Thursday, December 17, 2015

What Is The Big Bang Theory?

What Is The Big Bang Theory?:



The history of theA billion years after the big bang, hydrogen atoms were mysteriously torn apart into a soup of ions.universe starting the with the Big Bang. Image credit: grandunificationtheory.com


How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos.

This is known as The Big Bang Theory. For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?

The basics of the theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.

While this is not the only modern theory of how the Universe came into being - for example, there is the Steady State Theory or the Oscillating Universe Theory - it is the most widely accepted and popular. Not only does the model explain the origin of all known matter, the laws of physics, and the large scale structure of the Universe, it also accounts for the expansion of the Universe and a broad range of other phenomena.

https://youtu.be/xtrYF_hxxUM

Timeline:
Working backwards from the current state of the Universe, scientists have theorized that it must have originated at a single point of infinite density and finite time that began to expand. After the initial expansion, the theory maintains that Universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies.

This all began roughly 13.8 billion years ago, and is thus considered to be the age of the universe. Through the testing of theoretical principles, experiments involving particle accelerators and high-energy states, and astronomical studies that have observed the deep universe, scientists have constructed a timeline of events that began with the Big Bang and has led to the current state of cosmic evolution.

However, the earliest times of the Universe - lasting from approximately 10-43 to 10-11 seconds after the Big Bang -  are the subject of extensive speculation. Given that the laws of physics as we know them could not have existed at this time, it is difficult to fathom how the Universe could have been governed. What's more, experiments that can create the kinds of energies involved have not yet been conducted. Still, many theories prevail as to what took place in this initial instant in time, many of which are compatible.

Singularity:
Also known as the Planck Epoch (or Planck Era), this was the earliest known period of the Universe. At this time, all matter was condensed on a single point of infinite density and extreme heat. During this period, it is believed that the quantum effects of gravity dominated physical interactions and that no other physical forces were of equal strength to gravitation.

https://youtu.be/r5bZ3BCuXKk

This Planck period of time extends from point 0 to approximately 10-43 seconds, and is so named because it can only be measured in Planck time. Due to the extreme heat and density of matter, the state of the universe was highly unstable. It thus began to expand and cool, leading to the manifestation of the fundamental forces of physics.

From approximately 10-43 second and 10-36, the universe began to cross transition temperatures. It is here that the fundamental forces that govern the Universe are believed to have began separating from each other. The first step in this was the force of gravitation separating from gauge forces, which account for strong and weak nuclear forces and electromagnetism.


Then, from 10-36 to 10-32 seconds after the Big Bang, the temperature of the universe was low enough (1028 K) that the forces of electromagnetism (strong force) and weak nuclear forces (weak interaction) were able to separate as well, forming two distinct forces.

Inflation Epoch:
With the creation of the first fundamental forces of the universe, the Inflation Epoch began, lasting from 10-32 seconds in Planck time to an unknown point. Most cosmological models suggest that the Universe at this point was filled homogeneously with a high-energy density, and that the incredibly high temperatures and pressure gave rise to rapid expansion and cooling.



This began at 10-37 seconds, where the phase transition that caused for the separation of forces also led to a period where the universe grew exponentially. It was also at this point in time that baryogenesis occurred, which refers to a hypothetical event where temperatures were so high that the random motions of particles occurred at relativistic speeds.

As a result of this, particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions, which is believed to have led to the predominance of matter over antimatter in the present universe. After inflation stopped, the universe consisted of a quark–gluon plasma, as well as all other elementary particles. From this point onward, the Universe began to cool and matter coalesced and formed.

Cooling Epoch:
As the universe continued to decrease in density and temperature, the energy of each particle began to decrease and phase transitions continued until the fundamental forces of physics and elementary particles changed into their present form. Since particle energies would have dropped to values that can be obtained by particle physics experiments, this period onward is subject to less speculation.

For example, scientists believe that about 10-11 seconds after the Big Bang, particle energies dropped considerably. At about 10-6 seconds, quarks and gluons combined to form baryons such as protons and neutrons, and a small excess of quarks over antiquarks led to a small excess of baryons over antibaryons.

https://youtu.be/Y6hBthfoosI

Since temperatures were not high enough to create new proton-antiproton pairs (or neutron-anitneutron pairs), mass annihilation immediately followed, leaving just one in 1010 of the original protons and neutrons and none of their antiparticles. A similar process happened at about 1 second after the Big Bang for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the universe was dominated by photons - and to a lesser extent, neutrinos.

A few minutes into the expansion, the period known as Big Bang nucleosynthesis also began. Thanks to temperatures dropping to 1 billion kelvin and the energy densities dropping to about the equivalent of air, neutrons and protons began to combine to form the universe's first deuterium (a stable isotope of Hydrogen) and helium atoms. However, most of the Universe's protons remained uncombined as hydrogen nuclei.

After about 379,000 years, electrons combined with these nuclei to form atoms (again, mostly hydrogen), while the radiation decoupled from matter and continued to expand through space, largely unimpeded. This radiation is now known to be what constitutes the Cosmic Microwave Background (CMB), which today is the oldest light in the Universe.

