Saturday, December 19, 2015

ACROSS THE UNIVERSE - Herbig Haro 24

Herbig Haro 24: APOD: 2015 December 18 - Herbig Haro 24



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 December 18


See Explanation. Clicking on the picture will download the highest resolution version available.



Herbig-Haro 24
Image Credit: NASA, ESA, Hubble Heritage (STScI / AURA) / Hubble-Europe Collaboration
Acknowledgment: D. Padgett (GSFC), T. Megeath (University of Toledo), B. Reipurth (University of Hawaii)
Explanation: This might look like a double-bladed lightsaber, but these two cosmic jets actually beam outward from a newborn star in a galaxy near you. Constructed from Hubble Space Telescope image data, the stunning scene spans about half a light-year across Herbig-Haro 24 (HH 24), some 1,300 light-years or 400 parsecs away in the stellar nurseries of the Orion B molecular cloud complex. Hidden from direct view, HH 24's central protostar is surrounded by cold dust and gas flattened into a rotating accretion disk. As material from the disk falls toward the young stellar object it heats up. Opposing jets are blasted out along the system's rotation axis. Cutting through the region's interstellar matter, the narrow, energetic jets produce a series of glowing shock fronts along their path.

Tomorrow's picture: encounters with the Whale

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Thursday, December 17, 2015

How Are Igneous Rocks Formed?

How Are Igneous Rocks Formed?:



Igneous rock (aka. "fire rock") is formed from cooled and solidified magma. Credit: geologyclass.org


When it comes to the composition of the Earth, three main types of rock come into play. These are known as metamorphic rock, sedimentary rock, and igneous rock, respectively. Also known as "fire rock" (derived from the Latin "ignus"), these type of rock are the most common type of rock in the Earth's surface. In fact, combined with metaphoric rock, igneous rock makes up 90 to 95% of all rock to a depth of 16 km from the surface.Igneous rocks are also very important because their mineral and chemical makeup can be used to learn about the composition, temperature and pressure that exists within the Earth's mantle. They can also tell us much about the tectonic environment, given that they are closely linked to the convection of tectonic plates. But just how are these rocks formed?In essence, igneous

rocksareformed through the cooling and solidification of magma

(or lava). As hot, molten rock rises to the surface, it undergoes changes in temperature and pressure that cause it to cool, solidify, and crystallize. All told, there are over 700 known types of igneous rock

, the majority of which are formed beneath the surface of the Earth's crust. However, some are also formed on the surface as a result of volcanic activity.Those that fit into the former category are known as intrusive (or plutonic) rocks, while those that fit into the latter are known as extrusive (or volcanic) rock. In addition to these, there is also hypabyssal (or subvolcanic rock), a less common form of igneous rock that is formed within the Earth between plutonic and volcanic rocks.https://youtu.be/Zc-vdnTJe9MIntrusive (Plutonic) Rock: Intrusive igneous rock is formed when magma cools and solidifies within small pockets contained within the planet's crust. As this rock is surrounded by pre-existing rock, the magma cools slowly, which results in it being coarse grained - i.e. mineral grains are big enough to be identifiable with the naked eye. The most common types of plutonic igneous rock are granite, gabbro, or diorite.The central cores of major mountain ranges consist of large bodies of intrusive igneous rocks - also known as batholiths -  since they are the result of magma cooling within preexisting solid rock on the surface. In addition to batholiths, other types of igneous rock structures include stocks, laccoliths, lopoliths, phacolith, chonliths, sills, dikes, and volcanic pipes (or necks). All of these are to be found in subterranean layers, but can sometimes breach the surface due to tectonic activity.Extrusive (Volcanic) Rock: Extrusive rocks are so named because they are the result of magma pouring onto the surface of the planet and cooling. When it reaches the surface, either on a continental shelf as a volcano or on the ocean floor as a submarine volcano, it becomes lava, by definition. The viscosity of lava depends upon the temperature composition and crystal content of the molten rock itself.Therefore, the lava can flow slowly, forming short steep flows; or it can flow rapidly, forming long, thin flows. It can also explode violently, dispersing magma into the air that falls back to the surface as ash and tuffs. Compared to intrusive rock, this type of igneous rock cools and crystallizes at a much faster rate due to it being exposed to air or water, which results in it being fine-grained.Sometimes, the cooling is so rapid as to prevent the formation of even small crystals after extrusion, resulting in rock that may be mostly glass (such as obsidian). If the cooling of the lava happened more slowly, the rocks would be fine-grained or porphyritic - where the crystals differ in size, with at least one group of crystals obviously larger than another group.Basalt is a common form of extrusive igneous rock and forms lava flows, lava sheets and lava plateaus. Extrusive igneous rocks include andesite, basalt, obsidian, pumice, rhyolite, scoria, and tuff. Because the minerals are mostly fine-grained, it is much more difficult to distinguish between the different types of extrusive igneous rocks than between different types of intrusive igneous rocks.Generally, the mineral constituents of fine-grained extrusive igneous rocks can only be determined by examination with a microscope, so only an approximate classification can usually be made in the field.Hypabyssal (Subvolcanic) Rock: Hypabyssal rock is a form of intrusive igneous rock that solidifies at medium to shallow depths within the crust, usually in fissures as dikes and intrusive sills. These rocks typically have an intermediate grain size and texture between that of intrusive and extrusive rock. As might be expected, they show structures that intermediate between those of extrusive and plutonic rocks. Common examples of subvolcanic rocks are diabase, quartz-dolerite, micro-granite and diorite.Classification: Igneous rocks are classified according to their mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body. Two important variables that are used for the classification of igneous rocks are particle size and the mineral composition of the rock. Feldspar, quartz, olivines, micas, etc., are all important minerals in the formation of igneous rocks, and are important to their classification.Types of igneous rocks with other essential minerals are very rare. In simplified classification, igneous rocks are separated by the type of feldspar present, the presence or absence of quartz, and - in cases where feldspar or quartz are not present - by the type of iron or magnesium minerals present. Rocks containing quartz are silica-oversaturated, while rocks with feldspathoids are silica-undersaturated.Igneous rocks which have crystals large enough to be seen with the unaided eye are classified as phaneritic, while those with crystals too small to be seen are aphanitic. Typically, rocks belonging to the phaneritic class are intrusive in origin, while aphanitic rocks are extrusive.An igneous rock with larger, clearly discernible crystals embedded in a finer-grained matrix is classified as porphyry. Porphyritic textures develop when lava cools unevenly, causing of some of the crystals to grow before the main mass of the molten rock.https://youtu.be/PrN7jygu4cQSo the next time you find yourself somewhere, just standing about, remember that the ground you walk on was formed under from a pretty hellish process. It began deep in the Earth, where silicate rock, tormented by extreme heat and intense pressure, became a hot, oozing mess. Once it was churned up to the surface. it either exploded into the atmosphere, or melted a path across the landscape before cooling in place.In short, our world was born of conditions that make Dante's Inferno look boring and cheerful by comparison!We have written many articles about igneous rocks for Universe Today. Here's an article on How Rocks are Formed, What is the Earths' Mantle Made From?, and What is the Difference Between Magma and Lava?And for a more detailed look at the Earth, here's What is the Lithosphere?, and What are the Earth's Layers?If you'd like more info on igneous rocks, check out U.S. Geological Survey Website. And here's a link to Geology.com.We've also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

