Thursday, October 23, 2014

How NASA and SpaceX are Working Together to Land on Mars

How NASA and SpaceX are Working Together to Land on Mars:

Thermal imagery of Falcon 9 rocket. Image Credit: NASA/Scifli Team/Applied Physics Laboratory Images


Thermal imagery of Falcon 9 rocket. Image Credit: NASA/Scifli Team/Applied Physics Laboratory Images
It is no secret that NASA is seeking out private space contractors to help bring some of its current plans to fruition. Naturally, these involve restoring indigenous launch capabilities to the US, but also include the more far-reaching goal of sending astronauts to Mars. Towards that end, NASA and SpaceX participated in an unprecedented data-sharing project that will benefit them both.

The project took place on Sept. 21st when, after multiple attempts, NASA and the U.S. Navy used a series of IR tracking cameras to capture footage of one of SpaceX’s Falcon 9 reusable rockets in flight. The cameras recorded the rocket as the second stage engine ignited and the first stage,  having detached and fallen away, reignited its engines to lower itself  back to Earth for a zero-g touchdown on the sea surface.

The resulting data is being shared between the two parties and will benefit them both.

For SpaceX, the benefit comes in the form of the detailed information NASA is providing on temperatures and aerodynamic loading on the Falcon 9 rocket, which will help them in their efforts to develop a reusable rocket system. For NASA, engineers are getting a chance to collect data on supersonic retro-propulsion that may one day help them to lower massive, multi-ton payloads onto the surface of Mars.

“Because the technologies required to land large payloads on Mars are significantly different than those used here on Earth, investment in these technologies is critical,” said Robert Braun, principal investigator for NASA’s Propulsive Descent Technologies (PDT) project and professor at the Georgia Institute of Technology in Atlanta. He’s also NASA former Chief Technologist. “This is the first high-fidelity data set of a rocket system firing into its direction of travel while traveling at supersonic speeds in Mars-relevant conditions. Analysis of this unique data set will enable system engineers to extract important lessons for the application and infusion of supersonic retro-propulsion into future NASA missions.”

Supersonic retro-propulsion basically means generating supersonic thrust to shed velocity after atmospheric entry. Alongside aerobraking, this is one of the proposed means of landing heavy equipment and habitats on Mars.

Braun is certainly no stranger to the concept. After returning to Georgia Tech, Braun – a specialist in entry, descent and landing (EDL) – worked with engineers from the university and various NASA centers to develop a proposal for a program to flight-test this concept.

At the time, NASA’s Space Technology Mission Directorate (STMD) rejected the plan for being too expensive, but the agency still needs a way to land payloads in excess of 20 tons if ever it wants to mount a human expedition to Mars. And given that the proposed mission is due to take place within the next 16 years, the more information they obtain now, the better.

In Depth: The Mars Landing Approach: The Problems of Landing Large Payloads on the Surface of Mars

Hence the decision to partner with SpaceX. Basically, the PDT Project struck a deal to use airborne infrared-imaging techniques – developed to study the Space Shuttle in flight after the Columbia accident – to gather data on the supersonic retro-propulsion SpaceX is currently using for its reusable launch vehicle development.

This sort of collaboration is without precedent, and as Braun told Universe Today via email, stands to benefit both participants immensely:

“This is the first high-fidelity data set of a rocket system firing into its direction of travel while traveling at supersonic speeds in Mars-relevant conditions. The synergy between NASA’s interest in improving its Mars entry, descent and landing capability and Space X’s interest and experimental operation of a reusable space transportation system provided a unique opportunity to obtain this data at low cost. Analysis of this unique data set will enable system engineers to extract important lessons for the infusion of supersonic retropropulsion into future NASA missions that may one day lower large payloads to the Mars surface while providing SpaceX with engineering insight to advance its development of a reusable space transportation system.”
After unsuccessful attempts to image the rocket on two previous missions – April 18 and July 14 – the project succeeded with the CRS-4 flight on Sept. 21st. Launched at night, NASA relied on two aircraft –  a WB-57 and a NP-3D Orion – equipped with mid-wave IR sensors to document re-entry of the rocket’s first stage.