As the CMB expanded, it gradually lost density and energy, and is currently estimated to have a temperature of 2.7260 ± 0.0013 K (-270.424 °C/ -454.763 °F ) and an energy density of 0.25 eV/cm3 (or 4.005×10-14 J/m3; 400–500 photons/cm3). The CMB can be seen in all directions at a distance of roughly 13.8 billion light years, but estimates of its actual distance place it at about 46 billion light years from the center of the Universe.

https://youtu.be/ndS3kIWrjk8

Structure Epoch:
Over the course of the several billion years that followed, the slightly denser regions of the almost uniformly distributed matter of the Universe began to become gravitationally attracted to each other. They therefore grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures that we regularly observe today.

This is what is known as the Structure Epoch, since it was during this time that the modern Universe began to take shape. This consists of visible matter distributed in structures of various sizes, ranging from stars and planets to galaxies, galaxy clusters, and super clusters - where matter is concentrated - that are separated by enormous gulfs containing few galaxies.

The details of this process depend on the amount and type of matter in the universe, with cold dark matter, warm dark matter, hot dark matter, and baryonic matter being the four suggested types. However, the Lambda-Cold Dark Matter model (Lambda-CDM), in which the dark matter particles moved slowly compared to the speed of light, is the considered to be the standard model of Big Bang cosmology, as it best fits the available data.

In this model, cold dark matter is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%. The Lambda refers to the Cosmological Constant, a theory originally proposed by Albert Einstein that attempted to show that the balance of mass-energy in the universe was static. In this case, it is associated with Dark Energy, which served to accelerate the expansion of the universe and keep its large-scale structure largely uniform.



Long-term Predictions:
Hypothesizing that the Universe had a starting point naturally gives rise to questions about a possible end point. If the Universe began as a tiny point of infinite density that started to expand, does that mean it will continue to expand indefinitely? Or will it one day run out of expansive force, and begin retreating inward until all matter crunches back into a tiny ball?

Answering this question has been a major focus of cosmologists ever since the debate about which model of the Universe was the correct one began. With the acceptance of the Big Bang Theory, but prior to the observation of Dark Energy in the 1990s, cosmologists had come to agree on two scenarios as being the most likely outcomes for our Universe.

In the first, commonly known as the "Big Crunch" scenario, the universe will reach a maximum size and then begin to collapse in on itself. This will only be possible if the mass density of the Universe is greater than the critical density. In other words, as long as the density of matter remains at or above a certain value (1-3 ×10-26 kg of matter per m³), the Universe will eventually contract.

Alternatively, if the density in the universe were equal to or below the critical density, the expansion would slow down but never stop. In this scenario, known as the "Big Freeze", the Universe would go on until star formation eventually ceased with the consumption of all the interstellar gas in each galaxy. Meanwhile, all existing stars would burn out and become white dwarfs, neutron stars, and black holes.

https://youtu.be/VO29tEmmvO8

Very gradually, collisions between these black holes would result in mass accumulating into larger and larger black holes. The average temperature of the universe would approach absolute zero, and black holes would evaporate after emitting the last of their Hawking radiation. Finally, the entropy of the universe would increase to the point where no organized form of energy could be extracted from it (a scenarios known as "heat death").

Modern observations, which include the existence of Dark Energy and its influence on cosmic expansion, have led to the conclusion that more and more of the currently visible universe will pass beyond our event horizon (i.e. the CMB, the edge of what we can see) and become invisible to us. The eventual result of this is not currently known, but "heat death" is considered a likely end point in this scenario too.

Other explanations of dark energy, called phantom energy theories, suggest that ultimately galaxy clusters, stars, planets, atoms, nuclei, and matter itself will be torn apart by the ever-increasing expansion. This scenario is known as the "Big Rip", in which the expansion of the Universe itself will eventually be its undoing.

History of the Big Bang Theory:
The earliest indications of the Big Bang occurred as a result of deep-space observations conducted in the early 20th century. In 1912, American astronomer Vesto Slipher conducted a series of observations of spiral galaxies (which were believed to be nebulae) and measured their Doppler Redshift. In almost all cases, the spiral galaxies were observed to be moving away from our own.

https://youtu.be/PckQcOY88ok

In 1922, Russian cosmologist Alexander Friedmann developed what are known as the Friedmann equations, which were derived from Einstein's equations for general relativity. Contrary to Einstein's was advocating at the time with his a Cosmological Constant, Friedmann's work showed that the universe was likely in a state of expansion.

In 1924, Edwin Hubble's measurement of the great distance to the nearest spiral nebula showed that these systems were indeed other galaxies. At the same time, Hubble began developing a series of distance indicators using the 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory. And by 1929, Hubble discovered a correlation between distance and recession velocity - which is now known as Hubble's law.

And then in 1927, Georges Lemaitre, a Belgian physicist and Roman Catholic priest, independently derived the same results as Friedmann's equations and proposed that the inferred recession of the galaxies was due to the expansion of the universe. In 1931, he took this further, suggesting that the current expansion of the Universe meant that the father back in time one went, the smaller the Universe would be. At some point in the past, he argued, the entire mass of the universe would have been concentrated into a single point from which the very fabric of space and time originated.

These discoveries triggered a debate between physicists throughout the 1920s and 30s, with the majority advocating that the universe was in a steady state. In this model, new matter is continuously created as the universe expands, thus preserving the uniformity and density of matter over time. Among these scientists, the idea of a Big Bang seemed more theological than scientific, and accusations of bias were made against Lemaitre based on his religious background.

https://youtu.be/RWnduAnxLQ4

Other theories were advocated during this time as well, such as the Milne Model and the Oscillary Universe model. Both of these theories were based on Einstein's theory of general relativity (the latter being endorsed by Einstein himself), and held that the universe follows infinite, or indefinite, self-sustaining cycles.