The post How Are Igneous Rocks Formed? appeared first on Universe Today.

Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech

Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech:



X-wing fighter flies by Earth? Actually, it is the ATV2 (Johannes Kepler) as it departs the ISS in 2011. Credit: NASA/Ron Garan


Remember that time an X-Wing fighter flew past the International Space Station? Or when R2D2 saved the ISS crew?

OK, yeah, those things didn't really happen, but since the first Star Wars movie came out in 1977, there has been a lot of technology developed that mimics the science and tech from the sci-fi blockbuster films. Of course, we now have real robots in space (Robonaut), drones are now everyday items, there are actual holograms (Voxiebox and Fairy Lights) and DARPA has been developing prosthetic limbs that Luke Skywalker would totally use, called the Reliable Neural-Interface Technology (RE-NET). Plus, Boeing is building blaster guns that will use "pew-pew" sound effects from Star Wars. Seriously. The lasers are silent, and so they need to add sound to know for sure they've been fired.

Since we all certainly have Star Wars on the brain today (The Force Awakens opens tonight), let's take a look at a few recent space-related developments that hint of inspiration from the movies:





ESA has announced some of the instruments that will be on board the 2018 ExoMars rover. One of them will work akin to the Skywalkers’ moisture vaporators on Tatooine. The Habitability, Brine Irradiation and Temperature package (HABIT) will will investigate the amount of water vapor in the atmosphere of Mars. According to one of the researchers leading the instrument, this proof-of-concept instrument will take water out of the atmosphere to produce liquid water. If it works, it could be used to create water for future astronauts on Mars. And if it works really well, it could work on a larger scale to support Mars exploration... perhaps making enough water to allow for farming.

“HABIT can be easily adapted to ‘water-farms’ for in-situ resource production,” Javier Martin-Torres from Lulea University of Technology in Sweden told New Scientist. “We will produce Martian liquid water on Mars, that could be used in the future exploration of Mars for astronauts and greenhouses.”

If it does work out, future Mars astronauts might need to watch out for Sandpeople tracks that are side-by-side.



Death Star Construction

So, just how do you build something the size of a Death Star out in deep space?

Instead of hauling all the materials long distances, the best way to build a Death Star is to construct one out of an already-existing asteroid, says Brian Muirhead, chief engineer at NASA’s Jet Propulsion Laboratory. “It could provide the metals,” he told Wired. “You have organic compounds, you have water—all the building blocks you would need to build your family Death Star.”

Muirhead is working on NASA's Asteroid Redirect Mission, which will attempt to move a small asteroid in orbit around the Moon.

Watch the full video and interview below, it is really great:



Speeder Bikes

Who hasn't dreamed of riding a speeder bike like the ones in Return of the Jedi? Instead of just dreaming about it, Mark DeRoche from a company called Aerofex has actually done something about it. His company is working a "low-altitude tandem duct aerial vehicle" called the Aero-X. According to the company's website, the Aero-X is a "hovercraft that rides like a motorcycle – an off-road vehicle that takes to the air. Designed for low-altitude sport and utility, the Aero-X bridges the gap between light aircraft and all-terrain vehicles."

It can carry two (smaller) people 10 feet (3 m) above any surface at airspeeds up to 45 mph (72 km/h). It can carry a total of 310 lb (140 kg), and can be customized for specific applications and aerial tasks such as agriculture, disaster relief, search and rescue, and patrolling borders and game parks.