The first stage is the part of the rocket that is ignited at launch and burns through the rocket’s ascent until it runs out of propellant, at which point it is discarded from the second stage and returns to Earth. It was during its return, or descent, that NASA captured quality infrared and high definition images and monitored changes in the smoke plume as the engines were turned on and off.

Watch the video of the footage:



For NASA, the period of the flight most relevant for future operations over Mars came when the first stage was traveling at about Mach 2 some 30,000 – 45,000 meters (100,000-150,000 ft.) above the surface. The two midwave IR sensors – mounted in a nose pod on the WB-57 and internally on the NP-3D – were about 60 nautical miles from the rocket when it reignited its engines for supersonic retro-propulsion.

That produced raw images in which the stage appeared 1 pixel wide and 10 pixels long, but subsequent enhancing by specialists at the Johns Hopkins University Applied Physics Laboratory improved the resolution dramatically.

“NASA’s interest in building our Mars entry, descent and landing capability and SpaceX’s interest and experimental operation of a reusable space transportation system enabled acquisition of these data at low cost, without standing up a dedicated flight project of its own,” said Charles Campbell, PDT project manager at NASA’s Johnson Space Center in Houston.

Engineers at NASA and SpaceX are now correlating that data with company telemetry from the Sept. 21st Falcon 9 launch of a Dragon cargo carrier to the International Space Station to learn exactly what the vehicle was doing in terms of engine-firing and maneuvering when it generated the signatures collected by the aircraft.

Further Reading: NASA



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Mr. Fusion? Compact Fusion Reactor Will be Available in 5 Years Says Lockheed-Martin

Mr. Fusion? Compact Fusion Reactor Will be Available in 5 Years Says Lockheed-Martin:

Could the future of fusion driven rockets for interplantary or even interstellar travel be near at hand? Engineers at the Lockheed-Martin Skunk Works believe they will have a compact fusion reactor prototype operational in five years and in use within 10 years. (Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus)


Could the future of fusion driven rockets for interplantary or even interstellar travel be near at hand? Engineers at the Lockheed-Martin Skunk Works believe they will have a compact fusion reactor prototype operational in five years and in use within 10 years. (Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus)
The Farnsworth Fusor; Pons and Fleishmann. It seems the trail to fusion energy has long gone cold — stone cold, that is, and not cold as in cold fusion. Despite the promise of fusion providing a sustainable and safe energy source, fusion reactors are not a dime a dozen and they won’t be replacing coal fired power plants any time soon. Or will they? Lockheed-Martin Skunk Works announced a prototype compact fusion reactor that could be ready within five years. This revelation has raised eyebrows and sparked moments of enthusiasm.

But, let’s considers this story and where it all fits in both the history and future.


For every Skunk Works project that has made the runway such as the Stealth Fighter or SR-71 Blackbird, there are untold others that never see the light of day. This adds to the surprise and mystery of Lockheed-Martin’s willingness to release images and a detailed narrative describing a compact fusion reactor project. The impact that such a device would have on humanity can be imagined … and at the same time one imagines how much is unimaginable.

Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the worlds first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought "breakeven" point. (Photo Credit: Lockheed-Martin)


Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the world’s first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought “breakeven” point. (Photo Credit: Lockheed-Martin)
The program manager of the Skunk Works’ compact fusion reactor experiment is Tom Maguire. Maguire and his team places emphasis on the turn-around time for modifying and testing the compact fusion device. With the confidence they are expressing in their design and the ability to quickly build, test and modify, they are claiming only five years will be needed to reach a prototype.

What exactly the prototype represents was left unexplained, however. Maguire continues by saying that in 10 years, the device will be seen in military applications and in 20 years it will be delivered to the world as a replacement for the dirty energy sources that are in use today. Military apps at 10 years means that the device will be too expensive initially for civilian operations but such military use would improve performance and lower costs which could lead to the 20 year milestone moment if all goes as planned.