After World War II, the debate came to a head between proponents of the Steady State Model (which had come to be formalized by astronomer Fred Hoyle) and proponents of the Big Bang Theory - which was growing in popularity. Ironically, it was Hoyle who coined the phrase "Big Bang" during a BBC Radio broadcast in March 1949, which was believed by some to be a pejorative dismissal (which Hoyle denied).

Eventually, the observational evidence began to favor Big Bang over Steady State. The discovery and confirmation of the cosmic microwave background radiation in 1965 secured the Big Bang as the best theory of the origin and evolution of the universe. From the late 60s to the 1990s, astronomers and cosmologist made an even better case for the Big Bang by resolving theoretical problems it raised.

These included papers submitted by Stephen Hawking and other physicists that showed that singularities were an inevitable initial condition of general relativity and a Big Bang model of cosmology. In 1981, physicist Alan Guth theorized of a period of rapid cosmic expansion (aka. the "Inflation" Epoch) that resolved other theoretical problems.

https://youtu.be/ndS3kIWrjk8

The 1990s also saw the rise of Dark Energy as an attempt to resolve outstanding issues in cosmology. In addition to providing an explanation as to the universe's missing mass (along with Dark Matter, originally proposed in 1932 by Jan Oort), it also provided an explanation as to why the universe is still accelerating, as well as offering a resolution to Einstein's Cosmological Constant.

Significant progress was made thanks to advances in telescopes, satellites, and computer simulations, which have allowed astronomers and cosmologists to see more of the universe and gain a better understanding of its true age. The introduction of space telescopes - such as the Cosmic Background Explorer (COBE), the Hubble Space Telescope, Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck Observatory - have also been of immeasurable value.

Today, cosmologists have fairly precise and accurate measurements of many of the parameters of the Big Bang model, not to mention the age of the Universe itself. And it all began with the noted observation that massive stellar objects, many light years distant, were slowly moving away from us. And while we still are not sure how it will all end, we do know that on a cosmological scale, that won't be for a long, LONG time!

We have many interesting articles about the Big Bang here at Universe Today. For instance, here is What is the Evidence of the Big Bang?, What Came Before the Big Bang?, A New Theory About Of The Universe's Creation, and What is Cosmic Background Radiation?

For more information, check out NASA's page on the Big Bang Theory. NASA's WMAP mission webpage, Big Bang Cosmology, and its What is the big bang theory? also give good introductions to the big bang theory. For a more detailed introduction, check out Ned Wright's Cosmology Tutorial.

Astronomy Cast has also has several relevant episodes on the subject. Here's Episode 137: Large Scale Structure of the Universe, Episode 123: Homogeneity, and Episode 58: Inflation.

The post What Is The Big Bang Theory? appeared first on Universe Today.

The Horsehead Nebula

The Horsehead Nebula:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 December 16



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The Horsehead Nebula is one of the most famous nebulae on the sky. It is visible as the dark indentation to the red emission nebula in the center of the above photograph. The horse-head feature is dark because it is really an opaque dust cloud that lies in front of the bright red emission nebula. Like clouds in Earth's atmosphere, this cosmic cloud has assumed a recognizable shape by chance. After many thousands of years, the internal motions of the cloud will surely alter its appearance. The emission nebula's red color is caused by electrons recombining with protons to form hydrogen atoms. On the image left is the Flame Nebula, an orange-tinged nebula that also contains filaments of dark dust. Just to the lower left of the Horsehead nebula featured picture is a blueish reflection nebulae that preferentially reflects the blue light from nearby stars.

Wednesday, December 16, 2015

What Are The Parts Of An Atom?

What Are The Parts Of An Atom?:



A depiction of the atomic structure of the helium atom. Credit: Creative Commons


Since the beginning of time, human beings have sought to understand what the universe and everything within it is made up of. And while ancient magi and philosophers conceived of a world composed of four or five elements - earth, air, water, fire (and metal, or consciousness) - by classical antiquity, philosophers began to theorize that all matter was actually made up of tiny, invisible, and indivisible atoms.

Since that time, scientists have engaged in a process of ongoing discovery with the atom, hoping to discover its true nature and makeup. By the 20th century, our understanding became refined to the point that we were able to construct an accurate model of it. And within the past decade, our understanding has advanced even further, to the point that we have come to confirm the existence of almost all of its theorized parts.

Today, atomic research is focused on studying the structure and the function of matter at the subatomic level. This not only consists of identifying all the subatomic particles that are thought to make up an atom, but investigating the forces that govern them. These include strong nuclear forces, weak nuclear forces, electromagnetism and gravity. Here is a breakdown of all that we've come to learn about the atom so far...

Structure:
Our current model of the atom can be broken down into three constituents parts - protons, neutron, and electrons. Each of these parts has an associated charge, with protons carrying a positive charge, electrons having a negative charge, and neutrons possessing no net charge. In accordance with the Standard Model of particle physics, protons and neutrons make up the nucleus of the atom, while electrons orbit it in a "cloud".



The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. Electrons can escape from their orbit, but only in response to an external source of energy being applied. The closer orbit of the electron to the nucleus, the greater the attractive force; hence, the stronger the external force needed to cause an electron to escape.

Electrons orbit the nucleus in multiple orbits, each of which corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon.

Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds.

