Saturday, June 13, 2015

THE ZETA RETICULI INCIDENT

THE  ZETA  RETICULI  INCIDENT :


THE  ZETA  RETICULI  INCIDENT

by Terence Dickinson
With related commentary by: Jeffrey L. Kretsch, Carl Sagan, Steven Soter, Robert Sheaffer,
Marjorie Fish, David Saunders & Michael Peck. Astronomy, December, 1974THE ZETA RETICULI INCIDENT, Zeta, Reticuli, Zeta Reticuli, Incident, Zeta Reticuli Incident, UFO, OVNI, Abduction, Aliens.THE ZETA RETICULI INCIDENT, Zeta, Reticuli, Zeta Reticuli, Incident, Zeta Reticuli Incident, UFO, OVNI, Abduction, Aliens

A nuclear-pulse powered starship begins a voyage to some nearby stars similar to our sun sometime in the 21st century. The first target is Tau Ceti, 12 light-years distant and seen in this rendering just to the right of the craft's sperical living quarters. This article chronicles how an unusual star map has led to new investigations of specific stars that might harbor Earth-like planets - and possibly advanced forms of life.
 
A faint pair of stars, 220 trillion miles away, has been tentatively identified as the "home base" of intelligent extraterrestrials who allegedly visited Earth in 1961. This hypothesis is based on a strange, almost bizarre series of events mixing astronomical research with hypnosis, amnesia, and alien humanoid creatures.The two stars are known as Zeta 1 and Zeta 2 Reticuli, or together as simply Zeta Reticuli. They are each fifth magnitude stars -- barely visible to the unaided eye -- located in the obscure souther constellation Reticulum. This southerly sky location makes Zeta Reticuli invisible to observers north of Mexico City's latitude.
The weird circumstances that we have dubbed "The Zeta Reticuli Incident" sound like they come straight from the UFO pages in one of those tabloids sold in every supermarket. But this is much more than a retelling of a famous UFO incident; it's an astronomical detective story that at times hovers on that hazy line that separates science from fiction. It all started this way:
The date is Sept. 19, 1961. A middle aged New Hampshire couple, Betty and Barney Hill, are driving home from a short vacation in Canada. It's dark, with the moon and stars illuminating the wooded landscape along U.S. Route 3 in central New Hampshire. The Hills' curiosity is aroused when a bright "star" seems to move in an irregular pattern. They stop the car for a better view. The object moves closer, and its disklike shape becomes evident.
Barney grabs his binoculars from the car seat and steps out. He walks into a field to get a closer look, focuses the binoculars, and sees the object plainly. It has windows -- and behind the windows, looking directly at him are...humanoid creatures! Terrified, Barney stumbles back to the car, throws it into first gear and roars off. But for some reason he turns down a side road where five of the humanoids are standing on the road.
Apparently unable to control their actions, Betty and Barney are easily taken back to the ship by the humanoids. While inside they are physically examined, and one of the humanoids communicates to Betty. After the examination she asks him where they are from. In response he shows her a three-dimensional map with various sized dots and lines on it. "Where are you on the map?" the humanoid asks Betty. She doesn't know, so the subject is dropped.
Betty and Barney are returned unharmed to their car. They are told they will forget the abduction portion of the incident. The ship rises, and then hurtles out of sight. The couple continue their journey home oblivious of the abduction.
But the Hills are troubled by unexplained dreams and anxiety about two hours of their trip that they can't account for. Betty, a social worker, asks advice from a psychiatrist friend. He suggests that the memory of that time will be gradually restored over the next few months -- but it never is. Two years after the incident, the couple are still bothered by the missing two hours, and Barney's ulcers are acting up. A Boston psychiatrist, Benjamin Simon, is recommended, and after several months of weekly hypnosis sessions the bizarre events of that night in 1961 are revealed. A short time later a UFO group leaks a distorted version of the story to the press and the whole thing blows up. The Hills reluctantly disclose the entire story.
Can we take this dramatic scenario seriously? Did this incredible contact with aliens actually occur or is it some kind of hallucination that affected both Barney and Betty Hill? The complete account of the psychiatric examination from which the details of the event emerged is related in John G. Fuller's 'The Interrupted Journey' (Dial Press, 1966), where we read that after the extensive psychiatric examination, Simon concluded that the Hills were not fabricating the story. The most likely possibilities seem to be: (a) the experience actually happened, or (b) some perceptive and illusory misinterpretations occurred in relationship to some real event.
There are other cases of alleged abductions by extraterrestrial humanoids. The unique aspect of the Hills' abduction is that they remembered virtually nothing of the incident.
Intrigued by the Hills' experience, J. Allen Hynek, chairman of the department of astronomy at Northwestern University, decided to investigate. Hynek described how the Hills recalled the details of their encounter in his book, 'The UFO Experience' (Henry Regnery Company, 1972):
"Under repeated hypnosis they independently revealed what had supposedly happened. The two stories agreed in considerable detail, although neither Betty nor Barney was privy to what the other had said under hypnosis until much later. Under hypnosis they stated that they had been taken separately aboard the craft, treated well by the occupants -- rather as humans might treat experimental animals -- and then released after having been given the hypnotic suggestion that they would remember nothing of that particular experience. The method of their release supposedly accounted for the amnesia, which was apparently broken only by counterhypnosis."
A number of scientists, including Hynek, have discussed this incident at length with Barney and Betty Hill and have questioned them under hypnosis. They concur with Simon's belief that there seems to be no evidence of outright fabrication or lying. One would also wonder what Betty, who has a master's degree in social work and is a supervisor in the New Hampshire Welfare Department, and Barney, who was on the governor of New Hampshire's Civil Rights Commission, would have to gain by a hoax? Although the Hills didn't, several people have lost their jobs after being associated with similarly unusual publicity.
Stanton T. Friedman, a nuclear physicist and the nation's only space scientist devoting full time to researching the UFO phenomenon, has spent many hours in conversation with the Hills. "By no stretch of the imagination could anyone who knows them conclude that they were nuts," he emphasizes.
So the experience remains a fascinating story despite the absence of proof that it actually happened. Anyway -- that's where things were in 1966 when Marjorie Fish, an Ohio schoolteacher, amateur astronomer and member of Mensa, became involved. She wondered if the objects shown on the map that Betty Hill allegedly observed inside the vehicle might represent some actual pattern of celestial objects. To get more information about the map she decided to visit Betty Hill in the summer of 1969. (Barney Hill died in early 1969.) Here is Ms. Fish's account of that meeting:

 
"On Aug.4, 1969, Betty Hill discussed the star map with me. Betty explained that she drew the map in 1964 under posthypnotic suggestion. It was to be drawn only if she could remember it accurately, and she was not to pay attention to what she was drawing -- which puts it in the realm of automatic drawing. This is a way of getting at repressed or forgotten material and can result in unusual accuracy. She made two erasures showing her conscious mind took control part of the time."Betty described the map as three-dimensional, like looking through a window. The stars were tinted and glowed. The map material was flat and thin (not a model), and there were no noticeable lenticular lines like one of our three-dimensional processes. (It sounds very much like a reflective hologram.) Betty did not shift her position while viewing it, so we cannot tell if it would give the same three-dimensional view from all positions or if it would be completely three-dimensional. Betty estimated the map was approximately three feet wide and two feet high with the pattern covering most of the map. She was standing about three feet away from it. She said there were many other stars on the map but she only (apparently) was able to specifically recall the prominent ones connected by lines and a small distinctive triangle off to the left. There was no concentration of stars to indicate the Milky Way (galactic plane) suggesting that if it represented reality, it probably only contained local stars. There were no grid lines."
So much for the background material on the Hill incident. (If you want more details on the encounter, see Fuller's book). For the moment we will leave Marjorie Fish back in 1969 trying to interpret Betty Hill's reproduction of the map. There is a second major area of background information that we have to attend to before we can properly discuss the map. Unlike the bizarre events just described, the rest is pure astronomy.
Three key phases in the analysis described in this article are illustrated here. Top right diagram is a copy of the map Betty drew, allegedly a duplicate of one she saw inside an extraterrestrial vehicle. Center map is derived from a model of our stellar neighborhood by Marjorie Fish. It shows the stars that coincide with those on the Hill map (the Fish model is illustrated on page 14). The only area of significant incongruity is the wide separation of Zeta Reticuli in the Hill version. Lower image shows a cathode ray tube computer readout that was run at Ohio State University as a check on the Fish model. Data used to derive the Fish model and the computer readout wre taken from Gliese catalog. Names of specific stars are given on pages 12 & 13.

 
According to the most recent star catalogs, there are about 1,000 known stars within a radius of 55 light-years of the sun. What are those other stars like? A check of the catalogs shows that most of them are faint stars of relatively low temperature -- a class of stars astronomers call main sequence stars. The sun is a main sequence star along with most of the other stars in this part of the Milky Way galaxy, as the following table shows:

Main sequence stars
91%
White dwarfs
8%
Giants and Supergiants
1%
Typical giant stars are Arcturus and Capella. Antares and Betelgeuse are members of the ultrarare supergiant class. At the other end of the size and brightness scale the white dwarfs are stellar cinders -- the remains of once brilliant suns. For reasons that will soon become clear we can remove these classes of stars from our discussion and concentrate on the main sequence stars.
The main sequence stars can be further subdivided.

Characteristics of Main Sequence Stars
Class
Proportion of Total
Temperature (Degrees F)
Mass (Sun=1)
Luminosity (Sun=1)
Lifespan (billions yrs)
-
A0
1%
20,000
2.8
60
5
Vega
A5
-
15,000
2.2
20
1
-
F0
3%
13,000
1.7
6
2
Procyon
F5
-
12,000
1.25
3
4
-
G0
9%
11,000
1.06
1.3
10
Sun
G5
-
10,000
.92
.8
15
-
K0
14%
9,000
.8
.4
20
Epsilon Erandi
K5
-
8,000
.69
.1
30
-
M0
73%
7,000
.48
.02
75
Proxima Centauri
M5
-
5,000
.2
.001
200
-
The spectral class letters are part of a system of stellar "fingerprinting" that identifies the main sequence star's temperature and gives clues to its mass and luminosity. The hottest, brightest and most massive main sequence stars (with rare exceptions) are the A stars. The faintest, coolest and least massive are the M stars.
Each class is subdivided into 10 subcategories. For example, an A0 star is hotter, brighter and more massive than an A1 which is above an A2, and so on through A9.
This table supplies much additional information and shows how a slightly hotter and more massive star turns out to be much more luminous than the sun, a G2 star. But the bright stars pay dearly for their splendor. It takes a lot of stellar fuel to emit vast quantities of light and heat. The penalty is a short lifespan as a main sequence star. Conversely, the inconspicuous, cool M stars may be around to see the end of the universe -- whatever that might be. With all these facts at hand we're now ready to tackle the first part of the detective story.
Let's suppose we wanted to make our own map of a trip to the stars. We will limit ourselves to the 55 light-year radius covered by the detailed star catalogs. The purpose of the trip will be to search for intelligent life on planets that may be in orbit around these stars. We would want to include every star that would seem likely to have a life-bearing planet orbiting around it. How many of these thousand-odd stars would we include for such a voyage and which direction would we go? (For the moment, we'll forget about the problem of making a spacecraft that will take us to these stars and we'll assume that we've got some kind of vehicle that will effortlessly transport us to wherever we want to go.) We don't want to waste our time and efforts -- we only want to go to stars that we would think would have a high probability of having planets harboring advanced life forms. This seems like a tall order. How do we even begin to determine which stars might likely have such planets?
The first rule will be to restrict ourselves to life as we know it, the kind of life that we are familiar with here on Earth -- carbon based life. Science fiction writers are fond of describing life forms based on chemical systems that we have been unable to duplicate here on Earth -- such as silicon based life or life based on the ammonium hydroxide molecule instead of on carbon. But right now these life forms are simply fantasy -- we have no evidence that they are in fact possible. Because we don't even know what they might look like -- if they're out there -- we necessarily have to limit our search to the kind of life that we understand.
Our kind of life -- life as we know it -- seems most likely to evolve on a planet that has a stable temperature regime. It must be at the appropriate distance from its sun so that water is neither frozen nor boiled away. The planet has to be the appropriate size so that its gravity doesn't hold on to too much atmosphere (like Jupiter) or too little (like Mars). But the main ingredient in a life-bearing planet is its star. And its star is the only thing we can study since planets of other stars are far too faint to detect directly.
The conclusion we can draw is this: The star has to be like the sun.
Main sequence stars are basically stable for long periods of time. As shown in the table, stars in spectral class G have stable lifespans of 10 billion years. (Our sun, actually a G2 star, has a somewhat longer stable life expectancy of 11 billion years.) We are about five billion years into that period so we can look forward to the sun remaining much as it is (actually it will brighten slightly) for another six billion years. Stars of class F4 or higher have stable burning periods of less than 3.5 billion years. They have to be ruled out immediately. Such stars cannot have life-bearing planets because, at least based on our experience on our world, this is not enough time to permit highly developed biological systems to evolve on the land areas of a planet. (Intelligent life may very well arise earlier in water environments, but let's forget that possibility since we have not yet had meaningful communication with the dolphins -- highly intelligent creatures on this planet!) But we may be wrong in our estimate of life development time. There is another more compelling reason for eliminating stars of class F4 and brighter.
So far, we have assumed all stars have planets, just as our sun does. Yet spectroscopic studies of stars of class F4 and brighter reveal that most of them are in fact unlike our sun in a vital way -- they are rapidly rotating stars. The sun rotates once in just under a month, but 60 percent of the stars in the F0 to F4 range rotate much faster. And almost all A stars are rapid rotators too. It seems, from recent studies of stellar evolution that slowly rotating stars like the sun rotate slowly because they have planets. Apparently the formation of a planetary system robs the star of much of its rotational momentum.
For two reasons, then, we eliminate stars of class F4 and above: (1) most of them rotate rapidly and thus seem to be planetless, and (2) their stable lifespans are too brief for advanced life to develop.
Another problem environment for higher forms of life is the multiple star system. About half of all stars are born in pairs, or small groups of three or more. Our sun could have been part of a double star system. If Jupiter was 80 times more massive it would be an M6 red dwarf star. If the stars of a double system are far enough apart there is no real problem for planets sustaining life (see "Planet of the Double Sun", September 1974). But stars in fairly close or highly elliptical orbits would alternately fry or freeze their planets. Such planets would also likely have unstable orbits. Because this is a potentially troublesome area for our objective, we will eliminate all close and moderately close pairs of systems of multiple stars.
Further elimination is necessary according to the catalogs. Some otherwise perfect stars are labeled "variable". This means astronomers have observed variations of at least a few percent in the star's light output. A one percent fluctuation in the sun would be annoying for us here on Earth. Anything greater would cause climatic disaster. Could intelligent life evolve under such conditions, given an otherwise habitable planet? It seems unlikely. We are forced to "scratch" all stars suspected or proven to be variable.
This still leaves a few F stars, quite a few G stars, and hoards of K and M dwarfs. Unfortunately most of the Ks and all of the Ms are out. Let's find out why.These stars quite likely have planets. Indeed, one M star -- known as Barnard's star -- is believed to almost certainly have at least one, and probably two or three, Jupiter sized planets. Peter Van de Kamp of the Sproul Observatory at Swarthmore College (Pa.) has watched Barnard's star for over three decades and is convinced that a "wobbling" motion of that star is due to perturbations (gravitational "pulling and pushing") caused by its unseen planets. (Earth sized planets cannot be detected in this manner.)
But the planets of M stars and the K stars below K4 have two serious handicaps that virtually eliminate them from being abodes for life. First, these stars fry their planets with occasional lethal bursts of radiation emitted from erupting solar flares. The flares have the same intensity as those of our sun, but when you put that type of flare on a little star it spells disaster for a planet that is within, say, 30 million miles. The problem is that planets have to be that close to get enough heat from these feeble suns. If they are farther out, they have frozen oceans and no life.
The close-in orbits of potential Earthlike planets of M and faint K stars produce the second dilemma -- rotational lock. An example of rotational lock is right next door to us. The moon, because of its nearness to Earth, is strongly affected by our planet's tidal forces. Long ago our satellite stopped rotating and now has one side permanently turned toward Earth. The same principles apply to planets of small stars that would otherwise be at the right distance for moderate temperatures. If rotational lock has not yet set in, at least rotational retardation would make impossibly long days and nights (as evidenced by Mercury in our solar system).
What stars are left after all this pruning? All of the G stars remain along with F5 through F9 and K0 through K4. Stephen Dole of the Rand Corporation has made a detailed study of stars in this range and suggests we should also eliminate F5, F6 and F7 stars because they balloon to red giants before they reach an age of five billion years. Dole feels this is cutting it too fine for intelligent species to fully evolve. Admittedly this is based on our one example of intelligent life -- us. But limited though this parameter is, it is the only one we have. Dole believes the K2, K3 and K4 stars are also poor prospects because of their feeble energy output and consequently limited zone for suitable Earthlike planets.
Accepting Dole's further trimming we are left with single, nonvariable stars from F8 through all the Gs to K1. What does that leave us with? Forty-six stars.
Now we are ready to plan the trip. It's pretty obvious that Tau Ceti is our first target. After that, the choice is more difficult. We can't take each star in order or we would be darting all over the sky. It's something like planning a vacation trip. Let's say we start from St. Louis and want to hit all the major cities within a 1,000 mile radius. If we go west, all we can visit is Kansas City and Denver. But northeast is a bonanza: Chicago, Detroit, Cleveland, Pittsburgh, Philadelphia, New York and more. The same principle applies to the planning of our interstellar exploration. The plot of all 46 candidate stars reveals a clumping in the direction of the constellations Cetus and Eridanus. Although this section amounts to only 13 percent of the entire sky, it contains 15 of the 46 stars, or 33 percent of the total. Luckily Tau Ceti is in this group, so that's the direction we should go (comparable to heading northeast from St. Louis). If we plan to visit some of these solar type stars and then return to Earth, we should try to have the shortest distance between stops. It would be a waste of exploration time if we zipped randomly from one star to another. 