Their system uses magnetic confinement, the same basic principle behind the tokamak toroidal plasma confinement system that has received the greatest attention and government funding for over 50 years.

The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)


The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)
The International Thermonuclear Experimental Reactor (ITER) is currently under construction in Europe under the assumption that it will be the first net energy producing fusion generator ever. It is funded by the European Union, India, Japan, People’s Republic of China, Russia, South Korea and the United States. But there are cost over-runs and its price has gone from $5 billion to $50 billion.

ITER is scheduled to begin initial testing in 2019 about the time Lockheed-Martin’s compact fusion reactor prototype is expected. If Lockheed-Martin succeeds in their quest, they will effectively have skunked ITER and laid to waste a $50 billion international effort at likely 1/1000th the cost.

There are a few reasons Lockheed-Martin has gone out on a limb. Consider the potential. One ton of Uranium used in Fission reactors has as much energy as 1,500 tons of coal. But fission reactors produce radioactive waste and are a finite resource without breeder reactors, themselves a nuclear proliferation risk. Fusion produces 3 to 4 times more energy per reaction than fission. Additionally, the fuel — isotopes of hydrogen — is available from sea water — which is nearly limitless — and the byproducts are far less radioactive than with fission. Fusion generators once developed could provide our energy needs for millions of years.

More pragmatically, corporations promote their R&D. They are in a constant state of competition. They present a profile that ranges from the practical to the cutting edge to instill confidence in their Washington coffers. Furthermore, their competitors have high profile individuals and projects. A fusion project demonstrates that Lockheed-Martin is doing more than creating better mouse-traps.

To date, no nuclear fusion reactor has achieved breakeven. This is when the fusion device outputs as much energy as is input to operate it. Magnetic confinement such as the various tokamak designs, Lawrence Livermore’s laser-based inertial confinement method, and even the simple Philo Farnsworth Fusor can all claim to be generating energy from fusion reactions. They are just all spending more energy than their devices output.

An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)


An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)
The fusor, invented in the 1960s by Farnsworth and Hirsh, is a electrostatic plasma confinement system. It uses electric fields to confine and accelerate ions through a central point at which some ions will collide with sufficient energy to fuse. Although the voltage needed is readily achieved by amateurs – about 4000 volts – not uncommon in household devices, no fusor has reached breakeven and theoretically never will. The challenge to reaching breakeven involves not just energy/temperature but also plasma densities. Replicating conditions that exist in the core of stars in a controllable way is not easy. Nevertheless, there is a robust community of “fusioneers” around the world and linked by the internet.

Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorian in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)


Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorean in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)
It remains to be seen who, what and when a viable fusion reactor will be demonstrated. With Lockheed-Martin’s latest announcement, once again, fusion energy is “just around the corner.” But many skeptics remain who will quickly state that commercial fusion energy remains 50 years in the future. So long as Maguire’s team meets milestones with expected performance improvements, their work will go on. The potential of fusion energy remains too great to dismiss categorically.

Source: Lockheed-Martin Products Page, Compact Fusion



About 

Contributing writer Tim Reyes is a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992. He has an M.S. in Space Plasma Physics from University of Alabama, Huntsville.

Stunning View of Solar Systems Largest Volcano and Valles Marineris Revealed by India’s Mars Orbiter Mission

Stunning View of Solar Systems Largest Volcano and Valles Marineris Revealed by India’s Mars Orbiter Mission:

Olympus Mons, Tharsis Bulge and Valles Marineris from from ISRO's Mars Orbiter Mission. Credit: ISRO


Olympus Mons, Tharsis Bulge trio of volcanoes, and Valles Marineris from ISRO’s Mars Orbiter Mission. Note the clouds and south polar ice cap. Credit: ISRO
India’s Mars Orbiter Mission (MOM) has delivered another sweet treat – a stunning view of our Solar System’s largest volcano and the largest canyon.

Just days ago, MOM captured a new global image of the Red Planet dominated by Olympus Mons and Valles Marineris – which is the largest known volcano and the largest known canyon in the Solar System, respectively.