See it in action below:





Or if you need to go a little more low-tech, you can make your own giant light sabers (3.66-meters/12-feet long), like one Star Wars fan did:




And so you can fully prepare for the awesome power of the force, here's the official trailer for The Force Awakens:





Lead image caption: X-wing fighter flies by Earth? Actually, it is the ATV2 (Johannes Kepler) as it departs the ISS in 2011. Credit: NASA/Ron Garan

The post Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech appeared first on Universe Today.

What Is The Big Bang Theory?

What Is The Big Bang Theory?:



The history of theA billion years after the big bang, hydrogen atoms were mysteriously torn apart into a soup of ions.universe starting the with the Big Bang. Image credit: grandunificationtheory.com


How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos.

This is known as The Big Bang Theory. For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?

The basics of the theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.

While this is not the only modern theory of how the Universe came into being - for example, there is the Steady State Theory or the Oscillating Universe Theory - it is the most widely accepted and popular. Not only does the model explain the origin of all known matter, the laws of physics, and the large scale structure of the Universe, it also accounts for the expansion of the Universe and a broad range of other phenomena.

https://youtu.be/xtrYF_hxxUM

Timeline:
Working backwards from the current state of the Universe, scientists have theorized that it must have originated at a single point of infinite density and finite time that began to expand. After the initial expansion, the theory maintains that Universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies.

This all began roughly 13.8 billion years ago, and is thus considered to be the age of the universe. Through the testing of theoretical principles, experiments involving particle accelerators and high-energy states, and astronomical studies that have observed the deep universe, scientists have constructed a timeline of events that began with the Big Bang and has led to the current state of cosmic evolution.

However, the earliest times of the Universe - lasting from approximately 10-43 to 10-11 seconds after the Big Bang -  are the subject of extensive speculation. Given that the laws of physics as we know them could not have existed at this time, it is difficult to fathom how the Universe could have been governed. What's more, experiments that can create the kinds of energies involved have not yet been conducted. Still, many theories prevail as to what took place in this initial instant in time, many of which are compatible.

Singularity:
Also known as the Planck Epoch (or Planck Era), this was the earliest known period of the Universe. At this time, all matter was condensed on a single point of infinite density and extreme heat. During this period, it is believed that the quantum effects of gravity dominated physical interactions and that no other physical forces were of equal strength to gravitation.

https://youtu.be/r5bZ3BCuXKk

This Planck period of time extends from point 0 to approximately 10-43 seconds, and is so named because it can only be measured in Planck time. Due to the extreme heat and density of matter, the state of the universe was highly unstable. It thus began to expand and cool, leading to the manifestation of the fundamental forces of physics.

From approximately 10-43 second and 10-36, the universe began to cross transition temperatures. It is here that the fundamental forces that govern the Universe are believed to have began separating from each other. The first step in this was the force of gravitation separating from gauge forces, which account for strong and weak nuclear forces and electromagnetism.


Then, from 10-36 to 10-32 seconds after the Big Bang, the temperature of the universe was low enough (1028 K) that the forces of electromagnetism (strong force) and weak nuclear forces (weak interaction) were able to separate as well, forming two distinct forces.

Inflation Epoch:
With the creation of the first fundamental forces of the universe, the Inflation Epoch began, lasting from 10-32 seconds in Planck time to an unknown point. Most cosmological models suggest that the Universe at this point was filled homogeneously with a high-energy density, and that the incredibly high temperatures and pressure gave rise to rapid expansion and cooling.



This began at 10-37 seconds, where the phase transition that caused for the separation of forces also led to a period where the universe grew exponentially. It was also at this point in time that baryogenesis occurred, which refers to a hypothetical event where temperatures were so high that the random motions of particles occurred at relativistic speeds.

As a result of this, particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions, which is believed to have led to the predominance of matter over antimatter in the present universe. After inflation stopped, the universe consisted of a quark–gluon plasma, as well as all other elementary particles. From this point onward, the Universe began to cool and matter coalesced and formed.

Cooling Epoch:
As the universe continued to decrease in density and temperature, the energy of each particle began to decrease and phase transitions continued until the fundamental forces of physics and elementary particles changed into their present form. Since particle energies would have dropped to values that can be obtained by particle physics experiments, this period onward is subject to less speculation.

For example, scientists believe that about 10-11 seconds after the Big Bang, particle energies dropped considerably. At about 10-6 seconds, quarks and gluons combined to form baryons such as protons and neutrons, and a small excess of quarks over antiquarks led to a small excess of baryons over antibaryons.

https://youtu.be/Y6hBthfoosI

Since temperatures were not high enough to create new proton-antiproton pairs (or neutron-anitneutron pairs), mass annihilation immediately followed, leaving just one in 1010 of the original protons and neutrons and none of their antiparticles. A similar process happened at about 1 second after the Big Bang for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the universe was dominated by photons - and to a lesser extent, neutrinos.

A few minutes into the expansion, the period known as Big Bang nucleosynthesis also began. Thanks to temperatures dropping to 1 billion kelvin and the energy densities dropping to about the equivalent of air, neutrons and protons began to combine to form the universe's first deuterium (a stable isotope of Hydrogen) and helium atoms. However, most of the Universe's protons remained uncombined as hydrogen nuclei.

