Monday, November 3, 2014

China’s Lunar Test Spacecraft Takes Incredible Picture of Earth and Moon Together

China’s Lunar Test Spacecraft Takes Incredible Picture of Earth and Moon Together:

by Nancy Atkinson on October 28, 2014


A unique view of the Moon and distant Earth from China's Chang’e-5 T1 lunar test flight. Image via Xinhua News and UnmannedSpaceflight.com.


A unique view of the Moon and distant Earth from China’s Chang’e-5 T1 lunar test flight. Image via Xinhua News and UnmannedSpaceflight.com.
The Chinese lunar test mission Chang’e 5T1 has sent back some amazing and unique views of the Moon’s far side, with the Earth joining in for a cameo in the image above. According to the crew at UnmannedSpaceflight.com the images were taken with the spacecraft’s solar array monitoring camera.

Add this marvelous shot to previous views of the Earth and Moon together.




A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.


A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.
The mission launched on October 23 and is taking an eight-day roundtrip flight around the Moon and is now journeying back to Earth. The mission is a test run for Chang’e-5, China’s fourth lunar probe that aims to gather samples from the Moon’s surface, currently set for 2017. Chang’e 5T1 will return to Earth on October 31.

The test flight orbit had a perigee of 209 kilometers and reached an apogee of about 380,000 kilometers, swinging halfway around the Moon, but did not enter lunar orbit.



A view of Earth on October 24, 2014 from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.


A view of Earth on October 24, 2014, from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.
See original images at Xinhua News.

H/T: Cosmic_Penguin and Unmanned Spaceflight.

Just In Time for Halloween: Jupiter Gets a Giant Cyclops Eye!

Just In Time for Halloween: Jupiter Gets a Giant Cyclops Eye!:



Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)


Jupiter’s Great Red Spot and Ganymede’s Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)
Halloween is just around the corner. And in what appears to be an act of cosmic convergence, Hubble captured a spooky image of Jupiter staring back at us with a cyclops eye!

While this is merely a convenient illusion caused by the passage of Ganymede in front of Jupiter – something it does on a regular basis – the timing and appearance are perfect.

The above image, however, was captured by the Hubble Space Telescope on April 21st, 2014, when kids were perhaps thinking of the Easter Bunny, not monsters and goblins. At the time, Hubble was being used to monitor changes in Jupiter’s immense Great Red Spot (GRS) storm.

During the exposures, the shadow of the Jovian moon Ganymede swept across the center of the GRS, giving the giant planet the uncanny appearance of having a pupil in the center of its 16,000 km-diameter (10,000-mile) “eye.”

The conjunction was so perfect, scientists at the NASA Goddard Space Flight Center claimed that “For a moment, Jupiter ‘stared’ back at Hubble like a one-eyed giant Cyclops.”



Thermal images of Jupiter's Great Red Spot. Image credit: NASA/JPL/ESO and NASA/ESA/GSFC


Thermal images of Jupiter’s Great Red Spot. Image credit: NASA/JPL/ESO and NASA/ESA/GSFC
First observed by Italian astronomer Gian Domenico Cassini in 1665, the GRS is a massive anticyclonic storm that lies 22° south of Jupiter’s equator and is believed to have a lifetime of 300 to 400 years.

The storm has apparently been shrinking over the past few decades – to the point that astronomers believe that it could become circular by the year 2040 and even disappear altogether someday.

Nevertheless, its existence continues to fascinate and inspire. And as the above image demonstrates, it can still catch us by surprise!

The above image was one of several natural-color pictures taken by Hubble’s Wide Field Camera 3.

Further Reading: HubbleSite



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Breaking: Antares Rocket Explodes at Liftoff

Breaking: Antares Rocket Explodes at Liftoff:



Seconds after liftoff, Orbital Science’s Antares rocket exploded as it rose from the Mid-Atlantic Regional Spaceport at Wallops Island, Virginia. In video, the explosion appeared to come at the base of the rocket. The entire stack then fell back to the ground, with a second larger explosion.

According to NASA TV, there were no injuries reported at the launch site but there appears to be damage to the launch pad.

We’ll provide more information and updates as they become available. NASA and Orbital said they would be scheduling a news conference. Our Ken Kremer is on location at Wallops.