  
 Route map. Click here. 
The route map above shows the culmination of our efforts. This group of stars is a "natural" for exploration when we achieve interstellar flight. Even if, as most exobiologists contend, we are highly unlikely to find advanced forms of life in such a small sample, the physical exploration of planets of other stars by beings from Earth is inevitable, and the stars of this group should be among the first targets.
Now we are ready to return to the map drawn by Betty Hill. Marjorie Fish reasoned that if the stars in the Hill map corresponded to a patter of real stars -- perhaps something like we just developed, only from an alien's viewpoint -- it might be possible to pinpoint the origin of the alleged space travelers. Assuming the two stars in the foreground of the Hill map were the "base" stars (the sun, a single star, was ruled out here), she decided to try to locate the entire pattern. She theorized that the Hill map contained only local stars since no concentration would be present if a more distant viewpoint was assumed and if both "us" and the alien visitors' home base were to be represented.
Let's assume, just as an astronomical exercise, that the map does show the sun and the star that is "the sun" to the humanoids. We'll take the Hill encounter at face value, and see where it leads.
Since the aliens were described as "humanoid" and seemed reasonably comfortable on this planet, their home planet should be basically like ours. Their atmosphere must be similar because the Hills breathed without trouble while inside the ship, and the aliens did not appear to wear any protective apparatus. And since we assume their biology is similar to ours, their planet should have the same temperature regime as Earth (Betty and Barney did say it was uncomfortably cold in the ship). In essence, then, we assume their home planet must be very Earthlike. Based on what we discussed earlier it follows that their sun would be on our list if it were within 55 light-years of us.
The lines on the map, according to Betty Hill, were described by the alien as "trade routes" or "places visited occasionally" with the dotted lines as "expeditions". Any interpretation of the Betty Hill map must retain the logic of these routes (i.e. the lines would link stars that would be worth visiting).
 The Fish Model. Click here. 
This model, prepared by Marjorie Fish. shows all the stars located in a vast volume of space extending out about 55 light years in the direction of Zeta Reticuli. The viewing angle is from a point in space beyond that limit looking back toward the Sun. Each star is suspended on a separate thread at its appropriate distance and position from the Sun, and colored according to its spectral type (solar type stars are yellow). The star "behind" the two components of Zeta Reticuli is Zeta Tucanae. From a model such as this, using the same viewing angle seen here, Marjorie Fish noted 16 stars whose positions are remarkably closeto the stars in the drawing made by Betty Hill. The fact that all of the stars in the "Hill configuration" are solar type stars is one of several intriguing areas that enshroud the "Zeta Reticuli Incident".
Keeping all this in mind, Marjorie Fish constructed several three-dimensional models of the solar neighborhood in hopes of detecting the pattern in the Hill map. Using beads dangling on threads, she painstakingly recreated our stellar environment. Between Aug. 1968 and Feb. 1973, she strung beads, checked data, searched and checked again. A suspicious alignment, detected in late 1968, turned out to be almost a perfect match once new data from the detailed 1969 edition of the Catalog of Nearby Stars became available. (This catalog is often called the "Gliese catalog" -- pronounced "glee-see" -- after its principal author, Wilhelm Gliese.)
The 16 stars in the stellar configuration discovered by Marjorie Fish are compared with the map drawn by Betty Hill in the diagram on page 6. If some of the star names on the Fish map sound familiar, they should. Ten of the 16 stars are from the compact group that we selected earlier based on the most logical direction to pursue to conduct interstellar exploration from Earth
Continuing to take the Hill map at face value, the radiating pattern of "trade routes" implies that Zeta 1 and Zeta 2 Reticuli are the "hub" of exploration or, in the context of the incident, the aliens' home base. The sun is at the end of one of the supposedly regular trade routes.
The pair of stars that make up Zeta Reticuli is practically in the midst of the cluster of solar type stars that attracted us while we were mapping out a logical interstellar voyage. Checking further we find that all but two of the stars in the Fish pattern are on the table of nearby solar type stars. These two stars are Tau 1 Eridani (an F6 star) and Gliese 86.1 (K2), and are, respectively, just above and below the parameters we arrived at earlier. One star that should be there (Zeta Tucanae) is missing probably because it is behind Zeta 1 Reticuli at the required viewing angle.
To summarize, then: (1) the pattern discovered by Marjorie Fish has an uncanny resemblance to the map drawn by Betty Hill; (2) the stars are mostly the ones that we would visit if we were exploring from Zeta Reticuli, and (3) the travel patterns generally make sense.
Walter Mitchell, professor of astronomy at Ohio State University in Columbus, has looked at Marjorie Fish's interpretation of the Betty Hill map in detail and tells us, "The more I examine it, the more I am impressed by the astronomy involved in Marjorie Fish's work."
During their examination of the map, Mitchell and some of his students inserted the positions of hundreds of nearby stars into a computer and had various space vistas brought up on a cathode ray tube readout. They requested the computer to put them in a position out beyond Zeta Reticuli looking toward the sun. From this viewpoint the map pattern obtained by Marjorie Fish was duplicated with virtually no variations. Mitchell noted an important and previously unknown fact first pointed out by Ms. Fish: The stars in the map are almost in a plane; that is, they fill a wheel shaped volume of space that makes star hopping from one to another easy and the logical way to go -- and that is what is implied by the map that Betty Hill allegedly saw.
"I can find no major point of quibble with Marjorie Fish's interpretation of the Betty Hill map," says David R. Saunders, a statistics expert at the Industrial Relations Center of the University of Chicago. By various lines of statistical reasoning he concludes that the chances of finding a match among 16 stars of a specific spectral type among the thousand-odd stars nearest the sun is "at least 1,000 to 1 against".
"The odds are about 10,000 to 1 against a random configuration matching perfectly with Betty Hill's map," Saunders reports. "But the star group identified by Marjorie Fish isn't quite a perfect match, and the odds consequently reduce to about 1,000 to 1. That is, there is one chance in 1,000 that the observed degree of congruence would occur in the volume of space we are discussing.
"In most fields of investigation where similar statistical methods are used, that degree of congruence is rather persuasive," concludes Saunders.
Saunders, who has developed a monumental computerized catalog of more than 60,000 UFO sightings, tells us that the Hill case is not unique in its general characteristics -- there are other known cases of alleged communication with extraterrestrials. But in no other case on record have maps ever been mentioned.
Mark Steggert of the Space Research Coordination Center at the University of Pittsburgh developed a computer program that he calls PAR (for Perspective Alteration Routine) that can duplicate the appearance of star fields from various viewpoints in space.
"I was intrigued by the proposal put forth by Marjorie Fish that she had interpreted a real star pattern for the alleged map of Betty Hill. I was incredulous that models could be used to do an astronometric problem," Steggert says. "To my surprise I found that the pattern that I derived from my program had a close correspondence to the data from Marjorie Fish."
After several run-throughs, he confirmed the positions determined by Marjorie Fish. "I was able to locate potential areas of error, but no real errors," Steggert concludes.
Steggert zeroed in on possibly the only real bone of contention that anyone has had with Marjorie Fish's interpretation: The data on some of the stars may not be accurate enough for us to make definitive conclusions. For example, he says the data from the Smithsonian Astrophysical Observatory Catalog, the Royal Astronomical Society Observatory Catalog, and the Yale Catalog of Bright Stars "have differences of up to two magnitudes and differences in distance amounting to 40 percent for the star Gliese 59". Other stars have less variations in the data from one catalog to another, but Steggert's point is valid. The data on some of the stars in the map is just not good enough to make a definitive statement. (The fact that measurements of most of the stars in question can only be made at the relatively poor equipped southern hemisphere observatories accounts for the less reliable data.)
Using information on the same 15 stars from the Royal Observatory catalog (Annals #5), Steggert reports that the pattern does come out differently because of the different data, and Gliese 59 shows the largest variation. The Gliese catalog uses photometric, trigonometric and spectroscopic parallaxes and derives a mean from all three after giving various mathematical weights to each value. "The substantial variation in catalog material is something that must be overcome," says Steggert. "This must be the next step in attempting to evaluate the map."
This point of view is shared by Jeffrey L. Kretsch, an undergraduate student who is working under the advisement of J. Allen Hynek at Northwestern University in Evanston, Ill. Like Steggert, he too checked Marjorie Fish's pattern and found no error in the work. But Kretsch reports that when he reconstructed the pattern using trigonometric distance measurements instead of the composite measures in the Gliese catalog, he found enough variations to move Gliese 95 above the line between Gliese 86 and Tau 1 Eridani.
"The data for some of the stars seems to be very reliable, but a few of the pattern stars are not well observed and data on them is somewhat conflicting," says Kretsch. The fact that the pattern is less of a "good fit" using data from other sources leads Kretsch and others to wonder what new observations would do. Would they give a closer fit? Or would the pattern become distorted? Marjorie Fish was aware of the catalog variations, but has assumed the Gliese catalog is the most reliable source material to utilize.
Is the Gliese catalog the best available data source. According to several astronomers who specialize in stellar positions, it probably is. Peter Van de Kamp says, "It's first rate. There is none better." He says the catalog was compiled with extensive research and care over many years.
A lot of the published trigonometric parallaxes on the stars beyond 30 light-years are not as accurate as they could be, according to Kyle Cudworth of Yerkes Observatory. "Gliese added other criteria to compensate and lessen the possible errors," he says.
The scientific director of the U.S. Naval Observatory, K.A. Strand, is among the world's foremost authorities on stellar distances for nearby stars. He believes the Gliese catalog "is the most complete and comprehensive source available."
Frank B. Salisbury of the University of Utah has also examined the Hill and Fish maps. "The pattern of stars discovered by Marjorie Fish fits the map drawn by Betty Hill remarkably well. It's a striking coincidence and forces one to take the Hill story more seriously," he says. Salisbury is one of the few scientists who has spent some time on the UFO problem and has written a book and several articles on the subject. A professor of plant physiology, his biology expertise has been turned to astronomy on several occasions while studying the possibility of biological organisms existing on Mars.
Salisbury insists that while psychological factors do play an important role in UFO phenomena, the Hill story does represent one of the most credible reports of incredible events. The fact that the story and the map came to light under hypnosis is good evidence that it actually took place. "But it is not unequivocal evidence," he cautions.
Elaborating on this aspect of the incident, Mark Steggert offers this: "I am inclined to question the ability of Betty, under posthypnotic suggestion, to duplicate the pattern two years after she saw it. She noted no grid lines on the pattern for reference. Someone should (or perhaps has already) conduct a test to see how well a similar patter could be recalled after a substantial period of time. The stress she was under at the time is another unknown factor."
"The derivation of the base data by hypnotic techniques is perhaps not as 'far out' as it may seem," says Stanton Friedman. "Several police departments around the country use hypnosis on rape victims in order to get descriptions of the assailants -- descriptions that would otherwise remain repressed. The trauma of such circumstances must be comparable in some ways to the Hill incident."
 Is it at all possible we are faced with a hoax?
"Highly unlikely," says Salisbury -- and the other investigators agree. One significant fact against a charade is that the data from the Gliese catalog was not published until 1969, five years after the star map was drawn by Betty Hill. Prior to 1969, the data could only have been obtained from the observatories conducting research on the specific stars in question. It is not uncommon for astronomers not to divulge their research data -- even to their colleagues -- before it appears in print. In general, the entire sequence of events just does not smell of falsification. Coincidence, possibly; hoax, improbable.
Where does all this leave us? Are there creatures inhabiting a planet of Zeta 2 Reticuli? Did they visit Earth in 1961? The map indicates that the sun has been "visited occasionally". What does that mean? Will further study and measurement of the stars in the map change their relative positions and thus distort the configuration beyond the limits of coincidence?
The fact that the entire incident hinges on a map drawn under less than normal circumstances certainly keeps us from drawing a firm conclusion. Exobiologists are united in their opinion that the chance of us having neighbors so similar to us, apparently located so close, is vanishingly small. But then, we don't even know for certain if there is anybody at all out there -- anywhere -- despite the Hill map and pronouncements of the most respected scientists.
The only answer is to continue the search. Someday, perhaps soon, we will know.