After about 379,000 years, electrons combined with these nuclei to form atoms (again, mostly hydrogen), while the radiation decoupled from matter and continued to expand through space, largely unimpeded. This radiation is now known to be what constitutes the Cosmic Microwave Background (CMB), which today is the oldest light in the Universe.

As the CMB expanded, it gradually lost density and energy, and is currently estimated to have a temperature of 2.7260 ± 0.0013 K (-270.424 °C/ -454.763 °F ) and an energy density of 0.25 eV/cm3 (or 4.005×10-14 J/m3; 400–500 photons/cm3). The CMB can be seen in all directions at a distance of roughly 13.8 billion light years, but estimates of its actual distance place it at about 46 billion light years from the center of the Universe.

https://youtu.be/ndS3kIWrjk8

Structure Epoch:
Over the course of the several billion years that followed, the slightly denser regions of the almost uniformly distributed matter of the Universe began to become gravitationally attracted to each other. They therefore grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures that we regularly observe today.

This is what is known as the Structure Epoch, since it was during this time that the modern Universe began to take shape. This consists of visible matter distributed in structures of various sizes, ranging from stars and planets to galaxies, galaxy clusters, and super clusters - where matter is concentrated - that are separated by enormous gulfs containing few galaxies.

The details of this process depend on the amount and type of matter in the universe, with cold dark matter, warm dark matter, hot dark matter, and baryonic matter being the four suggested types. However, the Lambda-Cold Dark Matter model (Lambda-CDM), in which the dark matter particles moved slowly compared to the speed of light, is the considered to be the standard model of Big Bang cosmology, as it best fits the available data.

In this model, cold dark matter is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%. The Lambda refers to the Cosmological Constant, a theory originally proposed by Albert Einstein that attempted to show that the balance of mass-energy in the universe was static. In this case, it is associated with Dark Energy, which served to accelerate the expansion of the universe and keep its large-scale structure largely uniform.



Long-term Predictions:
Hypothesizing that the Universe had a starting point naturally gives rise to questions about a possible end point. If the Universe began as a tiny point of infinite density that started to expand, does that mean it will continue to expand indefinitely? Or will it one day run out of expansive force, and begin retreating inward until all matter crunches back into a tiny ball?

Answering this question has been a major focus of cosmologists ever since the debate about which model of the Universe was the correct one began. With the acceptance of the Big Bang Theory, but prior to the observation of Dark Energy in the 1990s, cosmologists had come to agree on two scenarios as being the most likely outcomes for our Universe.

In the first, commonly known as the "Big Crunch" scenario, the universe will reach a maximum size and then begin to collapse in on itself. This will only be possible if the mass density of the Universe is greater than the critical density. In other words, as long as the density of matter remains at or above a certain value (1-3 ×10-26 kg of matter per m³), the Universe will eventually contract.

Alternatively, if the density in the universe were equal to or below the critical density, the expansion would slow down but never stop. In this scenario, known as the "Big Freeze", the Universe would go on until star formation eventually ceased with the consumption of all the interstellar gas in each galaxy. Meanwhile, all existing stars would burn out and become white dwarfs, neutron stars, and black holes.

https://youtu.be/VO29tEmmvO8

Very gradually, collisions between these black holes would result in mass accumulating into larger and larger black holes. The average temperature of the universe would approach absolute zero, and black holes would evaporate after emitting the last of their Hawking radiation. Finally, the entropy of the universe would increase to the point where no organized form of energy could be extracted from it (a scenarios known as "heat death").

Modern observations, which include the existence of Dark Energy and its influence on cosmic expansion, have led to the conclusion that more and more of the currently visible universe will pass beyond our event horizon (i.e. the CMB, the edge of what we can see) and become invisible to us. The eventual result of this is not currently known, but "heat death" is considered a likely end point in this scenario too.

Other explanations of dark energy, called phantom energy theories, suggest that ultimately galaxy clusters, stars, planets, atoms, nuclei, and matter itself will be torn apart by the ever-increasing expansion. This scenario is known as the "Big Rip", in which the expansion of the Universe itself will eventually be its undoing.

History of the Big Bang Theory:
The earliest indications of the Big Bang occurred as a result of deep-space observations conducted in the early 20th century. In 1912, American astronomer Vesto Slipher conducted a series of observations of spiral galaxies (which were believed to be nebulae) and measured their Doppler Redshift. In almost all cases, the spiral galaxies were observed to be moving away from our own.

https://youtu.be/PckQcOY88ok

In 1922, Russian cosmologist Alexander Friedmann developed what are known as the Friedmann equations, which were derived from Einstein's equations for general relativity. Contrary to Einstein's was advocating at the time with his a Cosmological Constant, Friedmann's work showed that the universe was likely in a state of expansion.

In 1924, Edwin Hubble's measurement of the great distance to the nearest spiral nebula showed that these systems were indeed other galaxies. At the same time, Hubble began developing a series of distance indicators using the 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory. And by 1929, Hubble discovered a correlation between distance and recession velocity - which is now known as Hubble's law.

And then in 1927, Georges Lemaitre, a Belgian physicist and Roman Catholic priest, independently derived the same results as Friedmann's equations and proposed that the inferred recession of the galaxies was due to the expansion of the universe. In 1931, he took this further, suggesting that the current expansion of the Universe meant that the father back in time one went, the smaller the Universe would be. At some point in the past, he argued, the entire mass of the universe would have been concentrated into a single point from which the very fabric of space and time originated.