Photo of #Antares rocket exploding just after launch from @NASA_Wallops on Wallops Island, VA. Rocket unmanned. #nasa pic.twitter.com/3jMSYgp6mc

— Eduardo A. Encina (@EddieInTheYard) October 28, 2014
This is the first launch failure for NASA’s commercial space companies. Antares has had five successful launches. The launch was originally scheduled for Oct. 27 but was scrubbed when a boat entered restricted waters off the coast from the launch site.

The mission, was the third of eight Commercial Resupply Services missions that Orbital Sciences is under contract to NASA. The Cygnus capsule, named by Orbital the “SS Deke Slayton” after the late astronaut, was carrying 2,290 kilograms of cargo for the International Space Station.


© nancy for Universe Today, 2014. |
Permalink |
No comment |


Post tags: , , ,


Feed enhanced by Better Feed from Ozh

Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere

Cassini Probe Spots Methane Ice Crystals In Titan’s Atmosphere:



This cloud in the stratosphere over Titan’s north pole (left) is similar to Earth’s polar stratospheric clouds (right). NASA scientists found that Titan’s cloud contains methane ice, which was not previously thought to form in that part of the atmosphere. Cassini first spotted the cloud in 2006. Credit: L. NASA/JPL/U. of Ariz./LPGNantes; R. NASA/GSFC/M. Schoeberl


This cloud in the stratosphere over Titan’s north pole (left) is similar to Earth’s polar stratospheric clouds (right). NASA scientists found that Titan’s cloud contains methane ice, which was not previously thought to form in that part of the atmosphere. Cassini first spotted the cloud in 2006. Credit:
L. NASA/JPL/U. of Ariz./LPGNantes; R. NASA/GSFC/M. Schoeberl


During its 2006 flyby of Titan, the Cassini Space Probe captured some of the most detailed images of Saturn’s largest moon. Amongst them was one showing the lofty cloud formations over Titan’s north pole (shown above). Interestingly enough, these cloud formations bear a strong resemblance to those that are seen in Earth’s own polar stratosphere.


However, unlike Earth’s, these clouds are composed entirely of liquid methane and ethane. Given Titan’s incredibly low temperatures – minus 185 °C (-300 °F) – it’s not surprising that such a dense atmosphere of liquid hydrocarbons exists, or that seas of methane cover the planet.

What is surprising, however, is the fact that methane crystals also exist in this atmosphere. Eight years after the photos of Titan’s north pole were taken, astronomers have concluded that this region also contains trace amounts of methane ice.


“The idea that methane clouds could form this high on Titan is completely new,” said Carrie Anderson, a Cassini participating scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study. “Nobody considered that possible before.”

Other stratospheric clouds had been identified on Titan already, including clouds of ethane – a chemical formed after methane breaks down. Delicate clouds of cyanoacetylene and hydrogen cyanide, which form from reactions of methane byproducts with nitrogen molecules, have also been found there.

But clouds of frozen methane were thought unlikely in Titan’s stratosphere. Because the troposphere traps most of the moisture, stratospheric clouds require extreme cold. Even the stratosphere temperature of minus 203 °C (-333 °F), observed by Cassini just south of the equator, was not cold enough to allow the scant methane in this region of the atmosphere to condense into ice.



A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute


A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
What Anderson and her Goddard co-author, Robert Samuelson, noted is that temperatures in Titan’s lower stratosphere are not the same at all latitudes. This was based on data taken from Cassini’s Composite Infrared Spectrometer and the spacecraft’s radio science instrument, which showed that the high-altitude temperature near the north pole was much colder than that just south of the equator.

It turns out that this temperature difference – as much as 6 °C (11 °F) – is more than enough to yield methane ice.

Other observations made of Titan’s cloud system support this conclusion, such as how certain regions appear denser than others, and the larger particles detected are the right size for methane ice. They also confirmed that the expected amount of methane – 1.5%, which is enough to form ice particles – is present in the lower polar stratosphere.

What’s more, the observation confirms certain models of how Titan’s atmosphere is thought to work.

According to this model, Titan has a global circulation pattern in which warm air in the summer hemisphere wells up from the surface and enters the stratosphere, slowly making its way to the winter pole. There, the air mass sinks back down, cooling as it descends, which allows the stratospheric methane clouds to form.