 
The 46 Nearest Stars Similar to the Sun
NameDistance (light-years)Magnitude (visual)Luminosity (Sun=1)Spectrum
Tau Ceti11.83.5.4G8
82 Eridani20.24.3.7G5
Zeta Tucanae23.34.2.9G2
107 Piscium24.35.2.4K1
Beta Comae----
Berenices27.24.31.2G0
61 Virginis27.44.7.8G6
Alpha Mensae28.35.1.6G5
Gliese 7528.65.6.4K0
Beta Canum----
Venaticorum29.94.31.4G0
Chi Orionis324.41.5G0
54 Piscium345.9.4K0
Zeta 1 Reticuli375.5.7G2
Zeta 2 Reticuli375.2.9G2
Gliese 86376.1.4K0
Mu Arae375.1.9G5
Gliese 67385.01.2G2
Gliese 668.1406.3.4G9
Gliese 302416.0.6G8
Gliese 309416.4.4K0
Kappa Fornacis425.21.3G1
58 Eridani425.5.9G1
Zeta Doradus444.72.0F8
55 Cancri446.0.7G8
47 Ursa Majoris445.11.5G0
Gliese 364454.91.8G0
Gliese 599A456.0.6G6
Nu Phoenicis455.01.8F8
Gliese 95456.3.5G5
Gliese 796475.6.5G8
20 Leo Minoris475.41.2G4
39 Tauri475.9.8G1
Gliese 290476.6.4G8
Gliese 59.2485.71.0G2
Psi Aurigae495.21.5G0
Gliese 722495.9.9G4
Gliese 788495.9.8G5
Nu 2 Lupi505.61.1G2
14 Herculis506.6.5K1
Pi Ursa Majoris515.61.2G0
Phi 2 Ceti515.21.8F8
Gliese 641526.6.5G8
Gliese 97.2526.9.4K0
Gliese 541.1536.5.6G8
109 Piscium536.3.8G4
Gliese 651536.8.4G8
Gliese 59536.7.4G8
This table lists all known stars within a radius of 54 light-years that are single or part of a wide multiple star system. They have no known irregularities or variabilities and are between 0.4 and 2.0 times the luminosity of the sun. Thus, a planet basically identical to Earth could be orbiting around any one of them. (Data from the Catalog of Nearby Stars, 1969 edition, by Wilhelm Gliese.) .