These discoveries triggered a debate between physicists throughout the 1920s and 30s, with the majority advocating that the universe was in a steady state. In this model, new matter is continuously created as the universe expands, thus preserving the uniformity and density of matter over time. Among these scientists, the idea of a Big Bang seemed more theological than scientific, and accusations of bias were made against Lemaitre based on his religious background.

https://youtu.be/RWnduAnxLQ4

Other theories were advocated during this time as well, such as the Milne Model and the Oscillary Universe model. Both of these theories were based on Einstein's theory of general relativity (the latter being endorsed by Einstein himself), and held that the universe follows infinite, or indefinite, self-sustaining cycles.

After World War II, the debate came to a head between proponents of the Steady State Model (which had come to be formalized by astronomer Fred Hoyle) and proponents of the Big Bang Theory - which was growing in popularity. Ironically, it was Hoyle who coined the phrase "Big Bang" during a BBC Radio broadcast in March 1949, which was believed by some to be a pejorative dismissal (which Hoyle denied).

Eventually, the observational evidence began to favor Big Bang over Steady State. The discovery and confirmation of the cosmic microwave background radiation in 1965 secured the Big Bang as the best theory of the origin and evolution of the universe. From the late 60s to the 1990s, astronomers and cosmologist made an even better case for the Big Bang by resolving theoretical problems it raised.

These included papers submitted by Stephen Hawking and other physicists that showed that singularities were an inevitable initial condition of general relativity and a Big Bang model of cosmology. In 1981, physicist Alan Guth theorized of a period of rapid cosmic expansion (aka. the "Inflation" Epoch) that resolved other theoretical problems.

https://youtu.be/ndS3kIWrjk8

The 1990s also saw the rise of Dark Energy as an attempt to resolve outstanding issues in cosmology. In addition to providing an explanation as to the universe's missing mass (along with Dark Matter, originally proposed in 1932 by Jan Oort), it also provided an explanation as to why the universe is still accelerating, as well as offering a resolution to Einstein's Cosmological Constant.

Significant progress was made thanks to advances in telescopes, satellites, and computer simulations, which have allowed astronomers and cosmologists to see more of the universe and gain a better understanding of its true age. The introduction of space telescopes - such as the Cosmic Background Explorer (COBE), the Hubble Space Telescope, Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck Observatory - have also been of immeasurable value.

Today, cosmologists have fairly precise and accurate measurements of many of the parameters of the Big Bang model, not to mention the age of the Universe itself. And it all began with the noted observation that massive stellar objects, many light years distant, were slowly moving away from us. And while we still are not sure how it will all end, we do know that on a cosmological scale, that won't be for a long, LONG time!

We have many interesting articles about the Big Bang here at Universe Today. For instance, here is What is the Evidence of the Big Bang?, What Came Before the Big Bang?, A New Theory About Of The Universe's Creation, and What is Cosmic Background Radiation?

For more information, check out NASA's page on the Big Bang Theory. NASA's WMAP mission webpage, Big Bang Cosmology, and its What is the big bang theory? also give good introductions to the big bang theory. For a more detailed introduction, check out Ned Wright's Cosmology Tutorial.

Astronomy Cast has also has several relevant episodes on the subject. Here's Episode 137: Large Scale Structure of the Universe, Episode 123: Homogeneity, and Episode 58: Inflation.

The post What Is The Big Bang Theory? appeared first on Universe Today.

The Horsehead Nebula

The Horsehead Nebula:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 December 16



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: The Horsehead Nebula is one of the most famous nebulae on the sky. It is visible as the dark indentation to the red emission nebula in the center of the above photograph. The horse-head feature is dark because it is really an opaque dust cloud that lies in front of the bright red emission nebula. Like clouds in Earth's atmosphere, this cosmic cloud has assumed a recognizable shape by chance. After many thousands of years, the internal motions of the cloud will surely alter its appearance. The emission nebula's red color is caused by electrons recombining with protons to form hydrogen atoms. On the image left is the Flame Nebula, an orange-tinged nebula that also contains filaments of dark dust. Just to the lower left of the Horsehead nebula featured picture is a blueish reflection nebulae that preferentially reflects the blue light from nearby stars.

Wednesday, December 16, 2015

What Are The Parts Of An Atom?

What Are The Parts Of An Atom?:



A depiction of the atomic structure of the helium atom. Credit: Creative Commons


Since the beginning of time, human beings have sought to understand what the universe and everything within it is made up of. And while ancient magi and philosophers conceived of a world composed of four or five elements - earth, air, water, fire (and metal, or consciousness) - by classical antiquity, philosophers began to theorize that all matter was actually made up of tiny, invisible, and indivisible atoms.

Since that time, scientists have engaged in a process of ongoing discovery with the atom, hoping to discover its true nature and makeup. By the 20th century, our understanding became refined to the point that we were able to construct an accurate model of it. And within the past decade, our understanding has advanced even further, to the point that we have come to confirm the existence of almost all of its theorized parts.

Today, atomic research is focused on studying the structure and the function of matter at the subatomic level. This not only consists of identifying all the subatomic particles that are thought to make up an atom, but investigating the forces that govern them. These include strong nuclear forces, weak nuclear forces, electromagnetism and gravity. Here is a breakdown of all that we've come to learn about the atom so far...