All three of these subatomic particles are Fermions, a class of particle associated with matter that is either elementary (electrons) or composite (protons and neutrons) in nature. This means that electrons have no known internal structure, whereas protons and neutrons are made up of other subatomic particles. called quarks. There are two types of quarks in atoms, which have a fractional electric charge.

Protons are composed of two "up" quarks (each with a charge of +2/3) and one "down" quark (-1/3), while neutrons consist of one up quark and two down quarks. This distinction accounts for the difference in charge between the two particles, which works out to a charge of +1 and 0 respectively, while electrons have a charge of -1.

Other subatomic particles include Leptons, which combine with Fermions to form the building blocks of matter. There are six leptons in the present atomic model: the electron, muon, and tau particles, and their associated neutrinos. The different varieties of the Lepton particles, commonly called "flavors", are differentiated by their sizes and charges, which effects the level of their electromagnetic interactions.

Then, there are Gauge Bosons, which are known as "force carriers" since they mediate physical forces. For instance, gluons are responsible for the strong nuclear force that holds quarks together while W and Z bosons (still hypothetical) are believed to be responsible for the weak nuclear force behind electromagnetism. Photons are the elementary particle that makes up light, while the Higgs Boson is responsible for giving the W and Z bosons their mass.

Mass:
The majority of an atoms' mass comes from the protons and neutrons that make up its nucleus. Electrons are the least massive of an atom's constituent particles, with a mass of 9.11 x 10-31 kg and a size too small to be measured by current techniques. Protons have a mass that is 1,836 times that of the electron, at 1.6726×10-27 kg, while neutrons are the most massive of the three, at 1.6929×10-27 kg (1,839 times the mass of the electron).



The total number of protons and neutrons in an atoms' nucleus (called "nucleons") is called the mass number. For example, the element Carbon-12 is so-named because it has a mass number of 12 - derived from its 12 nucleons (six protons and six neutrons). However, elements are also arranged based on their atomic numbers, which is the same as the number of protons found in the nucleus. In this case, Carbon has an atomic number of 6.

The actual mass of an atom at rest is very difficult to measure, as even the most massive of atoms are too light to express in conventional units. As such, scientists often use the unified atomic mass unit (u) - also called dalton (Da) - which is defined as a twelfth of the mass of a free neutral atom of carbon-12, which is approximately 1.66×10-27 kg.

Chemists also use moles, a unit defined as one mole of any element always having the same number of atoms (about 6.022×1023). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element has a mass close to one gram. Because of the definition of the unified atomic mass unit, each carbon-12 atom has an atomic mass of exactly 12 u, and so a mole of carbon-12 atoms weighs exactly 0.012 kg.

Radioactive Decay:
Any two atoms that have the same number of protons belong to the same chemical element. But atoms with an equal number of protons can have a different number of neutrons, which are defined as being different isotopes of the same element. These isotopes are often unstable, and all those with an atomic number greater than 82 are known to be radioactive.



When an element undergoes decay, its nucleus loses energy by emitting radiation - which can consist of alpha particles (helium atoms), beta particles (positrons), gamma rays (high-frequency electromagnetic energy) and conversion electrons. The rate at which an unstable element decays is known as its "half-life", which is the amount of time required for the element to fall to half its initial value.

The stability of an isotope is affected by the ratio of protons to neutrons. Of the 339 different types of elements that occur naturally on Earth, 254 (about 75%) have been labelled as "stable isotopes" - i.e. not subject to decay. An additional 34 radioactive elements have half-lives longer than 80 million years, and have also been in existence since the early Solar System (hence why they are called "primordial elements").

Finally, an additional 51 short-lived elements are known to occur naturally, as "daughter elements" (i.e. nuclear by-products) of the decay of other elements (such as radium from uranium). In addition, short-lived radioactive elements can be the result of natural energetic processes on Earth, such as cosmic ray bombardment (for example, carbon-14, which occurs in our atmosphere).

History of Study:
The earliest known examples of atomic theory come from ancient Greece and India, where philosophers such as Democritus postulated that all matter was composed of tiny, indivisible and indestructible units. The term "atom" was coined in ancient Greece and gave rise to the school of thought known as "atomism". However, this theory was more of a philosophical concept than a scientific one.



It was not until the 19th century that the theory of atoms became articulated as a scientific matter, with the first evidence-based experiments being conducted. For example, in the early 1800's, English scientist John Dalton used the concept of the atom to explain why chemical elements reacted in certain observable and predictable ways.

Dalton began with the question of why elements reacted in ratios of small whole numbers, and concluded that these reactions occurred in whole number multiples of discrete units—in other words, atoms. Through a series of experiments involving gases, Dalton went on to developed what is known as Dalton's Atomic Theory, which remains one of the cornerstones of modern physics and chemistry.

The theory comes down to five premises: elements, in their purest state, consist of particles called atoms; atoms of a specific element are all the same, down to the very last atom; atoms of different elements can be told apart by their atomic weights; atoms of elements unite to form chemical compounds; atoms can neither be created or destroyed in chemical reaction, only the grouping ever changes.

By the late 19th century, scientists began to theorize that the atom was made up of more than one fundamental unit. However, most scientists ventured that this unit would be the size of the smallest known atom - hydrogen. And then in 1897, through a series of experiments using cathode rays, physicist J.J. Thompson announced that he had discovered a unit that was 1000 times smaller and 1800 times lighter than a hydrogen atom.