 
The View from Zeta Reticuli
The two stars that comprise the Zeta Reticuli system are almost identical to the sun. Thy are the only known examples of two solar type stars apparently linked into a binary star system of wide separation.
Zeta 1 is separated from Zeta 2 by at least 350 billion miles -- about 100 times the sun-Pluto distance. They may be even farther apart, but the available observations suggest they are moving through space together and are therefore physically associated. They probably require at least 100,000 years to orbit around their common center of gravity.
Both Zeta 1 and Zeta 2 are prime candidates for the search for life beyond Earth. According to our current theories of planetary formation, they both should have a retinue of planets something like our solar system. As yet there is no way of determining if any of the probable planets of either star is similar to Earth.
To help visualize the Zeta Reticuli system, let's take the sun's nine planets and put them in identical orbits around Zeta 2. From a celestial mechanics standpoint there is no reason why this situation could not exist. Would anything be different? Because of Zeta 2's slightly smaller mass as compared with the sun, the planets would orbit a little more slowly. Our years might have 390 days, for example. Zeta 2 would make a fine sun - - slightly dimmer than "old Sol", but certainly capable of sustaining life. The big difference would not be our new sun but the superstar of the night sky. Shining like a polished gem, Zeta 1 would be the dazzling highlight of the night sky -- unlike anything we experience here on Earth. At magnitude -9 it would appear as a starlike point 100 times brighter than Venus. It would be like compressing all the light from the first quarter moon into a point source.
Zeta 1 would have long ago been the focus of religions, mythology and astrology if it were in earthly skies. The fact that it would be easily visible in full daylight would give Zeta 1 supreme importance to both early civilizations and modern man. Shortly after the invention of the telescope astronomers would be able to detect Jupiter and Saturn sized planets orbiting around Zeta 1. Jupiter would be magnitude +12, visible up to 4.5 minutes of arc from Zeta 1 (almost as far as Ganymede swings from Jupiter). It would not make a difficult target for an eight inch telescope. Think of the incentive that discovery would have on interstellar space travel! For hundreds of years we would be aware of another solar system just a few "light-weeks" away. The evolution of interstellar spaceflight would be rapid, dynamic and inevitable.
By contrast, our nearest solar type neighbor is Tau Ceti at 12 light-years. Even today we only suspect it is accompanied by a family of planets, but we don't know for sure.
From this comparison of our planetary system with those of Zeta Reticuli, it is clear that any emerging technologically advanced intelligent life would probably have great incentive to achieve star flight. The knowledge of a nearby system of planets of a solar type star would be compelling -- at least it would certainly seem to be.
What is so strange -- and this question prompted us to prepare this article -- is: Why, of all stars, does Zeta Reticuli seem to fit as the hub of a map that appeared inside a spacecraft that allegedly landed on Earth in 1961? Some of the circumstances surrounding the whole incident are certainly bizarre, but not everything can be written off as coincidence or hallucination. It may be optimistic, on one extreme, to hope that our neighbors are as near as 37 light-years away. For the moment we will be satisfied with considering it an exciting possibility.

Thursday, May 7, 2015

100,000 Galaxies, and No Obvious Signs of Life

100,000 Galaxies, and No Obvious Signs of Life:



This is a false-color image of the mid-infrared emission from the Great Galaxy in Andromeda, as seen by Nasa's WISE space telescope. The orange color represents emission from the heat of stars forming in the galaxy's spiral arms. The G-HAT team used images such as these to search 100,000 nearby galaxies for unusually large amounts of this mid-infrared emission that might arise from alien civilizations. Credit: NASA/JPL-Caltech/WISE Team


False-color image of the mid-infrared emission from the Great Galaxy in Andromeda, as seen by Nasa’s WISE space telescope. Credit: NASA/JPL-Caltech/WISE Team
Beam us up, Scotty. There’s no signs of intelligent life out there. At least, no obvious signs, according to a recent survey performed by researchers at Penn State University. After reviewing data taken by the NASA Wide-field Infrared Survey Explorer (WISE) space telescope of over 100,000 galaxies, there appears to be little evidence that advanced, spacefaring civilizations exist in any of them.