Situated right in between lies a vast volcanic plateau holding a trio of huge volcanoes comprising the Tharsis Bulge: Arsia Mons, Pavonis Mons, and Ascraeus Mons. All four volcanoes are shield volcanoes.

To give an idea of its enormity, Olympus Mons stands about three times taller than Mount Everest and is about the size of Arizona.

Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA


Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA
Olympus Mons is located in Mars’ western hemisphere and measures 624 kilometers (374 miles) in diameter, 25 km (16 mi) high, and is rimmed by a 6 km (4 mi) high scarp.

Valles Marineris is often called the “Grand Canyon of Mars.” It spans about as wide as the entire United States.

The Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter released the image on Oct. 17, barely two days ahead of the planet’s and spacecrafts’ extremely close encounter with comet Siding Spring.

By the way, a relieved ISRO tweeted MOM’s survival of her close shave with the once-in-a-lifetime cometary passage with gusto, soon after the swingby:

“Phew! Experience of a lifetime. Watched the #MarsComet #SidingSpring whizzing past the planet. I’m in my orbit, safe and sound.”

The new global image was taken by the tri-color camera as MOM swooped around the Red Planet in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km, according to ISRO.

To date ISRO has released four global images of the Red Planet, including a 3-D view, reported here.

Olympus Mons, the Tharsis Bulge, and Valles Marineris are near the equator.

Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet, is as much as 600 km wide, and measures as much as 7 kilometers (4 mi) deep.

Here’s a comparison view of the region taken by NASA’s Viking 1 orbiter in the 1970s.

Global Mosaic of Mars Centered on Valles Marineris


Global Mosaic of Mars Centered on Valles Marineris from NASA’s Viking 1 orbiter. Credit: NASA
MOM is India’s first deep space voyager to explore beyond the confines of her home planet’s influence and successfully arrived at the Red Planet only one month ago after the “history creating” orbital insertion maneuver on Sept. 23/24 following a ten month journey.

The $73 million MOM mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities that have launched probes that successfully investigated Mars – following the Soviet Union, the United States, and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014. Credit: ISRO


ISRO’s Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74,500 km on Sept. 28, 2014. Credit: ISRO


About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

No, This Is Not a Photo of India on Diwali

No, This Is Not a Photo of India on Diwali:

Yes, it's India, but it's not a photo captured from space during Diwali night. (Credit: NASA)


Yes, it’s India, but it’s not a photo captured from space during Diwali night. (Credit: NOAA)
Diwali, the Indian festival of lights, falls on Thursday, Oct. 23 this year and with it come celebrations, gift-giving, and brilliant lighting and firework displays all across the subcontinent of India… but this isn’t a picture of that. What is it exactly? Find out below…

Over the past several years this image has repeatedly resurfaced online, especially around the time of Diwali. And understandably so: it’s a beautiful view of India seemingly decorated for the festival… one can easily imagine the entire country awash in colorful lights from shore to shore.

But it’s not a photo at all, or even a singular image. Rather it’s a composite of many images acquired from a USAF Defense Meteorological Satellite Program (DMSP) satellite over the course of several years, and assembled by NOAA scientist Chris Elvidge to show the country’s growing population and urban areas.

In a 2012 article by Robert Johnson on Business Insider a NASA spokesperson described the colors in the image: “The white lights were the only illumination visible before 1992. The blue lights appeared in 1992. The green lights in 1998. And the red lights appeared in 2003.”

So what does India look like at night during the five-day-long Diwali festival? Click here and see.

While city lighting in India is definitely visible from space, it’s not the rainbow explosion of neon colors that Internet hoaxers and uninformed online enthusiasts would eagerly have you believe. According to Adam Voiland on the NASA Earth Observatory site, “in reality, any extra light produced during Diwali is so subtle that it is likely imperceptible when observed from space.”

So this year, don’t fall for any false descriptions of this picture… and, Happy Diwali!

Sources: Business Insider, Mashable, NASA Earth Observatory, EarthSky. Read more about the 2014 celebration of Diwali here.