His experiments also showed that they were identical to particles given off by the photoelectric effect and by radioactive materials. Subsequent experiments revealed that this particle carried electric current through metal wires and negative electric charges within atoms. Hence why the particle - which was originally named a "corpuscle" - was later changed to "electron", after the particle George Johnstone Stoney's predicted in 1874.

However, Thomson also postulated that electrons were distributed throughout the atom, which was a uniform sea of positive charge. This became known as the "plum pudding model", which would later be proven wrong. This took place in 1909, when physicists Hans Gieger and Ernest Marsden (under the direction of Ernest Rutherfod) conducted their experiment using metal foil and alpha particles.

Consistent with Dalton's atomic model, they believed that the alpha particles would pass straight through the foil with little deflection. However, many of the particles were deflected at angles greater than 90°. To explain this, Rutherford proposed that the positive charge of the atom is concentrated in a tiny nucleus at the center.

In 1913, physicist Niels Bohr proposed a model where electrons orbited the nucleus, but could only do so in a finite set of orbits. He also proposed that electrons could jump between orbits, but only in discrete changes of energy corresponding to the absorption or radiation of a photon. This not only refined Rutherford's proposed model, but also gave rise to the concept of a quantized atom, where matter behaved in discreet packets.



The development of the mass spectrometer - which uses a magnet to bend the trajectory of a beam of ions - allowed the mass of atoms to be measured with increased accuracy. Chemist Francis William Aston used this instrument to show that isotopes had different masses. This in turn was followed up by physicist James Chadwick, who in 1932 proposed the neutron as a way of explaining the existence of isotopes.

Throughout the early 20th century, the quantum nature of atoms was developed further. In 1922, German physicists Otto Stern and Walther Gerlach conducted an experiment where a beam of silver atoms was directed through a magnetic field, which was intended to split the beam between the direction of the atoms angular momentum (or spin).

Known as the Stern–Gerlach Experiment, the results was that the beam split in two parts, depending on whether or not the spin of the atoms was oriented up or down. In 1926, physicist Erwin Schrodinger used the idea of particles behaving like waves to develop a mathematical model that described electrons as three-dimensional waveforms rather than mere particles.

A consequence of using waveforms to describe particles is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at any given time. That same year, Werner Heisenberg formulated this problem and called it the "uncertainty principle". According to Heisenberg, for a given accurate measurement of position, one can only obtain a range of probable values for momentum, and vice versa.



In the 1930s, physicists discovered nuclear fission, thanks to the experiments of Otto Hahn, Lise Meitner and Otto Frisch. Hahn's experiments involved directing neutrons onto uranium atoms in the hopes of creating a transuranium element. Instead, the process turned his sample of uranium-92 (Ur92) into two new elements - barium (B56) and krypton (Kr27).

Meitner and Frisch verified the experiment and attributed it to the uranium atoms splitting to form two element with the same total atomic weight, a process which also released a considerable amount of energy by breaking the atomic bonds. In the years that followed, research into the possible weaponization of this process began (i.e. nuclear weapons) and led to the construction of the first atomic bombs in the US by 1945.

In the 1950s, the development of improved particle accelerators and particle detectors allowed scientists to study the impacts of atoms moving at high energies. From this, the Standard Model of particle physics was developed, which has so far successfully explained the properties of the nucleus, the existence of theorized subatomic particles, and the forces that govern their interactions.

Modern Experiments:
Since the latter half of the 20th century, many new and exciting discoveries have been with regards to atomic theory and quantum mechanics. For example, in 2012, the long search for the Higgs Boson led to a breakthrough where researchers working at the European Organization for Nuclear Research (CERN) in Switzerland announced its discovery.



In recent decades, a great deal of time and energy has been dedicated by physicists to the development of a unified field theory (aka. Grand Unifying Theory or Theory of Everything). In essence, since the Standard Model was first proposed, scientists have sought to understand how the four fundamental forces of the universe (gravity, strong and weak nuclear forces, and electromagnetism) work together.

Whereas gravity can be understood using Einstein's theories of relativity, and nuclear forces and electromagnetism can be understood using quantum theory, neither theory can account for all four forces working together. Attempts to resolve this have led to a number of proposed theories over the years, ranging from String Theory to Loop Quantum Gravity. To date, none of these theories have led to a breakthrough.

Our understanding of the atom has come a long way, from classical models that saw it as an inert solid that interacted with other atoms mechanically, to modern theories where atoms are composed of energetic particles that behave unpredictably. While it has taken several thousand years, our knowledge of the fundamental structure of all matter has advanced considerably.

And yet, there remain many mysteries that are yet to be resolved. With time and continued efforts, we may finally unlock the last remaining secrets of the atom. Then again, it could very well be that any new discoveries we make will only give rise to more questions - and they could be even more confounding than the ones that came before!

We have written many articles about the atom for Universe Today. Here's an article about John Dalton's atomic model, Neils Bohr's atomic model, Who Was Democritus?, and How Many Atoms Are There In The Universe?

If you'd like more info on the atom, check out NASA's Article on Analyzing Tiny Samples, and here's a link to NASA's Article about Atoms, Elements, and Isotopes.

We've also recorded an entire episode of Astronomy Cast all about the Atom. Listen here, Episode 164: Inside the Atom, Episode 263: Radioactive Decay, and Episode 394: The Standard Model, Bosons.