First deployed in 2009, the WISE mission has been able to identify thousands of asteroids in our solar system and previously undiscovered star clusters in our galaxy. However, Jason T. Wright, an assistant professor of astronomy and astrophysics at the Center for Exoplanets and Habitable Worlds at Penn State University, conceived of and initiated a new field of research – using the infrared data to assist in the search for signs of extra-terrestrial civilizations.

And while their first look did not yield much in the way of results, it is an exciting new area of research and provides some very useful information on one of the greatest questions ever asked: are we alone in the universe?

“The idea behind our research is that, if an entire galaxy had been colonized by an advanced spacefaring civilization, the energy produced by that civilization’s technologies would be detectable in mid-infrared wavelengths,” said Wright, “exactly the radiation that the WISE satellite was designed to detect for other astronomical purposes.”

This logic is in keeping with the theories of Russian astronomer Nikolai Kardashev and theoretical physicist Freeman Dyson. In 1964, Kardashev proposed that a civilization’s level of technological advancement could be measured based on the amount of energy that civilization is able to utilize.



Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com


Freemon Dyson theorized that eventually, a civilization would be able to enclose its star with a megastructure that would to capture and utilize its energy. Credit: sentientdevelopments.com
To characterize the level of extra-terrestrial development, Kardashev developed a three category system – Type I, II, and III civilizations –  known as the “Kardashev Scale”. A Type I civilization uses all available resources on its home planet, while a Type II is able to harness all the energy of its star. Type III civilizations are those that are advanced enough to harness the energy of their entire galaxy.

Similarly, Dyson proposed in 1960 that advanced alien civilizations beyond Earth could be detected by the telltale evidence of their mid-infrared emissions. Believing that a sufficiently advanced civilization would be able to enclose their parent star, he believed it would be possible to search for extraterrestrials by looking for large objects radiating in the infrared range of the electromagnetic spectrum.

These thoughts were expressed in a short paper submitted to the journal Science, entitled “Search for Artificial Stellar Sources of Infrared Radiation“. In it, Dyson proposed that an advanced species would use artificial structures – now referred to as “Dyson Spheres” (though he used the term “shell” in his paper) – to intercept electromagnetic radiation with wavelengths from visible light downwards and radiating waste heat outwards as infrared radiation.

“Whether an advanced spacefaring civilization uses the large amounts of energy from its galaxy’s stars to power computers, space flight, communication, or something we can’t yet imagine, fundamental thermodynamics tells us that this energy must be radiated away as heat in the mid-infrared wavelengths,” said Wright. “This same basic physics causes your computer to radiate heat while it is turned on.”



Wide-field Infrared Survey Explorer, or WISE, will scan the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images


The Wide-field Infrared Survey Explorer (WISE) scans the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images. Credit: NASA/JPL-Caltech
However, it was not until space-based telescopes like WISE were deployed that it became possible to make sensitive measurements of this radiation. WISE is one of three infrared missions currently in space, the other two being NASA’s Spitzer Space Telescope and the Herschel Space Observatory – a European Space Agency mission with important NASA participation.

WISE is different from these missions in that it surveys the entire sky and is designed to cast a net wide enough to catch all sorts of previously unseen cosmic interests. And there are few things more interesting than the prospect of advanced alien civilizations!

To search for them, Roger Griffith – a postbaccalaureate researcher at Penn State and the lead author of the paper – and colleagues scoured the entries in the WISE satellites database looking for evidence of a galaxy that was emitting too much mid-infrared radiation. He and his team then individually examined and categorized 100,000 of the most promising galaxy images.

And while they didn’t find any obvious signs of a Type II civilization or Dyson Spheres in any of them, they did find around 50 candidates that showed unusually high levels of mid-infrared radiation. The next step will be to confirm whether or not these signs are due to natural astronomical processes, or could be an indication of a highly advanced civilization tapping their parent star for energy.



WISE will find the most luminous galaxies in the universe -- incredibly energetic objects bursting with new stars. The infrared telescope can see the glow of dust that shrouds these galaxies, hiding them from visible-light telescopes. An example of a dusty, luminous galaxy is shown here in this infrared portrait of the "Cigar" galaxy taken by NASA's Spitzer Space Telescope. Dust is color-coded red, and starlight blue. Credit: NASA/JPL-Caltech/Steward Observatory


WISE will take images of the most luminous galaxies in the universe, such as the “Cigar” galaxy shown here – taken by NASA’s Spitzer Space Telescope. Credit: NASA/JPL-Caltech/Steward Observatory
In any case, the team’s findings were quite interesting and broke new ground in what is sure to be an ongoing area of research. The only previous study, according to the G-HAT team, surveyed only about 100 galaxies, and was unable to examine them in the infrared to see how much heat they emitted. What’s more, the research may help shed some light on the burning questions about the very existence of intelligent, extra-terrestrial life in our universe.

“Our results mean that, out of the 100,000 galaxies that WISE could see in sufficient detail, none of them is widely populated by an alien civilization using most of the starlight in its galaxy for its own purposes,” said Wright. “That’s interesting because these galaxies are billions of years old, which should have been plenty of time for them to have been filled with alien civilizations, if they exist. Either they don’t exist, or they don’t yet use enough energy for us to recognize them.”

Alas, it seems we are no closer to resolving the Fermi Paradox. But for the first time, it seems that investigations into the matter are moving beyond theoretical arguments. And given time, and further refinements in our detection methods, who knows what we might find lurking out there? The universe is very, very big place, after all.

The research team’s first research paper about their Glimpsing Heat from Alien Technologies Survey (G-HAT) survey appeared in the Astrophysical Journal Supplement Series on April 15, 2015.

Further Reading: Astrophysical Journal via EurekAlert, JPL-NASA



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Share this:

The 2015 Lyrid Meteors Peak Tomorrow Night!

The 2015 Lyrid Meteors Peak Tomorrow Night!:



A lucky capture of a 2013 Lyrid meteor. Image credit and copyright: John Chumack


A lucky capture of a 2013 Lyrid meteor. Image credit and copyright: John Chumack
April showers bring May flowers, and this month also brings a shower of the celestial variety, as the Lyrid meteors peak this week.

And the good news is, 2015 should be a favorable year for the first major meteor shower of the Spring season for the northern hemisphere.  The peak for the shower in 2015 is predicted to arrive just after midnight Universal Time on Thursday April 23rd, which is 8:00 PM EDT on the evening of Wednesday April 22nd. This favors European longitudes right around the key time, though North America could be in for a decent show as well. Remember, meteor showers don’t read forecasts, and the actual peak can always arrive early or late. We plan to start watching tonight and into Wednesday and Thursday morning as well. April also sees a extremely variable level of cloud cover over the northern hemisphere, another reason to start your meteor vigil early on if skies are clear.



The radiant for the 2015 Lyrids as seen from 40 degrees north latitude at local midnight. Credit: Stellarium.


The radiant for the 2015 Lyrids as seen from 40 degrees north latitude at local midnight. Credit: Stellarium.
Another favorable factor this year is the phase of the Moon, which is only a slender 20% illuminated waxing crescent on Wednesday night. This means that it will have set well before local midnight when the action begins.