Structure:
Our current model of the atom can be broken down into three constituents parts - protons, neutron, and electrons. Each of these parts has an associated charge, with protons carrying a positive charge, electrons having a negative charge, and neutrons possessing no net charge. In accordance with the Standard Model of particle physics, protons and neutrons make up the nucleus of the atom, while electrons orbit it in a "cloud".



The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. Electrons can escape from their orbit, but only in response to an external source of energy being applied. The closer orbit of the electron to the nucleus, the greater the attractive force; hence, the stronger the external force needed to cause an electron to escape.

Electrons orbit the nucleus in multiple orbits, each of which corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon.

Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds.

All three of these subatomic particles are Fermions, a class of particle associated with matter that is either elementary (electrons) or composite (protons and neutrons) in nature. This means that electrons have no known internal structure, whereas protons and neutrons are made up of other subatomic particles. called quarks. There are two types of quarks in atoms, which have a fractional electric charge.

Protons are composed of two "up" quarks (each with a charge of +2/3) and one "down" quark (-1/3), while neutrons consist of one up quark and two down quarks. This distinction accounts for the difference in charge between the two particles, which works out to a charge of +1 and 0 respectively, while electrons have a charge of -1.

Other subatomic particles include Leptons, which combine with Fermions to form the building blocks of matter. There are six leptons in the present atomic model: the electron, muon, and tau particles, and their associated neutrinos. The different varieties of the Lepton particles, commonly called "flavors", are differentiated by their sizes and charges, which effects the level of their electromagnetic interactions.

Then, there are Gauge Bosons, which are known as "force carriers" since they mediate physical forces. For instance, gluons are responsible for the strong nuclear force that holds quarks together while W and Z bosons (still hypothetical) are believed to be responsible for the weak nuclear force behind electromagnetism. Photons are the elementary particle that makes up light, while the Higgs Boson is responsible for giving the W and Z bosons their mass.

Mass:
The majority of an atoms' mass comes from the protons and neutrons that make up its nucleus. Electrons are the least massive of an atom's constituent particles, with a mass of 9.11 x 10-31 kg and a size too small to be measured by current techniques. Protons have a mass that is 1,836 times that of the electron, at 1.6726×10-27 kg, while neutrons are the most massive of the three, at 1.6929×10-27 kg (1,839 times the mass of the electron).



The total number of protons and neutrons in an atoms' nucleus (called "nucleons") is called the mass number. For example, the element Carbon-12 is so-named because it has a mass number of 12 - derived from its 12 nucleons (six protons and six neutrons). However, elements are also arranged based on their atomic numbers, which is the same as the number of protons found in the nucleus. In this case, Carbon has an atomic number of 6.

The actual mass of an atom at rest is very difficult to measure, as even the most massive of atoms are too light to express in conventional units. As such, scientists often use the unified atomic mass unit (u) - also called dalton (Da) - which is defined as a twelfth of the mass of a free neutral atom of carbon-12, which is approximately 1.66×10-27 kg.

Chemists also use moles, a unit defined as one mole of any element always having the same number of atoms (about 6.022×1023). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element has a mass close to one gram. Because of the definition of the unified atomic mass unit, each carbon-12 atom has an atomic mass of exactly 12 u, and so a mole of carbon-12 atoms weighs exactly 0.012 kg.

Radioactive Decay:
Any two atoms that have the same number of protons belong to the same chemical element. But atoms with an equal number of protons can have a different number of neutrons, which are defined as being different isotopes of the same element. These isotopes are often unstable, and all those with an atomic number greater than 82 are known to be radioactive.



When an element undergoes decay, its nucleus loses energy by emitting radiation - which can consist of alpha particles (helium atoms), beta particles (positrons), gamma rays (high-frequency electromagnetic energy) and conversion electrons. The rate at which an unstable element decays is known as its "half-life", which is the amount of time required for the element to fall to half its initial value.

The stability of an isotope is affected by the ratio of protons to neutrons. Of the 339 different types of elements that occur naturally on Earth, 254 (about 75%) have been labelled as "stable isotopes" - i.e. not subject to decay. An additional 34 radioactive elements have half-lives longer than 80 million years, and have also been in existence since the early Solar System (hence why they are called "primordial elements").

Finally, an additional 51 short-lived elements are known to occur naturally, as "daughter elements" (i.e. nuclear by-products) of the decay of other elements (such as radium from uranium). In addition, short-lived radioactive elements can be the result of natural energetic processes on Earth, such as cosmic ray bombardment (for example, carbon-14, which occurs in our atmosphere).

History of Study:
The earliest known examples of atomic theory come from ancient Greece and India, where philosophers such as Democritus postulated that all matter was composed of tiny, indivisible and indestructible units. The term "atom" was coined in ancient Greece and gave rise to the school of thought known as "atomism". However, this theory was more of a philosophical concept than a scientific one.



It was not until the 19th century that the theory of atoms became articulated as a scientific matter, with the first evidence-based experiments being conducted. For example, in the early 1800's, English scientist John Dalton used the concept of the atom to explain why chemical elements reacted in certain observable and predictable ways.

Dalton began with the question of why elements reacted in ratios of small whole numbers, and concluded that these reactions occurred in whole number multiples of discrete units—in other words, atoms. Through a series of experiments involving gases, Dalton went on to developed what is known as Dalton's Atomic Theory, which remains one of the cornerstones of modern physics and chemistry.