Tuesday, December 15, 2015

Venus From the International Space Station

Venus From the International Space Station: On Dec. 5, 2015, Japan Aerospace Exploration Agency (JAXA) astronaut Kimiya Yui captured this image from the International Space Station of the planet Venus. Part of the station's Kibo laboratory is visible at the top of the frame. At the time this photograph was taken, Japan's Akatsuki spacecraft, a Venus climate orbiter, was nearing the planet.


Original enclosures:


The Pelican Nebula in Gas Dust and Stars

The Pelican Nebula in Gas Dust and Stars: APOD: 2015 November 17 - The Pelican Nebula in Gas Dust and Stars



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 17


See Explanation. Clicking on the picture will download the highest resolution version available.



The Pelican Nebula in Gas, Dust, and Stars
Image Credit & Copyright: Roberto Colombari
Explanation: The Pelican Nebula is slowly being transformed. IC 5070, the official designation, is divided from the larger North America Nebula by a molecular cloud filled with dark dust. The Pelican, however, receives much study because it is a particularly active mix of star formation and evolving gas clouds. The featured picture was produced in three specific colors -- light emitted by sulfur, hydrogen, and oxygen -- that can help us to better understand these interactions. The light from young energetic stars is slowly transforming the cold gas to hot gas, with the advancing boundary between the two, known as an ionization front, visible in bright orange on the right. Particularly dense tentacles of cold gas remain. Millions of years from now this nebula might no longer be known as the Pelican, as the balance and placement of stars and gas will surely leave something that appears completely different.

Yearly Astronomy Review: APOD editor to speak in January in Philadelphia and New York City
Tomorrow's picture: sudden jet

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Centaurus A

Centaurus A: APOD: 2015 November 19 - Centaurus A



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 19


See Explanation. Clicking on the picture will download the highest resolution version available.



Centaurus A
Processing & Copyright: Robert Gendler, Roberto Colombari
Image Data: Hubble Space Telescope, European Southern Observatory
Explanation: What's the closest active galaxy to planet Earth? That would be Centaurus A, only 11 million light-years distant. Spanning over 60,000 light-years, the peculiar elliptical galaxy is also known as NGC 5128. Forged in a collision of two otherwise normal galaxies, Centaurus A's fantastic jumble of young blue star clusters, pinkish star forming regions, and imposing dark dust lanes are seen here in remarkable detail. The colorful galaxy portrait is a composite of image data from space- and ground-based telescopes large and small. Near the galaxy's center, left over cosmic debris is steadily being consumed by a central black hole with a billion times the mass of the Sun. As in other active galaxies, that process generates the radio, X-ray, and gamma-ray energy radiated by Centaurus A.

Tomorrow's picture: selfie with friends

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Leonids and Friends

Leonids and Friends: APOD: 2015 November 20 - Leonids and Friends



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 20


See Explanation. Clicking on the picture will download the highest resolution version available.



Leonids and Friends
Image Credit & Copyright: Malcolm Park (North York Astronomical Association)
Explanation: Leonid meteors rained down on planet Earth this week, the annual shower of dusty debris from the orbit of Comet 55P/Tempel-Tuttle. Leonids streak through this composite night skyview from a backyard observatory in southern Ontario. Recorded with camera fixed to a tripod, the individual frames capture the bright meteor activity throughout the night of November 16/17, about a day before the shower's very modest peak. The frames are registered to the fixed field of view, so the meteor trails are not all aligned to the background star field recorded that same evening when nebula-rich Orion stood above the southern horizon. As a result, the trails don't appear to point back to the shower's radiant in Leo, situated off the left edge of the star field frame. In fact, some trails could be of Taurid meteors, a shower also active in November, or even sporadic meteors, including a bright fireball with its reflection near the horizon.

Tomorrow's picture: Intergalactic Saturday

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Recycling NGC 5291

Recycling NGC 5291: APOD: 2015 November 21 - Recycling NGC 5291



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 21


See Explanation. Clicking on the picture will download the highest resolution version available.



Recycling NGC 5291
Image Credit & Copyright: CHART32 Team, Processing - Johannes Schedler
Explanation: Following an ancient galaxy-galaxy collision 200 million light-years from Earth, debris from a gas-rich galaxy, NGC 5291, was flung far into intergalactic space. NGC 5291 and the likely interloper, also known as the "Seashell" galaxy, are captured near the center of this spectacular scene. The sharp, ground-based telescopic image looks toward the galaxy cluster Abell 3574 in the southern constellation Centaurus. Stretched along the 100,000 light-year long tidal tails, are clumps resembling dwarf galaxies, but lacking old stars, apparently dominated by young stars and active star forming regions. Found to be unusually rich in elements heavier than hydrogen and helium, the dwarf galaxies were likely born in intergalactic space, recycling the enriched debris from NGC 5291 itself.

Tomorrow's picture: doomed moon

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Phobos: Doomed Moon of Mars

Phobos: Doomed Moon of Mars: APOD: 2015 November 22 - Phobos: Doomed Moon of Mars



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 22


See Explanation. Clicking on the picture will download the highest resolution version available.



Phobos: Doomed Moon of Mars
Image Credit: HiRISE, MRO, LPL (U. Arizona), NASA
Explanation: This moon is doomed. Mars, the red planet named for the Roman god of war, has two tiny moons, Phobos and Deimos, whose names are derived from the Greek for Fear and Panic. These martian moons may well be captured asteroids originating in the main asteroid belt between Mars and Jupiter or perhaps from even more distant reaches of the Solar System. The larger moon, Phobos, is indeed seen to be a cratered, asteroid-like object in this stunning color image from the robotic Mars Reconnaissance Orbiter, recorded at a resolution of about seven meters per pixel. But Phobos orbits so close to Mars - about 5,800 kilometers above the surface compared to 400,000 kilometers for our Moon - that gravitational tidal forces are dragging it down. A recent analysis of the long grooves indicates that they may result from global stretching caused by tides -- the differing force of Mars' gravity on different sides of Phobos. These grooves may then be an early phase in the disintegration of Phobos into a ring of debris around Mars.