The source of the Lyrid meteors is Comet C/1861 G1 Thatcher, which is on a 415 year orbit and is expected to come back around again in 2276 A.D. 1861 actually sported two great comets, the other being C/1861 J1, also known as the Great Comet of 1861.



The orientation of the Sun, Moon, and the Lyrid radiant at the expected peak of the shower at 24UT/20EDT April 22nd. credit: Stellarium


The orientation of the Sun, Moon, and the Lyrid radiant at the expected peak of the shower at 24UT/20EDT April 22nd. credit: Stellarium
The Lyrids typically exhibit an ideal Zenithal Hourly Rate (ZHR) of 15-20 per hour, though this shower has been known to produce moderate outbursts from time to time. In 1803 and 1922, the Lyrids produced a ZHR of 100 per hour, and in recent times, we had an outburst of 250 per hour back in 1982. Researchers have tried over the years to tease out a periodicity for Lyrid outbursts, which seem erratic at best. In recent years, the Lyrids hit a ZHR of 20 (2011), 25 (2012), 22 (2013), and 16 last year in 2014.

Keep in mind, we say that the ZHR is an ideal rate, or what you could expect from the meteor shower with the radiant directly overhead under dark skies: expect the actual number of meteors observed during any shower to be significantly less.



A 2014 Lyrid fireball. Credit: The UK Meteor Network


A 2014 Lyrid fireball. Credit: The UK Meteor Network
The radiant for the Lyrids actually sits a few degrees east of the bright star Vega across the Lyra border in the constellation Hercules. They should, in fact, be named the Herculids! In mid-April, the radiant for the April Lyrids has already risen well above the northeastern horizon as seen from latitude 40 degrees north at 10 PM local, and is roughly overhead by 4 AM local. Several other minor showers are also active around late April, including the Pi Puppids (April 24th), the Eta Aquarids (May 6th), and the Eta Lyrids (May 9th). The constellation of the Lyre also lends its name to the June Lyrids peaking around June 6th.

The April Lyrids are intersecting the Earth’s orbit at a high 80 degree angle at a swift velocity of 49 kilometres per second. About a quarter of the Lyrid meteors are fireballs, leaving bright, persistent smoke trains. It’s a good idea to keep a set of binoculars handy to study these lingering smoke trails post-passage.



The Lyrids also have the distinction of having the longest recorded history of any known meteor shower.  Chinese chronicles indicate that “stars dropped down like rain,” on a late Spring night in 687 BC.

Observing a meteor shower requires nothing more than a set of working ‘Mark-1 eyeballs’ and patience. The International Meteor Organization always welcomes reports of meteor counts from observers worldwide to build an accurate picture of evolving meteor debris streams. You can even hear meteor ‘pings’ via FM radio.

Expect the rate to pick up past local midnight, as the Earth plows headlong into the oncoming meteor stream. Remember, the front of the car gets the love bugs, an apt analogy for any Florida resident in mid-April.



A composite view of the 2012 Lyrids plus sporadic meteors. Credit: NASA/MSFC/Danielle Moser


A composite view of the 2012 Lyrids plus sporadic meteors. Credit: NASA/MSFC/Danielle Moser
Catching a photograph of a Lyrid or any meteor is as simple as plopping a DSLR down on a tripod and doing a series of 30 second to several minute long time exposures. Use the widest field of view possible, and aim the camera off at about a 45 degree angle from the radiant to catch the meteors sidelong in profile. Be sure to take a series of test shots to get the ISO/f-stop combination set for the local sky conditions.

Don’t miss the 2015 Lyrids, possibly the first good meteor shower of the year!



About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.

Share this:

Hubble Telescope Celebrates 25 Years in Space With Spectacular New Image

Hubble Telescope Celebrates 25 Years in Space With Spectacular New Image:



This NASA/ESA Hubble Space Telescope image of the cluster Westerlund 2 and its surroundings has been released to celebrate Hubble’s 25th year in orbit and a quarter of a century of new discoveries, stunning images and outstanding science. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team. Click the image for access to larger versions.


This NASA/ESA Hubble Space Telescope image of the cluster Westerlund 2 and its surroundings has been released to celebrate Hubble’s 25th year in orbit and a quarter of a century of new discoveries, stunning images and outstanding science. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team. Click the image for access to larger versions.
Images from space don’t get any prettier than this. A new image from the Hubble Space Telescope was released today to commemorate a quarter century of exploring the Solar System and beyond since the launch of the telescope on April 24, 1990. It shows a giant cluster of about 3,000 stars called Westerlund 2, located 20,000 light-years away from Earth in the constellation Carina. NASA describes the new image as a “brilliant tapestry of young stars flaring to life resemble a glittering fireworks display.”

The Hubble Teams are giving away a few “gifts” to everyone to celebrate this silver anniversary — see below!


“Hubble has completely transformed our view of the universe, revealing the true beauty and richness of the cosmos” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate. “This vista of starry fireworks and glowing gas is a fitting image for our celebration of 25 years of amazing Hubble science.”

The cluster is named after Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s.

You can get access to larger versions of the image here at ESA’s Hubble website, or at NASA’s HubbleSite.

There are anniversary events occurring around the US and the world. Here is a listing of at the Hubble anniversary site, where people can also find science articles, educational resources, downloadable presentations, and more:

And here’s a downloadable 25th anniversary gift for everyone: Hubble is offering a free ebook of 25 of Hubble’s most significant images, which can be found at this link or at iTunes.

See a stunning gallery of all the ‘anniversary’ images that have been released by the Hubble teams over the last 25 years at this Flickr gallery.

And finally, here’s an excellent visualization of a flight to the star cluster Westerlund 2:




About 

Nancy Atkinson is currently Universe Today's Contributing Editor. Previously she served as UT's Senior Editor and lead writer, and has worked with Astronomy Cast and 365 Days of Astronomy. Nancy is also a NASA/JPL Solar System Ambassador.

Share this:

Watch an Enormous “Plasma Snake” Erupt from the Sun

Watch an Enormous “Plasma Snake” Erupt from the Sun:



SOHO LASCO C2 (top) and SDO AIA 304 (bottom) image of a solar filament detaching on April 28-29, 2015


SOHO LASCO C2 (top) and SDO AIA 304 (bottom) image of a solar filament detaching on April 28-29, 2015
Over the course of April 28–29 a gigantic filament, briefly suspended above the surface* of the Sun, broke off and created an enormous snakelike eruption of plasma that extended millions of miles out into space. The event was both powerful and beautiful, another demonstration of the incredible energy and activity of our home star…and it was all captured on camera by two of our finest Sun-watching spacecraft.

Watch a video of the event below.



Made from data acquired by both NASA’s Solar Dynamics Observatory (SDO) and the joint ESA/NASA SOHO spacecraft, the video was compiled by astronomer and sungrazing comet specialist Karl Battams. It shows views of the huge filament before and after detaching from the Sun, and gives a sense of the enormous scale of the event.

At one point the plasma eruption spanned a distance over 33 times farther than the Moon is from Earth!

Filaments are long channels of solar material contained by magnetic fields that have risen up from within the Sun. They are relatively cooler than the visible face of the Sun behind them so they appear dark when silhouetted against it; when seen rising from the Sun’s limb they look bright and are called prominences.

When the magnetic field lines break apart, much of the material contained within the filaments gets flung out into space (a.k.a. a CME) while some gets pulled back down into the Sun. These events are fairly common but that doesn’t make them any less spectacular!