“Cassini has been steadily gathering evidence of this global circulation pattern, and the identification of this new methane cloud is another strong indicator that the process works the way we think it does,” said Michael Flasar, Goddard scientist and principal investigator for Cassini’s Composite Infrared Spectrometer (CIRS).

Like Earth’s stratospheric clouds, Titan’s methane cloud was located near the winter pole, above 65 degrees north latitude. Anderson and Samuelson estimate that this type of cloud system – which they call subsidence-induced methane clouds (or SIMCs for short) – could develop between 30,000 to 50,000 meters (98,000 to 164,000 feet) in altitude above Titan’s surface.

“Titan continues to amaze with natural processes similar to those on the Earth, yet involving materials different from our familiar water,” said Scott Edgington, Cassini deputy project scientist at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “As we approach southern winter solstice on Titan, we will further explore how these cloud formation processes might vary with season.”

The results of this study are available online in the November issue of Icarus.

Further Reading: NASA/GSC



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Here’s What it Looks Like When a Refrigerator Hits the Moon

Here’s What it Looks Like When a Refrigerator Hits the Moon:



The impact site of the LADEE spacecraft is clear to see. Actually not really. One must compare to LROC images of the same site photographed before and after the impact to locate it. Click on the image to view the animated gif holding the pair of images. (Photo Credits: NASA/GSFC/LROC)


The impact site of the LADEE spacecraft is clear to see. Actually, not really. One must compare two LROC images of the same site photographed before and after the impact to locate it. Click on the image to view the animated gif holding the pair. Image dimensions: approx. 223 x 125 meters (Photo Credits: NASA/GSFC/LROC)
Ever wonder what your refrigerator’s impacting at the speed of a tank artillery shell would do to the Moon? The Lunar Reconnaissance Orbiter’s (LRO) primary camera has provided an image of just such an event when it located the impact site of another NASA spacecraft, the Lunar Atmosphere and Dust Environment Explorer (LADEE). The fridge-sized LADEE spacecraft completed its final Lunar orbit on April 18, 2014, and then crashed into the far side of the Moon. LADEE ground controllers were pretty certain where it crashed but no orbiter had found it until now. With billions of craters across the lunar surface, finding a fresh crater is a daunting task, but a new method of searching for fresh craters is what found LADEE.

(...)
Read the rest of Here’s What it Looks Like When a Refrigerator Hits the Moon (1,256 words)


© Tim Reyes for Universe Today, 2014. |
Permalink |
No comment |


Post tags: , , ,


Feed enhanced by Better Feed from Ozh

Double Disc Found Feeding Each Other In Binary Star System

Double Disc Found Feeding Each Other In Binary Star System:



This wide-field view shows the sky around the young multiple star system GG Tauri, which appears very close to the centre of this picture. This view also shows a dust cloud and evidence of star formation near the top of the picture. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin


This wide-field view shows the sky around the young multiple star system GG Tauri, which appears very close to the centre of this picture. This view also shows a dust cloud and evidence of star formation near the top of the picture. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin
Deep within the Taurus Dark Cloud complex, one of the closest star-forming regions to Earth has just revealed one of its secrets – an umbilical cord of gas flowing from the expansive outer disc toward the interior of a binary star system known as GG Tau-A. According to the ESO press release, this never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago.

A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used the Atacama Large
Millimeter/submillimeter Array (ALMA) to observe the distribution of
dust and gas in the unusual GG Tau-A system. Since at least half of
Sun-like stars are the product of binary star systems, these type of
findings may produce even more fertile grounds for discovering
exoplanets. However, the 450 light year distant GG Tau system is even more complex than previously thought. Through observations taken with the VLTI, astronomers have discovered its primary star – home to the inner disc – is part of a more involved multiple-star system. The secondary star is also a close binary!

“We may be witnessing these types of exoplanetary systems in the midst of formation,” said Jeffrey Bary, an astronomer at Colgate University in Hamilton, N.Y., and co-author of the paper. “In a sense, we are learning why these seemingly strange systems exist.”

Let’s take a look…



This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.


This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.
“Like a wheel in a wheel, GG Tau-A contains a large, outer disc
encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter.” says the research team. “Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.”