HT to Peter Caltner on Twitter for re-alerting me of this.



About 

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

X-Ray Telescope Cracks Open Archives, Comes Up With Gassy Black Hole Gem

X-Ray Telescope Cracks Open Archives, Comes Up With Gassy Black Hole Gem:

by Elizabeth Howell on October 22, 2014
Six images that combine Chandra data with those from other telescopes. Credit: X-ray: NASA/CXC/SAO, Optical: NASA/STScI, Radio: NSF/NRAO/VLA).


Six images that combine Chandra data with those from other telescopes. Credit: X-ray: NASA/CXC/SAO, Optical: NASA/STScI, Radio: NSF/NRAO/VLA).
What a gem! This huge black hole in the middle of Hercules A is making gas around it super-heated to millions of degrees, making it shine brightly in X-Rays. The Chandra X-Ray Telescope captured the scene and in a new data release this week, telescope officials cracked open the archives to give us gems such as this.

The release comes as a part of American Archives Month, where every year Chandra officials go through the archives and pull out old Chandra data, combining it with the work of other telescopes to get as much information as possible about the objects being studied.

Chandra is one of three NASA “Great Observatories” still active, with the other two being the Hubble Space Telescope and the Spitzer Space Telescope. It’s been in operation now for more than 15 years.

You can see the six new pictures below. To read more about each of these objects, head on over to this link.

Six photos released from the Chandra X-Ray Observatory's archive in October 2014. Credit: NASA/CXC/SAO


Six photos released from the Chandra X-Ray Observatory’s archive in October 2014. Credit: NASA/CXC/SAO


About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Beastly Sunspot Amazes, Heightens Eclipse Excitement

Beastly Sunspot Amazes, Heightens Eclipse Excitement:

Ron Cottrell captured the sunspot group 2192 in all its swirly magnetic goodness in hydrogen-alpha light on October 19. To appreciate its size, he included the Earth (lower left) for reference. Credit: Ron Cottrell


Ron Cottrell captured the sunspot group 2192 in all its swirly magnetic goodness in hydrogen-alpha light on October 19. To appreciate its size, he included the Earth (lower left) for reference. Credit: Ron Cottrell
That’s one big, black blemish on the Sun today! Rarely have we been witness to such an enormous sunspot. Lifting the #14 welder’s glass to my eyes this morning I about jumped back and bumped into the garage.

Properly shielded, it was very easy to see with the naked eye. Unlike some other naked eye sunspots, this one showed structure. The eastern end was darker, the western half grayer and more extended.


Watch the giant spot rotate into view and grow right before your eyes in this 72-hour time-lapse video taken by SOHO’s HMI imager Oct. 18-20, 2014

Through a small telescope, the mix of dark umbras scattered amid weirdly sculpted penumbral “islands” was incredible to see. Photographs like the one above are wonderful documents, but witnessing this beautiful complex magnetic mess with your own eyes is another experience altogether. Region 2192 continues to grow and size and complexity and is now the largest sunspot group of solar cycle 24 which began in 2009 – more than five years ago!

Active region 2192 is now the largest sunspot group to appear in over five years. Credit: Alex Young


Active region 2192 is now the largest sunspot group to appear in over five years. Compare to Jupiter and the Earth. Credit: SDO/HMI/Alex Young
Every sunspot marks a region on the Sun’s shiny outer skin called the photosphere where magnetic energy is concentrated. Strong magnetic fields within a sunspot group quell the turbulent churning of the photosphere, chilling the region by several thousand degrees. Sunspots appear dark against the Sun’s blazing disk because they’re cooler. Cooler meaning 8,000 F instead of 11,000 F, so yes, they’re still VERY hot.


Watch as Region 2192 crackles with energy and flares as seen in far ultraviolet light with NASA’s Solar Dynamics Observatory.