Also read: Watch the Sun Split Apart

This same particularly long filament has also been featured as the Astronomy Picture of the Day (APOD), in a photo captured on April 27 by Göran Strand.

For more solar news follow Karl Battams on Twitter.

Image credits: ESA/NASA/SOHO & SDO/NASA and the AIA science team.

*The Sun, being a mass of incandescent gas, doesn’t have a “surface” like rocky planets do so in this case we’re referring to its photosphere and chromosphere.



About 

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Share this:

Gravitational Anomalies of Mercury

Gravitational Anomalies of Mercury: APOD: 2015 May 5 - Gravitational Anomalies of Mercury


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 May 5



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: What's that under the surface of Mercury? The robotic MESSENGER spacecraft that had been orbiting planet Mercury for the past four years had been transmitting its data back to Earth with radio waves of very precise energy. The planet's gravity, however, slightly changed this energy when measured on Earth, which enabled the reconstruction of a gravity map of unprecedented precision. Here gravitational anomalies are shown in false-color, superposed on an image of the planet's cratered surface. Red hues indicate areas of slightly higher gravity, which in turn indicates areas that must have unusually dense matter under the surface. The central area is Caloris Basin, a huge impact feature measuring about 1,500 kilometers across. Last week, after completing its mission and running low on fuel, MESSENGER was purposely crashed onto Mercury's surface.

Tuesday, May 5, 2015

An Unexpected Aurora over Norway

An Unexpected Aurora over Norway: APOD: 2015 May 4 - An Unexpected Aurora over Norway


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 May 4


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Sometimes the sky lights up unexpectedly. A trip to northern Norway to photograph auroras was not going as well as hoped. It was now past midnight in Steinsvik, Troms, in northern Norway, and the date was 2014 February 8. Despite recent activity on the Sun, the skies were disappointing. Therefore, the astrophotographer began packing up to go. His brother began searching for a missing lens cap. When the sky suddenly exploded with spectacular aurora. Reacting quickly, a sequence detailing dramatic green curtains was captured, with the bright Moon near the image center, and the lens-cap seeking brother on the far right. The auroral flare lasted only a few minutes, but the memory of this event, the photographer speculates, will last much longer.

Sunday, May 3, 2015

Blue Tears and the Milky Way

Blue Tears and the Milky Way: APOD: 2015 April 24 - Blue Tears and the Milky Way


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 April 24


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Lapping at rocks along the shore of the Island of Nangan, Taiwan, planet Earth, waves are infused with a subtle blue light in this sea and night skyscape. Composed of a series of long exposures made on April 16 the image captures the faint glow from Noctiluca scintillans. Also known as sea sparkles or blue tears, the marine plankton's bioluminescence is stimulated by wave motion. City lights along the coast of mainland China shine beneath low clouds in the west but stars and the faint Milky Way still fill the night above. Over the horizon the galaxy's central bulge and dark rifts seem to echo the rocks and luminous waves.

Cluster and Starforming Region Westerlund 2

Cluster and Starforming Region Westerlund 2: APOD: 2015 April 25 - Cluster and Starforming Region Westerlund 2


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 April 25


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Located 20,000 light-years away in the constellation Carina, the young cluster and starforming region Westerlund 2 fills this cosmic scene. Captured with Hubble's cameras in near-infrared and visible light, the stunning image is a celebration of the 25th anniversary of the launch of the Hubble Space Telescope on April 24, 1990. The cluster's dense concentration of luminous, massive stars is about 10 light-years across. Strong winds and radiation from those massive young stars have sculpted and shaped the region's gas and dust, into starforming pillars that point back to the central cluster. Red dots surrounding the bright stars are the cluster's faint newborn stars, still within their natal gas and dust cocoons. But brighter blue stars scattered around are likely not in the Westerlund 2 cluster and instead lie in the foreground of the Hubble anniversary field of view.

Planetary Nebula Mz3: The Ant Nebula

Planetary Nebula Mz3: The Ant Nebula: APOD: 2015 April 26 - Planetary Nebula Mz3: The Ant Nebula


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 April 26


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Why isn't this ant a big sphere? Planetary nebula Mz3 is being cast off by a star similar to our Sun that is, surely, round. Why then would the gas that is streaming away create an ant-shaped nebula that is distinctly not round? Clues might include the high 1000-kilometer per second speed of the expelled gas, the light-year long length of the structure, and the magnetism of the star visible above at the nebula's center. One possible answer is that Mz3 is hiding a second, dimmer star that orbits close in to the bright star. A competing hypothesis holds that the central star's own spin and magnetic field are channeling the gas. Since the central star appears to be so similar to our own Sun, astronomers hope that increased understanding of the history of this giant space ant can provide useful insight into the likely future of our own Sun and Earth.

Massive Nearby Spiral Galaxy NGC 2841

Massive Nearby Spiral Galaxy NGC 2841: APOD: 2015 April 28 - Massive Nearby Spiral Galaxy NGC 2841


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 April 28


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: It is one of the more massive galaxies known. A mere 46 million light-years distant, spiral galaxy NGC 2841 can be found in the northern constellation of Ursa Major. This sharp view of the gorgeous island universe shows off a striking yellow nucleus and galactic disk. Dust lanes, small, pink star-forming regions, and young blue star clusters are embedded in the patchy, tightly wound spiral arms. In contrast, many other spirals exhibit grand, sweeping arms with large star-forming regions. NGC 2841 has a diameter of over 150,000 light-years, even larger than our own Milky Way and captured by this composite image merging exposures from the orbiting 2.4-meter Hubble Space Telescope and the ground-based 8.2-meter Subaru Telescope. X-ray images suggest that resulting winds and stellar explosions create plumes of hot gas extending into a halo around NGC 2841.

Across the Sun

Across the Sun: APOD: 2015 April 30 - Across the Sun


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 April 30


See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: A long solar filament stretches across the relatively calm surface of the Sun in this telescopic snap shot from April 27. The negative or inverted narrowband image was made in the light of ionized hydrogen atoms. Seen at the upper left, the magnificent curtain of magnetized plasma towers above surface and actually reaches beyond the Sun's edge. How long is the solar filament? About as long as the distance from Earth to Moon, illustrated by the scale insert at the left. Tracking toward the right across the solar disk a day later the long filament erupted, lifting away from the Sun's surface. Monitored by Sun staring satellites, a coronal mass ejection was also blasted from the site but is expected to swing wide of our fair planet.

M51: The Whirlpool Galaxy

M51: The Whirlpool Galaxy: APOD: 2015 May 2 - M51: The Whirlpool Galaxy


Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2015 May 2



See Explanation. Clicking on the picture will download the highest resolution version available.
Explanation: Follow the handle of the Big Dipper away from the dipper's bowl until you get to the handle's last bright star. Then, just slide your telescope a little south and west and you might find this stunning pair of interacting galaxies, the 51st entry in Charles Messier famous catalog. Perhaps the original spiral nebula, the large galaxy with well defined spiral structure is also cataloged as NGC 5194. Its spiral arms and dust lanes clearly sweep in front of its companion galaxy (right), NGC 5195. The pair are about 31 million light-years distant and officially lie within the angular boundaries of the small constellation Canes Venatici. Though M51 looks faint and fuzzy to the eye, deep images like this one can reveal striking colors and the faint tidal debris around the smaller galaxy