Thanks to studies done with ALMA, the researchers made an exciting discovery in these disc structures… gas clumps located between the two. This observation could mean that material is being fed from the outer disc to feed the inner. Previously observations done with ALMA show that a single star pulls its materials inward from the outer disc. Is it possible these gas pockets in the double disc GG Tau-A system are creating a sustaining lifeline between the two?

“Material flowing through the cavity was predicted by computer
simulations but has not been imaged before. Detecting these clumps
indicates that material is moving between the discs, allowing one to
feed off the other,” explains Dutrey. “These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation.”

As we know, planets are created from the materials leftover from
stellar ignition. However, the creation of a solar system occurs at a snail’s pace, meaning that a debris disc with longevity is required for planet formation. Thanks to these new “disc feeding” observations from ALMA, researchers can surmise that other multiple-star systems behave in a similar manner… creating even more possibilities for exoplanet formation.

“This means that multiple star systems have a way to form planets, despite their complicated dynamics. Given that we continue to find interesting planetary systems, our observations provide a glimpse of the mechanisms that enable such systems to form,” concludes Bary.

During the initial phase of planetary searches, the emphasis was placed on Sun-like, single-host stars. Later on, binary systems gave rise to giant Jupiter-sized planets – nearly large enough to be stars on their own. Now the focus has turned to pointing our planetary discovery efforts towards individual members of multiple-systems.

Emmanuel Di Folco, co-author of the paper, concludes: “Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation.”

Original Story Source: Planet-forming Lifeline Discovered in a Binary Star System ALMA Examines Ezekiel-like “Wheel in a Wheel” of Dust and Gas – ESO Science News Release.



About 

Tammy is a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status.

This Dark Nebula Looks Like it is Writhing in Agony

This Dark Nebula Looks Like it is Writhing in Agony:

by Nancy Atkinson on October 29, 2014


LBN 438 is a dark nebula and can be found in the constellation Lacerta. Credit and copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona.


LBN 438 is a dark nebula and can be found in the constellation Lacerta. Credit and copyright: Adam Block/Mount Lemmon SkyCenter/University of Arizona.
We’ve got at least one scary night ahead with Halloween falling on Friday. Adam Block, manager at the Mount Lemmon SkyCenter at the University of Arizona sent us this image of the nebula LBN 438, explaining that this dark cloud of dust glows eerily both from scattered starlight and extended red emission due to the radiation of a nearby star.

“My mind alternates between something dancing in ecstasy or writhing in torture,” Adam said. “Either way, very spooky…”


Adam just happens to have access to a 32-inch Schulman Telescope (RCOS) at Mt Lemmon, and used a SBIG STX16803 CCD Camera to get this scary shot. Find out more about this image here.

Mercury Pierces the Zodiacal Light at Dawn this Weekend

Mercury Pierces the Zodiacal Light at Dawn this Weekend:



Credit: Stellarium


Mercury as seen from latitude 30 degrees north on November 1st, 40 minutes prior to sunrise. Credit: Stellarium.
Psst! Ever spy the planet Mercury? The most bashful of all the naked eye planets makes its best dawn appearance of 2014 this weekend for northern hemisphere observers. And not only will Mercury be worth getting up for, but you’ll also stand a chance at nabbing that most elusive of astronomical phenomena — the zodiacal light — from a good dark sky sight.

DST note: This post was written whilst we we’re visiting Arizona, a land that, we’re happy to report, does not for the most part observe the archaic practice of Daylight Saving Time. Life goes on, zombies do not arise, and trains still run on time. In the surrounding world of North America, however, don’t forget to “fall back” one hour on Sunday morning, November 2nd. I know, I know. Trust me, we didn’t design the wacky system we’re stuck with today. All times noted below post-shift reflect this change, but it also means that you’ll have to awaken an hour earlier Sunday November 2nd onwards to begin your astronomical vigil for Mercury!



Oct21 to Nov14. Created using Starry Night Education Software.


The apparent daily path of Mercury as seen from 30 degrees north from October 21st to November 14th. Created using Starry Night Education Software.
Mercury starts the month of November reaching greatest elongation on Saturday, November 1st at 18.7 degrees west of the Sun at 13:00 Universal Time UT/09:00 EDT. Look for Mercury about 10 degrees above the eastern horizon 40 minutes before sunrise. The planet Jupiter and the stars Denebola and Regulus make good morning guideposts to trace the line of the ecliptic down to the horizon to find -0.3 magnitude Mercury.