Energy stored in sunspots’ twisted magnetic fields can suddenly be released in violent, explosions called solar flares. Billions of tons of solar plasma – the sizzling mix of protons and electrons that composes the Sun – are heated to millions of degrees during the explosion and rapidly accelerated into space. Radiation from radio waves to X-rays and gamma rays fans out at the speed of light. Fortunately for us, our atmosphere and planetary magnetic field protect us from most of what flares can fling our way.

NASA's Solar Dynamics Observatory took this photo of the sun and Jupiter-sized sunspot 2192 this morning Oct. 22 at 8:45 a.m. CDT. The view in a small telescope equipped with a safe solar filter is even better! Credit: NASA


NASA’s Solar Dynamics Observatory took this photo of the Sun and Jupiter-sized sunspot region 2192 this morning Oct. 22 at 8:45 a.m. CDT. The view in a small telescope equipped with a safe solar filter is even better! Credit: NASA
But as the Sun rotates this monster into our line of sight, possibilities for Earth-directed flares and coronal mass ejections increase as do geomagnetic storms, the bringer of auroras. Already in the past 48 hours, the spot has dished out seven M-class flares and a powerful X-1 flare even before it has fully come into view.  There’s more to come – Region 2192 harbors an unstable beta-gamma-delta magnetic field ripe for additional flaring including more of the X-class variety.

The sun on October 21 showing smaller sunspot regions along with our featured group. Credit: Sarah and Simon Fisher


The Sun on October 21 showing smaller sunspot regions along with our featured group. Credit: Sarah and Simon Fisher
There’s no doubt now that this behemoth will stick around to add a whole new dimension to tomorrow’s partial solar eclipse. I can’t wait to see the Moon’s black curve approach and at least partially occult the group from view. If you’re interested in getting some one-of-a-kind pictures of the scene, please see our own Dave Dickinson’s excellent guide on photographing the partial eclipse.

A sliver of a Moon rises in morning twilight today October 22 just a day away from its appointment with the Sun. Credit: Bob King


A sliver of a Moon rises in morning twilight today October 22 just a day away from its appointment with the Sun. Credit: Bob King
While we’re on the Moon, early morning risers had the pleasure of its company just one day before New Moon and solar eclipse. I was out watching the Orionid meteor shower. While not rich like the Perseids or Geminids I managed to catch a few including a few lucky shots with the camera.

An Orionid meteor slashes across the top of the frame directly above the constellation Orion early this morning October 22, 2014. Details: 24mm lens, f/2.8, 30-seconds at ISO 1600. Credit: Bob King


An Orionid meteor slashes across the top of the frame directly above the constellation Orion early this morning October 22, 2014. Details: 24mm lens, f/2.8, 30-seconds at ISO 1600. Credit: Bob King
The shower has peaked but will still be active the remainder of the week if you’re inclined to take a look. And I can’t resist. How about one last sweet close-up photo of sunspot group 2192? I have a feeling you won’t mind.

Monster Sunspot AR12192 taken by Karzaman Ahmad on October 21, 2014 from Langkawi Nagtional Observatory, Malaysia credit: Karzaman Ahmad and shared at spaceweather.com


Monster Sunspot AR12192 taken by Karzaman Ahmad on October 21, 2014, from Langkawi Nagtional Observatory, Malaysia. Credit: Karzaman Ahmad and shared at spaceweather.com. Click the image to see additional animations and photos on Alex Young’s site


About 

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. Every day the universe offers up something both beautiful and thought-provoking. I also write a daily astronomy blog called Astro Bob.

Is Dark Matter Coming From The Sun?

Is Dark Matter Coming From The Sun?:

A huge filament erupts from the Sun in 2012. Credit: NASA Goddard Space Flight Center


A huge filament erupts from the Sun in 2012. Credit: NASA Goddard Space Flight Center
For decades, astronomers and cosmologists have postulated that the Universe is filled with an invisible, mysterious mass known as “dark matter.” For decades, the search for this elusive matter has dominated the field of cosmology. Precise measurements were obtained over 20 years ago when dark matter was first mapped in galaxy halos. Only recently has the existence of dark matter over much larger scales than even galaxy clusters been detected.