Follow APOD on: Facebook, Google Plus, or Twitter
Tomorrow's picture: orion in 212 hours

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Aurora over Clouds

Aurora over Clouds: APOD: 2015 November 24 - Aurora over Clouds



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 24


See Explanation. Clicking on the picture will download the highest resolution version available.



Aurora over Clouds
Image Credit & Copyright: Daniele Boffelli
Explanation: Auroras usually occur high above the clouds. The auroral glow is created when fast-moving particles ejected from the Sun impact the Earth's magnetosphere, from which charged particles spiral along the Earth's magnetic field to strike atoms and molecules high in the Earth's atmosphere. An oxygen atom, for example, will glow in the green light commonly emitted by an aurora after being energized by such a collision. The lowest part of an aurora will typically occur at 100 kilometers up, while most clouds usually exist only below about 10 kilometers. The relative heights of clouds and auroras are shown clearly in the featured picture from Dyrholaey, Iceland. There, a determined astrophotographer withstood high winds and initially overcast skies in an attempt to capture aurora over a picturesque lighthouse, only to take, by chance, the featured picture along the way.

Tomorrow's picture: pluto's pits

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Catch This Season’s ‘Other’ Comet: S2 PanSTARRS

Catch This Season’s ‘Other’ Comet: S2 PanSTARRS:



Comet C/2014 S2 PanSTARRS, imaged on October 10th, 2015. Image credit and copyright: Tom Wildoner


Now is the time to catch binocular Comet C/2014 S2 PanSTARRS, as it tops +8 magnitude ahead of predictions this month and crosses circumpolar northern skies. Will this Christmas comet stay bright post-perihelion, rivaling other comets into early 2016? 

How 'bout Comet C/2013 US10 Catalina, huh? The comet took center stage early this month, as it broke +7 magnitude in brightness, experienced a tail disconnection event, and grouped with Venus and the waning crescent Moon in the dawn sky.

Expect comet US10 Catalina to remain a fine binocular object kicking off 2016, reminiscent of the binocular comet C/2014 Q2 Lovejoy from just this past winter. But there's another comet for northern hemisphere residents currently performing above expectations. Comet C/2014 S2 PanSTARRS is the comet you most likely aren't watching, but should be. The comet has recently brightened ahead of expectations to +8th magnitude, and may top out in the coming weeks at +7th magnitude post-perihelion.



Comet S2 PanSTARRS reached perihelion 2.1 astronomical units (AU) from the Sun just last week on December 9th, 2015. Discovered on September 22nd, 2014 by the prolific PanSTARRS 1 survey based atop mount Haleakala on Maui in Hawaii, S2 PanSTARRS is on an estimated 2,217 year orbit, inclined at a steep angle of 65 degrees relative to the ecliptic and the general plane of the solar system. This makes for its current residency in the realm of the northern celestial pole, and the comet remains circumpolar above latitude 30 degrees north for the duration of this apparition, crossing for the constellation Draco in late 2015 into the constellation Ursa Minor in early 2016.

We get a handful of binocular comets each year, faint fuzzies looking like unresolved globular clusters. Such a passage would've went unrecorded in pre-telescopic times, and hunting for comets the likes of S2 PanSTARRS partly inspired Charles Messier to make his first and famous deep sky catalog, marking the celestial skies for comet hunters as if to say 'here be cometary impostors...'



But Comet S2 PanSTARRS won't stay bright for long.

Here's the run down over the next few months of key astronomical dates with destiny for this fleeting comet. The Full and New Moon phases are also denoted, marking weeks favoring dark vs light-polluted skies.



-December 25th: The Moon reaches Full.

-December 31st: Stationary in its apparent motion, before appearing to reverse direction to the northeast.



-January 1st: Tops out in brightness at +7th mag?

-January 10th: New Moon.

-January 22nd: 20 degrees from Comet C/2013 US10 Catalina crossing through the constellation Draco.

-January 24th: Passes less than one degree from the +4.8 magnitude star 18 Draconis.

-January 24th: Full Moon.

-February 8th: New Moon.

-February 20th: Passes into the constellation Ursa Minor.

-February 22nd: Full Moon.

-February 27th: Closest Earth approach, at 1.83 AU distant. Moving at a maximum apparent speed of 30' (half a degree, about the angular size of a Full Moon) per day.

-February 27th: Passes just over one degree from the +3 magnitude star Pherkad (Gamma Ursae Minoris).

-February 29th: Reaches its most northerly point, at a declination 71 degrees north, just 19 degrees from the northern celestial pole.

-March 1: Drops back below +10 magnitude?

-March 9th: New Moon.

-March 18th: Crosses back into the constellation Draco.

The best time to catch Comet S2 PanSTARRS over the next few months is in the early morning hours. From latitude 30 north, the comet sits 23 degrees above the NNE horizon around 5AM local on Christmas Day; the farther north you go, the higher the comet will be above the horizon.