Mars, Mercury and the International Space Station.


Mars, Mercury and the International Space Station caught during an evening apparition in 2013. (Photo by author)
Sweeping along the horizon with binoculars, you may just be able to spy +0.2 magnitude Arcturus at a similar elevation to the northwest. The +1st magnitude star Spica also sits to Mercury’s lower right. Mercury passes 4.2 degrees north of Spica on November 4th while both are still about 18 degrees from the Sun, making for a good study in contrast.

Later in the month, the old waning crescent Moon will present a challenge as it passes 2.1 degrees north of Mercury on November 21st, though both will only be 9 degrees from the Sun on this date.

Mercury also passes 1.6 degrees south of Saturn November 26th, but both are only 7 degrees from the Sun and unobservable at this point. But don’t despair, as you can always watch all of the planetary conjunction action via SOHO’s sunward staring LASCO C3 camera, which has a generous 15 degree field of view.



Credit: NASA/ESA/SOHO


Mercury (the bright ‘star’ with spikes) transits SOHO’s LASCO C3 camera. Credit: NASA/ESA/SOHO.
At the eyepiece, Mercury starts off the month of November as a 57% illuminated gibbous disk about 7” in diameter. This will change to a 92% illuminated disk 5″ across on November 15th, as the planet races towards superior conjunction on the far side of the Sun on December 8th. As with Venus, Mercury always emerges in the dawn sky as a crescent headed towards full phase, and the cycle reverses for both planets when they emerge in the dusk sky.

Why aren’t all appearances of Mercury the same? Mercury orbits the Sun once every 88 days, making greatest elongations of Mercury far from uncommon: on average, we get three dawn and three dusk apparitions of the innermost world per year, with a maximum of seven total possible. Two main factors come into play to assure that not all appearances of Mercury are created equal.



Credit: NASA


A depiction of the evening motion of Mercury and Venus as seen from Earth. Credit: NASA.
One is the angle of the ecliptic, which is the imaginary plane of our solar system that planets roughly follow traced out by the Earth’s orbit. In northern hemisphere Fall, this angle is at its closest to perpendicular at dawn, and the dusk angle is most favorable in the Spring. In the southern hemisphere, the situation is reversed. This serves to place Mercury as high as possible out of the atmospheric murk during favorable times, and shove it down into near invisibility during others.

The second factor is Mercury’s orbit. Mercury has the most elliptical orbit of any planet in our solar system at a value of 20.5% (0.205), with an aphelion of 69.8 million kilometres and perihelion 46 million kilometres from the Sun. This plays a more complicated role, as an elongation near perihelion only sees the planet venture 18.0 degrees from the Sun, while aphelion can see the planet range up to 27.8 degrees away. However, this distance variation also leads to noticeable changes in brightness that works to the advantage of Mercury spotters in the opposite direction. Mercury shines as bright as magnitude -0.3 at closer apparitions, to a full magnitude fainter at more distant ones at +0.7.

In the case of this weekend, greatest elongation for Mercury occurs just a week after perihelion, which transpired on October 25th.



earlier 2014 Curiousity


Mercury transits the Sun earlier this year as captured by the Curiosity rover on Mars. Credit: NASA/JPL.
Mercury is also worth keeping an eye on in coming years, as it will also transit the Sun for the first time since 2006 on May 9th, 2016. This will be visible for Europe and North America. We always thought it a bit strange that while rarer transits of Venus have yet to make their sci-fi theatrical debut, a transit of Mercury does crop up in the film Sunshine.

The first week of November is also a fine time to try and spy the zodiacal light. This is a cone-shaped glow following the plane of the ecliptic, resulting from sunlight backscattered across a dispersed layer of interplanetary dust. The zodiacal light was a common sight for us from the dark skies of Arizona, often rivaling the distant glow of Tucson over the mountains. The zodiacal light vanished from our view after moving to the humid and often light polluted U.S. East Coast, though we’re happy to report that we can once again spy it as we continue to traverse the U.S. southwest this Fall.



The zodiacal light captured by Cory Schmitz over the Drakensberg Mountains in South Africa.