Recently, a group of physicists analyzed over 12 years’ worth of telescope data, and have found a signal that some think could be the first detection of a source of dark matter.

And it appears to be coming from … our Sun.

Distribution of dark matter when the Universe was about 3 billion years old, obtained from a numerical simulation of galaxy formation. The left panel displays the continuous distribution of dark matter particles, showing the typical wispy structure of the cosmic web, with a network of sheets and filaments, while the right panel highlights the dark matter halos representing the most efficient cosmic sites for the formation of star-bursting galaxies with a minimum dark matter halo mass of 300 billion times that of the Sun. Credit: VIRGO Consortium/Alexandre Amblard/ESA


Distribution of dark matter when the Universe was about 3 billion years old, obtained from a numerical simulation of galaxy formation. Credit: VIRGO Consortium/Alexandre Amblard/ESA
Using information obtained from the European Space Agency observatory, astronomers from the University of Leicester found variations in a stream of X-rays emanating from the Sun that match what would be expected if axions – a hypothetical dark-matter particle – were interacting with Earth’s magnetic field. If confirmed, the axion finding would be a huge discovery.

Axions were originally proposed to explain an anomaly in a different area of physics – the theory of the strong nuclear force, one of the four fundamental forces of nature. These uncharged, very light particles would be created in the Sun’s core and would barely interact with ordinary matter, which would allow them to zip through thousands of kilometers of solar plasma and escape into outer space.

But the axions that interacted with magnetic fields, such as the one that surrounds Earth, would be expected to turn into X-ray photons. Those photons are the particles the researchers say they may have seen.

The team found that as the European space telescope XMM-Newton (also called the X-ray Multi-Mirror Mission) passed through the strong magnetic field on the Sun-side of Earth, it saw a slightly more intense X-ray signal than when it was on the far side of Earth. Discounting known sources of X-rays, the background signal should be the same wherever the spacecraft is, according to the Leicester team.

In their 67-page paper, which was submitted in March of this year and appeared in this month’s issue of Monthly Notices of the Royal Astronomical Society, the researchers did their best to rule out more mundane phenomena – such as interaction between the solar wind and Earth’s magnetic field – before invoking axions as a source.

Axions interacting with Earth's magnetic field to form x-rays. Credit: University of Leicester


Axions interacting with Earth’s magnetic field to form x-rays, as detected by the ESA’s XMM-Newton probe. Credit: University of Leicester
One unusual aspect of this analysis is that it shows XMM-Newton picking up the X-ray photons, even though it is not looking straight into the Sun but at a right angle to it. This is odd because the photons are generally expected to continue in the same direction as the axions they were created from.

But the authors say that the axions could be scattered and end up in the telescope. The authors also show that hints of a similar signal can be found in data produced by NASA’s Chandra X-Ray Observatory, although a formal corroboration will take more data and years of analysis.

The concept of dark matter was first proposed by Jan Oort in 1932 to account for the orbital velocities of stars in the Milky Way, and then again by Fritz Zwicky in 1933 to account for evidence of “missing mass” in the orbital velocities of galaxies in clusters.

Dark matter has been widely studied, but much like the Higgs Boson, its existence was inferred despite a lack of direct evidence simply because it accounted for discrepancies in the observable data. According to consensus among cosmologists, dark matter could be composed primarily of a not yet characterized type of subatomic particle.

The leader of this most recent study, George Fraser  – an astronomer at the University of Leicester, UK – died just two days after he and his co-authors submitted the paper for publication. According to Andy Lawrence, an astronomer at the Institute for Astronomy in Edinburgh, UK, the study was Fraser’s “most astonishing swan song”.

Mike Watson, another astronomer at the University of Leicester (but who was not involved in the study), says that Fraser was an “exceptional scientist” and the mastermind behind the work. Even so, he expressed some skepticism towards the findings.

“The interpretation is quite appealing,” he said, “and on the human side of this is that we would all like it to be right, as it would be a great tribute to George. But that’s not how you do science.”