The theory comes down to five premises: elements, in their purest state, consist of particles called atoms; atoms of a specific element are all the same, down to the very last atom; atoms of different elements can be told apart by their atomic weights; atoms of elements unite to form chemical compounds; atoms can neither be created or destroyed in chemical reaction, only the grouping ever changes.

By the late 19th century, scientists began to theorize that the atom was made up of more than one fundamental unit. However, most scientists ventured that this unit would be the size of the smallest known atom - hydrogen. And then in 1897, through a series of experiments using cathode rays, physicist J.J. Thompson announced that he had discovered a unit that was 1000 times smaller and 1800 times lighter than a hydrogen atom.



His experiments also showed that they were identical to particles given off by the photoelectric effect and by radioactive materials. Subsequent experiments revealed that this particle carried electric current through metal wires and negative electric charges within atoms. Hence why the particle - which was originally named a "corpuscle" - was later changed to "electron", after the particle George Johnstone Stoney's predicted in 1874.

However, Thomson also postulated that electrons were distributed throughout the atom, which was a uniform sea of positive charge. This became known as the "plum pudding model", which would later be proven wrong. This took place in 1909, when physicists Hans Gieger and Ernest Marsden (under the direction of Ernest Rutherfod) conducted their experiment using metal foil and alpha particles.

Consistent with Dalton's atomic model, they believed that the alpha particles would pass straight through the foil with little deflection. However, many of the particles were deflected at angles greater than 90°. To explain this, Rutherford proposed that the positive charge of the atom is concentrated in a tiny nucleus at the center.

In 1913, physicist Niels Bohr proposed a model where electrons orbited the nucleus, but could only do so in a finite set of orbits. He also proposed that electrons could jump between orbits, but only in discrete changes of energy corresponding to the absorption or radiation of a photon. This not only refined Rutherford's proposed model, but also gave rise to the concept of a quantized atom, where matter behaved in discreet packets.



The development of the mass spectrometer - which uses a magnet to bend the trajectory of a beam of ions - allowed the mass of atoms to be measured with increased accuracy. Chemist Francis William Aston used this instrument to show that isotopes had different masses. This in turn was followed up by physicist James Chadwick, who in 1932 proposed the neutron as a way of explaining the existence of isotopes.

Throughout the early 20th century, the quantum nature of atoms was developed further. In 1922, German physicists Otto Stern and Walther Gerlach conducted an experiment where a beam of silver atoms was directed through a magnetic field, which was intended to split the beam between the direction of the atoms angular momentum (or spin).

Known as the Stern–Gerlach Experiment, the results was that the beam split in two parts, depending on whether or not the spin of the atoms was oriented up or down. In 1926, physicist Erwin Schrodinger used the idea of particles behaving like waves to develop a mathematical model that described electrons as three-dimensional waveforms rather than mere particles.

A consequence of using waveforms to describe particles is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at any given time. That same year, Werner Heisenberg formulated this problem and called it the "uncertainty principle". According to Heisenberg, for a given accurate measurement of position, one can only obtain a range of probable values for momentum, and vice versa.



In the 1930s, physicists discovered nuclear fission, thanks to the experiments of Otto Hahn, Lise Meitner and Otto Frisch. Hahn's experiments involved directing neutrons onto uranium atoms in the hopes of creating a transuranium element. Instead, the process turned his sample of uranium-92 (Ur92) into two new elements - barium (B56) and krypton (Kr27).

Meitner and Frisch verified the experiment and attributed it to the uranium atoms splitting to form two element with the same total atomic weight, a process which also released a considerable amount of energy by breaking the atomic bonds. In the years that followed, research into the possible weaponization of this process began (i.e. nuclear weapons) and led to the construction of the first atomic bombs in the US by 1945.

In the 1950s, the development of improved particle accelerators and particle detectors allowed scientists to study the impacts of atoms moving at high energies. From this, the Standard Model of particle physics was developed, which has so far successfully explained the properties of the nucleus, the existence of theorized subatomic particles, and the forces that govern their interactions.

Modern Experiments:
Since the latter half of the 20th century, many new and exciting discoveries have been with regards to atomic theory and quantum mechanics. For example, in 2012, the long search for the Higgs Boson led to a breakthrough where researchers working at the European Organization for Nuclear Research (CERN) in Switzerland announced its discovery.



In recent decades, a great deal of time and energy has been dedicated by physicists to the development of a unified field theory (aka. Grand Unifying Theory or Theory of Everything). In essence, since the Standard Model was first proposed, scientists have sought to understand how the four fundamental forces of the universe (gravity, strong and weak nuclear forces, and electromagnetism) work together.

Whereas gravity can be understood using Einstein's theories of relativity, and nuclear forces and electromagnetism can be understood using quantum theory, neither theory can account for all four forces working together. Attempts to resolve this have led to a number of proposed theories over the years, ranging from String Theory to Loop Quantum Gravity. To date, none of these theories have led to a breakthrough.

Our understanding of the atom has come a long way, from classical models that saw it as an inert solid that interacted with other atoms mechanically, to modern theories where atoms are composed of energetic particles that behave unpredictably. While it has taken several thousand years, our knowledge of the fundamental structure of all matter has advanced considerably.

And yet, there remain many mysteries that are yet to be resolved. With time and continued efforts, we may finally unlock the last remaining secrets of the atom. Then again, it could very well be that any new discoveries we make will only give rise to more questions - and they could be even more confounding than the ones that came before!