The zodiacal light captured by Cory Schmitz over the Drakensberg Mountains in South Africa. (Used with permission). 
None other than rock legend Brian May of Queen fame wrote his PhD dissertation on the zodiacal light and the distribution and relative velocity of dust particles along the plane of the solar system. Having a dark site and a clear flat horizon is key to nabbing this bonus to your quest to cross Mercury off your life list this weekend!



About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.

Possible Bright Supernova Lights Up Spiral Galaxy M61

Possible Bright Supernova Lights Up Spiral Galaxy M61:



An animation showing a comparison between the confirmation image (at top) and an archive photo. Credit: Ernesto Guido, Martino Nicolini, Nick Howes


An animation showing the new supernova in the galaxy M61 photographed on October 30, 2014, paired with an older archive photo Credit: Ernesto Guido, Martino Nicolini, Nick Howes
I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible in smaller telescopes. It was discovered at magnitude +13.6 on October 29th by Koichi Itagaki of Japan, a prolific hunter of supernovae with 94 discoveries or co-discoveries to his credit. Itagaki used a CCD camera and 19.6-inch (0.50-m) reflector to spy the new star within one of the galaxy’s prominent spiral arms. Comparison with earlier photos showed no star at the position. Itagaki also nabbed not one but two earlier supernovae in M61 in December 2008 and November 2006.



The possible supernova in the bright galaxy M61 in Virgo is located 40" east and 7" south of the galaxy's core at right ascension (RA) 12 h 22', declination (Dec) +4º 28' It's currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes


The possible supernova in the bright galaxy M61 in Virgo is located 40″ east and 7″ south of the galaxy’s core at right ascension (RA) 12 h 22′, declination (Dec) +4º 28′. It’s currently magnitude +13.4 and visible in the morning sky before dawn in 8-inch and larger telescopes. Credit: Ernesto Guido, Martino Nicolini, Nick Howes
Overnight, Ernesto Guido and crew used a remote telescope in New Mexico to confirm the new object. We’re still waiting for a spectrum to be absolutely sure this is the real deal and also to determine what type of explosion occurred. In the meantime, it may well brighten in the coming mornings.



M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It's one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson


M61 is a beautiful barred spiral galaxy located about 55 million light years from Earth in the constellation Virgo. It’s one of the few galaxies to show spiral structure in smaller telescopes. Credit: Hunter Wilson
Supernovae are divided into two broad categories – Type Ia and Type II. In a Type Ia event,  a planet-sized white dwarf star in close orbit around a normal star siphons off matter from its companion which builds up on the surface of the dwarf until it reaches critical mass at which point the core ignites and consumes itself and the star in one titanic nuclear fusion reaction.  A cataclysmic explosion ensues as the star self-destructs in blaze of glory.



Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild


Evolution of a Type Ia supernova. Credit: NASA/ESA/A. Feild
Type Ia explosions can become 5 billion times brighter than the Sun – the reason we can see them across so many light years – and eject matter into space at 5,000 – 20,000 km/second. Type II events mark the end of the life of a massive supergiant star. As these behemoths age, they burn by fusing heavier and heavier elements in their cores from hydrogen to carbon to silicon and finally, iron-nickel. Iron is inert and can’t be cooked or fused to create more energy. The star’s internal heat source, which has been staving back the force of gravity all these millions of years, shuts down.  Gravity takes hold with a vengeance, the star quickly collapses then rebounds in a titanic explosion. Ka-boom!



Artist's impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO


Artist’s impression of a Type II supernova explosion which involves the destruction of a massive supergiant star. Credit: ESO
Like the Type Ia event, a Type II supernova grows to fantastic brilliance. Besides a legacy of radiant light, star debris, the creation of heavy elements like gold and lead, a Type II event will sometimes leave behind a tiny, city-sized, rapidly-spinning neutron star – the much compressed core of the original star – or even a black hole. So yes, life can continue for a giant star after a supernova event. But like seeing a former classmate at your 40th high school reunion, you’d hardly recognize it.