In binoculars or a small telescope, expect comet S2 PanSTARRS to appear as a fuzzy indistinct 'star,' which stubbornly refuses to snap into focus, like an unresolved globular. I would show off S2 PanSTARRS at a public star party under dark skies. When it comes to comets, brighter +10th magnitude triggers our 'is interesting, worthy of note for skilled observers' alarm.

A caveat is in order; expect any given comet to appear visually fainter than a star of the same quoted brightness. As with deep sky objects, said brightness is smeared out over the expanse of the comet, giving it an overall lower surface brightness appearance for the viewer.



And now for the wow factor: the last time comet S2 PanSTARRS passed Earth in the 3rd century BC, Carthage was battling an upstart Rome during the first Punic Wars. The comet very likely passed through the inner solar system unnoticed and unrecorded, as it was never a naked eye object. The comet's next pass through the inner solar system is out around 4232 AD, give or take a year...

Along with US10 Catalina and comet 2013 X1 PanSTARRS, expect S2 PanSTARRS to join the ranks of binocular 2016 comets... more to come on that soon.

Remember, the next 'Great Comet' could swing through the inner solar system at any time... and we're definitely due!



  • CASA DE ORAÇÃO - Esta determinado que o mal saia de nossas vidas e recebamos as bênçãos do Senhor !

The Great Orion Nebula M42

The Great Orion Nebula M42:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 November 4


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The Great Nebula in Orion, also known as M42, is one of the most famous nebulas in the sky. The star forming region's glowing gas clouds and hot young stars are on the right in this sharp and colorful image that includes the bluish reflection nebulae NGC 1977 and friends on the left. Located at the edge of an otherwise invisible giant molecular cloud complex, these eye-catching nebulas represent only a small fraction of this galactic neighborhood's wealth of interstellar material. Within the well-studied stellar nursery, astronomers have also identified what appear to be numerous infant planetary systems. The gorgeous skyscape spans nearly two degrees or about 45 light-years at the Orion Nebula's estimated distance of 1,500 light-years.

Enceladus: Ringside Water World

Enceladus: Ringside Water World: APOD: 2015 December 3 - Enceladus: Ringside Water World



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 December 3


See Explanation. Clicking on the picture will download the highest resolution version available.



Enceladus: Ringside Water World
Image Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA
Explanation: Saturn's icy moon Enceladus poses above the gas giant's icy rings in this Cassini spacecraft image. The dramatic scene was captured on July 29, while Cassini cruised just below the ring plane, its cameras looking back in a nearly sunward direction about 1 million kilometers from the moon's bright crescent. At 500 kilometers in diameter, Enceladus is a surprisingly active moon though, its remarkable south polar geysers are visible venting beyond a dark southern limb. In fact, data collected during Cassini's flybys and years of images have recently revealed the presence of a global ocean of liquid water beneath this moon's icy crust. Demonstrating the tantalizing liquid layer's global extent, the careful analysis indicates surface and core are not rigidly connected, with Enceladus rocking slightly back and forth in its orbit.

Tomorrow's picture: bubble and crescent

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


The Brightest Spot on Ceres

The Brightest Spot on Ceres: APOD: 2015 December 11 - The Brightest Spot on Ceres



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 December 11


See Explanation. Clicking on the picture will download the highest resolution version available.



The Brightest Spot on Ceres
Image Credit: NASA, JPL-Caltech, UCLA, MPS/DLR/IDA
Explanation: Dwarf planet Ceres is the largest object in the Solar System's main asteroid belt with a diameter of about 950 kilometers. Exploring Ceres from orbit since March, the Dawn spacecraft's camera has revealed about 130 or so mysterious bright spots, mostly associated with impact craters scattered around the small world's otherwise dark surface. The brightest one is near the center of the 90 kilometer wide Occator Crater, seen in this dramatic false color view combining near-infrared and visible light image data. A study now finds the bright spot's reflected light properties are probably most consistent with a type of magnesium sulfate called hexahydrite. Of course, magnesium sulfate is also known to Earth dwellers as epsom salt. Haze reported inside Occator also suggests the salty material could be left over as a mix of salt and water-ice sublimates on the surface. Since impacts would have exposed the material, Ceres' numerous and widely scattered bright spots may indicate the presence of a subsurface shell of ice-salt mix. In mid-December, Dawn will begin taking observations from its closest Ceres mapping orbit.

Tomorrow's picture: light-weekend

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Comet Meets Moon and Morning Star

Comet Meets Moon and Morning Star: APOD: 2015 December 12 - Comet Meets Moon and Morning Star



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 December 12


See Explanation. Clicking on the picture will download the highest resolution version available.



Comet Meets Moon and Morning Star
Image Credit & Copyright: Greg Hogan
Explanation: A crescent Moon and brilliant Venus met in predawn skies on December 7, a beautiful conjunction of planet Earth's two brightest celestial beacons after the Sun. Harder to see but also on the scene was Comet Catalina (C/2013 US10). The fainter comet clearly sporting two tails, lunar night side, bright sunlit lunar crescent, and brilliant morning star, are all recorded here by combining short and long exposures of the same field of view. Pointing down and right, Catalina's dust tail tends to trail behind the comet's orbit. Its ion tail, angled toward the top left of the frame, is blowing away from the Sun. Discovered in 2013, the new visitor from the Oort cloud was closest to the Sun on November 15 and is now outbound, headed for its closest approach to Earth in mid-January.

Watch: The Geminids
Tomorrow's picture: radiant meteor shower

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.