberto Colombari
Data - Hubble Tarantula Treasury, European Southern Observatory
Explanation: The Tarantula Nebula is more than a thousand light-years in diameter, a giant star forming region within nearby satellite galaxy the Large Magellanic Cloud, about 180 thousand light-years away. The largest, most violent star forming region known in the whole Local Group of galaxies, the cosmic arachnid sprawls across this spectacular composite view constructed with space- and ground-based image data. Within the Tarantula (NGC 2070), intense radiation, stellar winds and supernova shocks from the central young cluster of massive stars, cataloged as R136, energize the nebular glow and shape the spidery filaments. Around the Tarantula are other star forming regions with young star clusters, filaments, and blown-out bubble-shaped clouds In fact, the frame includes the site of the closest supernova in modern times, SN 1987A, at the lower right. The rich field of view spans about 1 degree or 2 full moons, in the southern constellation Dorado. But were the Tarantula Nebula closer, say 1,500 light-years distant like the local star forming Orion Nebula, it would take up half the sky.

Tomorrow's picture: the frozen north

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.