The "Y" or cup of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) and 5 a.m. starting Sunday when Daylight Saving Time is done. Source: Stellarium


The “Y” or “cup” of Virgo rises into good view shortly before the start of dawn or about 2 hours before sunrise. This map shows the sky facing east around 6 a.m. local time (DST) tomorrow October 31 and 5 a.m. standard time starting Sunday when Daylight Saving Time ends. Source: Stellarium
Are you itching to see this new supernova for yourself? Here are a couple maps to help you find it. M61 is located in the middle of the “Y” of Virgo not far from the familiar bright double star Gamma Virginis.  From many locations, the galaxy climbs to 15-20° altitude in the east-southeast sky just before the start of dawn, just high enough for a good view. Once you find the galaxy, look for a small “star” superimposed on its eastern spiral arm as shown in the photo at the top of this article.



In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Source: Stellarium


In this close up view, stars are shown to magnitude +7.5. M61 is right between 16 and 17 Virginis (magnitudes 5 and 6.5 respectively). Click to enlarge.  Source: Stellarium
I’ll be out there with my scope watching and will report back once it’s established what type of supernova happens to be blowing up in our eyepieces. More information about the new object can be found anytime at David Bishop’s Latest Supernovae site. Good luck, clear skies!

** Update Nov. 1 : M61’s supernova now has a name and type! SN 2014dt is a Type Ia (exploding white dwarf) with some peculiarities in its spectrum. It’s also little brighter at magnitude +13.2.



About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.

Antares Launch Calamity Unfolds – Dramatic Photo Sequence

Antares Launch Calamity Unfolds – Dramatic Photo Sequence:



Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News
NASA WALLOPS FLIGHT FACILITY, VA – The first night launch of Orbital Sciences’ commercial Antares rocket suddenly ended in total calamity some 10 seconds or so after liftoff when the base of the first stage exploded without warning over the launch pad at NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site.Check out my raw video of the launch – here. Read my first hand account- here.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away with a completely clear view to the launch complex.

A prime suspect in the disaster could be the pair Soviet-era built and US modified AJ26 engines that power the rocket’s first stage.

Another AJ26 engine failed and exploded during acceptance testing on May 22, 2014 at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Scoences was conducted to clear this pair for flight.

See my exclusive photo of the AJ-26 engines below and a follow up story shortly.



Ignition of Orbital Sciences Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Ignition of Orbital Sciences’ Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
It was a picture perfect evening.

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.



Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com


Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
The highly anticipated 1st night launch of Antares would have wowed tens of millions of spectators up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed Orb-3 mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply flight dubbed Orb-3 bound for the International Space Station (ISS).



Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer - kenkremer.com


Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
The investigation into the launch failure will be led by Orbital Sciences.

“The root cause will be determined and corrective actions taken,” Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, said at a post launch briefing.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer



About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

BREAKING: Virgin Galactic’s SpaceShipTwo Suffers ‘In-flight Anomaly,’ Crashes in Test Flight

BREAKING: Virgin Galactic’s SpaceShipTwo Suffers ‘In-flight Anomaly,’ Crashes in Test Flight:



Feathered Flight during Virgin Galactic's SpaceShipTwo's third powered flight on January 10, 2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.


Feathered Flight during Virgin Galactic’s SpaceShipTwo’s third powered flight on January 10, 2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.
According to reports on Twitter, Virgin Galactic’s SpaceShipTwo exploded in midflight, and debris was seen scattered on ground in the Mojave Desert in California. Virgin tweeted that the rocket plane suffered an “in-flight anomaly” during a powered test flight on Friday. Other witnesses said it involved a fatal explosion and crashed.

“The ship broke apart and started coming down in pieces over the desert,” tweeted Doug Messier (@spacecom), managing editor of the Parabolic Arc website.

The Associated Press is now reporting that the California Highway Patrol reports 1 fatality, 1 major injury after the SpaceShipTwo accident.

Virgin Galactic provided this statement via Twitter:

Virgin Galactic’s partner Scaled Composites conducted a powered test flight of #SpaceShipTwo earlier today. During the test, the vehicle suffered a serious anomaly resulting in the loss of SpaceShipTwo. WK2 (WhiteKnightTwo) landed safely. Our first concern is the status of the pilots, which is unknown at this time. We will work closely with relevant authorities to determine the cause of this accident and provide updates ASAP.
Virgin Galactic initially sent the news via this tweet:

#SpaceShipTwo has experienced an in-flight anomaly. Additional info and statement forthcoming.