We have written many articles about the atom for Universe Today. Here's an article about John Dalton's atomic model, Neils Bohr's atomic model, Who Was Democritus?, and How Many Atoms Are There In The Universe?

If you'd like more info on the atom, check out NASA's Article on Analyzing Tiny Samples, and here's a link to NASA's Article about Atoms, Elements, and Isotopes.

We've also recorded an entire episode of Astronomy Cast all about the Atom. Listen here, Episode 164: Inside the Atom, Episode 263: Radioactive Decay, and Episode 394: The Standard Model, Bosons.


Tuesday, December 15, 2015

Venus From the International Space Station

Venus From the International Space Station: On Dec. 5, 2015, Japan Aerospace Exploration Agency (JAXA) astronaut Kimiya Yui captured this image from the International Space Station of the planet Venus. Part of the station's Kibo laboratory is visible at the top of the frame. At the time this photograph was taken, Japan's Akatsuki spacecraft, a Venus climate orbiter, was nearing the planet.


Original enclosures:


The Pelican Nebula in Gas Dust and Stars

The Pelican Nebula in Gas Dust and Stars: APOD: 2015 November 17 - The Pelican Nebula in Gas Dust and Stars



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 17


See Explanation. Clicking on the picture will download the highest resolution version available.



The Pelican Nebula in Gas, Dust, and Stars
Image Credit & Copyright: Roberto Colombari
Explanation: The Pelican Nebula is slowly being transformed. IC 5070, the official designation, is divided from the larger North America Nebula by a molecular cloud filled with dark dust. The Pelican, however, receives much study because it is a particularly active mix of star formation and evolving gas clouds. The featured picture was produced in three specific colors -- light emitted by sulfur, hydrogen, and oxygen -- that can help us to better understand these interactions. The light from young energetic stars is slowly transforming the cold gas to hot gas, with the advancing boundary between the two, known as an ionization front, visible in bright orange on the right. Particularly dense tentacles of cold gas remain. Millions of years from now this nebula might no longer be known as the Pelican, as the balance and placement of stars and gas will surely leave something that appears completely different.

Yearly Astronomy Review: APOD editor to speak in January in Philadelphia and New York City
Tomorrow's picture: sudden jet

< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Centaurus A

Centaurus A: APOD: 2015 November 19 - Centaurus A



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 19


See Explanation. Clicking on the picture will download the highest resolution version available.



Centaurus A
Processing & Copyright: Robert Gendler, Roberto Colombari
Image Data: Hubble Space Telescope, European Southern Observatory
Explanation: What's the closest active galaxy to planet Earth? That would be Centaurus A, only 11 million light-years distant. Spanning over 60,000 light-years, the peculiar elliptical galaxy is also known as NGC 5128. Forged in a collision of two otherwise normal galaxies, Centaurus A's fantastic jumble of young blue star clusters, pinkish star forming regions, and imposing dark dust lanes are seen here in remarkable detail. The colorful galaxy portrait is a composite of image data from space- and ground-based telescopes large and small. Near the galaxy's center, left over cosmic debris is steadily being consumed by a central black hole with a billion times the mass of the Sun. As in other active galaxies, that process generates the radio, X-ray, and gamma-ray energy radiated by Centaurus A.

Tomorrow's picture: selfie with friends

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Leonids and Friends

Leonids and Friends: APOD: 2015 November 20 - Leonids and Friends



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 20


See Explanation. Clicking on the picture will download the highest resolution version available.



Leonids and Friends
Image Credit & Copyright: Malcolm Park (North York Astronomical Association)
Explanation: Leonid meteors rained down on planet Earth this week, the annual shower of dusty debris from the orbit of Comet 55P/Tempel-Tuttle. Leonids streak through this composite night skyview from a backyard observatory in southern Ontario. Recorded with camera fixed to a tripod, the individual frames capture the bright meteor activity throughout the night of November 16/17, about a day before the shower's very modest peak. The frames are registered to the fixed field of view, so the meteor trails are not all aligned to the background star field recorded that same evening when nebula-rich Orion stood above the southern horizon. As a result, the trails don't appear to point back to the shower's radiant in Leo, situated off the left edge of the star field frame. In fact, some trails could be of Taurid meteors, a shower also active in November, or even sporadic meteors, including a bright fireball with its reflection near the horizon.

Tomorrow's picture: Intergalactic Saturday

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.


Recycling NGC 5291

Recycling NGC 5291: APOD: 2015 November 21 - Recycling NGC 5291



Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.


2015 November 21


See Explanation. Clicking on the picture will download the highest resolution version available.



Recycling NGC 5291
Image Credit & Copyright: CHART32 Team, Processing - Johannes Schedler
Explanation: Following an ancient galaxy-galaxy collision 200 million light-years from Earth, debris from a gas-rich galaxy, NGC 5291, was flung far into intergalactic space. NGC 5291 and the likely interloper, also known as the "Seashell" galaxy, are captured near the center of this spectacular scene. The sharp, ground-based telescopic image looks toward the galaxy cluster Abell 3574 in the southern constellation Centaurus. Stretched along the 100,000 light-year long tidal tails, are clumps resembling dwarf galaxies, but lacking old stars, apparently dominated by young stars and active star forming regions. Found to be unusually rich in elements heavier than hydrogen and helium, the dwarf galaxies were likely born in intergalactic space, recycling the enriched debris from NGC 5291 itself.

Tomorrow's picture: doomed moon

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.