— Virgin Galactic (@virgingalactic) October 31, 2014
News helicopters are now on site, providing views of the crash site, such as the one in this tweet:

News helicopter found #SpaceShipTwo. Thinking of the pilots and hoping they are ok. pic.twitter.com/Ngkk3Eh0hU

— Joe McWilliams (@doughyjoey5) October 31, 2014
The ABC News affiliate in California reported the rescue crew was seen “carrying person on stretcher to chopper.”

Doug Messier, who was onsite at Mojave for the test flight, also said via Twitter that he saw one of the crash sites and a “body still in seat.” Also that “Debris from the ship was scattered all over the road.”

SpaceShipTwo holds two pilots; they are each equipped with parachutes, but not ejection seats. Reports indicated at least one deployed parachute was sighted.

Other witnesses reported that SpaceShipTwo exploded after ignition of the engines. According to Spaceflightnow.com, SpaceShipTwo was making its first powered flight since January and was testing a redesigned nylon-based solid rocket motor. This was the 55th flight of SpaceShipTwo and its 35th free flight.

You can read a detailed look at this new engine, how and why it was developed, etc. in an article posted just yesterday by Doug Messier on Parabolic Arc.

Update: The FAA has now issued this statement:

Just after 10 a.m. PDT today, ground controllers at the Mojave Spaceport lost contact with SpaceShipTwo, an experimental space flight vehicle. The incident occurred over the Mojave Desert shortly after the space flight vehicle separated from WhiteKnightTwo, the vehicle that carried it aloft. Two crew members were on board SpaceShipTwo at the time of the incident. WhiteKnightTwo remained airborne after the incident. The FAA is investigating.
The National Transportation Safety Board (NTSB) tweeted that they are going “to send Go-Team to investigate Virgin Galactic test flight crash in Mojave, Calif.”

Update: According to the Kern County Sheriff’s spokesman, the co-pilot was killed, but pilot ejected and suffered moderate to major injuries in Virgin Galactic crash. Virgin Galactic did not provide information prior to the flight of who would be on board today’s test flight.

We’ll provide more updates as they become available.

Hubble Spots the Ghostly Light From Dead Galaxies

Hubble Spots the Ghostly Light From Dead Galaxies:



Hubble Frontier Fields view of Abell 2744


In a patch of sky 3.5 billion light-years away there are hazy elliptical galaxies, colorful spirals, blue arcs and distorted shapes seen clumping together. It’s the result of a vast cosmic collision that took place over the course of 350 million years.

The mess is a treasure trove of information for astronomers, allowing them to piece together the history of a cosmic pile-up of multiple galaxy clusters.

But now astronomers are digging through the nearby darkness. They’re eyeing the remnant stars that were cast adrift in intergalactic space. These stars should emit a faint glow known as intracluster light that — until now — has mostly remained a subject of speculation.

Mireia Montes and Ignacio Trujillo, both from the University of La Laguna, Spain, have used the Hubble Space Telescope to observe the aforementioned cluster, Abel 2744, in exquisite detail. The cluster has already earned the nickname Pandora’s Cluster for its violent past.

The team looked at both visible and near-infrared color images of the cluster, and then split these color images by brightness. This allowed Montes and Trujillo to pinpoint the color of the cluster’s faintest glow and therefore glean the ghost stars’ age, chemical content, and total mass.

Compared to stars within the cluster’s galaxies, the ghost stars emit bluer light and are therefore rich in heavier elements like oxygen, carbon, and nitrogen. So the scattered stars must be second- or third-generation stars enriched by previous supernovae. But they’re still between three and nine billion years younger than the stars within the cluster’s galaxies.

The team estimates that the combined light of about 100 billion outcast stars contributes approximately six percent of the cluster’s brightness.

But how did the stars get thrown from their respective galaxies in the first place? This new forensic evidence suggests that violent collisions tore apart between four and six Milky Way-size galaxies, scattering their stars into intergalactic space.

“The Hubble data revealing the ghost light are important steps forward in understanding the evolution of galaxy clusters,” said Trujillo in a news release. “It is also amazingly beautiful in that we found the telltale glow by utilizing Hubble’s unique capabilities.”

Abell 2744 is only one target in Hubble’s Frontier Fields program, which will map five more galaxy clusters in superb detail.

The results have been published in the Astrophysical Journal and are available online.



About 

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.