In addition, Fraser’s research team are not yet celebrating the publication of their findings, as there appears to be some anomalies in the data that has even them concerned.

“We found an unusual result that we can’t explain by any conventional method, and this axion theory does explain it,” said the study’s co-author Andy Read. “But it is just a hypothesis, and most hypotheses don’t make it.”

Others within the astronomical community are also not convinced that the axion interpretation is correct. Astronomer Peter Coles of the University of Sussex, UK, called the evidence “circumstantial.” In a post on his blog, “In the Dark”, he wrote, “It’s tantalising, but if you want to ask me where I’d put my money I’m afraid I’d probably go for messy local plasma physics rather than anything more fundamental.”

Still, the theory has its share of potential supporters. One such person is Igor Garcia Irastorza, who works on the CERN Axion Solar Telescope (CAST), based at the CERN physics laboratory near Geneva, Switzerland. He expressed that the idea was intriguing, but the kind of axion that would fit such a signal would clash with other astrophysical observations. And, as he said, the particles’ properties would have to be different than what has been theorized for decades.

Corroborating the Leicester findings will take cross-checks from other axion experiments that work in completely different ways to the telescopes, adds Konstantin Zioutas, who leads the CAST experiment. Only time will tell if a source of dark matter has been found, or if this is merely a hiccup in the ongoing search.

Further Reading: MNRAS
University of Leicester press release.



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Questioning the Impact Theory: What Really Killed the Dinosaurs?

Questioning the Impact Theory: What Really Killed the Dinosaurs?:

Which is the main culprit for the terminal Cretaceous extinction: the Chicxulub impact or Deccan Traps volcanism? Upper Image: Donald Davis, NASA JPL Lower Image: USGS


Which is the main culprit for the terminal Cretaceous extinction: the Chicxulub impact or Deccan Traps volcanism? Upper Image: Donald Davis, NASA JPL
Lower Image: USGS
About sixty five and a half million years ago, the Earth suffered its largest known cosmic impact. An asteroid or comet nucleus about 10 km in diameter slammed into what is now the Yucatan peninsula of Mexico. It gouged out a crater 180 to 200 km in diameter: nearly twice as large as the prominent crater Copernicus on Earth’s moon. But did this impact really cause the extinction of the dinosaurs and many other forms of life? Many earth scientists are convinced that it did, but some harbor nagging doubts. The doubters have marshaled a growing body of evidence for another culprit; the enormous volcanic eruptions that produced the Deccan Traps formation in India. The skeptics recently presented their case at a meeting of the Geological Society of America in Vancouver, Canada, on October 19.

The dinosaurs are the most well-known victims of the mass extinction event that ended the Cretaceous period. The extinction claimed almost all large vertebrates on land, at sea, or in the air, as well as numerous species of insects, plants, and aquatic invertebrates. At least 75% of all species then existing on Earth vanished in a short span in relation to the geological timescale of millions of years. The disaster is one of five global mass extinction events that paleontologists have identified over the tenure of complex life on Earth.

The hypothesis that the terminal Cretaceous extinction was caused by a cosmic impact has been the most popular explanation of this catastrophe among earth scientists and the public for several decades. It was proposed in 1980 by the father and son team of Luis and Walter Alvarez and their collaborators. The Alvarez team’s main line of evidence that an impact happened was an enrichment of the metal iridium in sediments dating roughly to the end of the Cretaceous. Iridium is rare in Earth’s crust, but common in meteorites. The link between iridium and impacts was first established by studies of the samples returned by the Apollo astronauts from the Moon.

Over the ensuing decades, evidence of an impact accumulated. In 1991, a team of scientists led by Dr. Alan Hildebrand of the Department of Planetary Sciences at Arizona University, published evidence of a gigantic buried impact crater, called Chicxulub, in Mexico. Other investigators found evidence of materials ejected by the impact, including glass spherules in Haiti and Mexico. Supporters of the impact hypothesis believe that vast amounts of dust hurtled into the stratosphere would have plunged the surface of the planet into the darkness and bitter cold of an “impact winter” lasting for at least months, and perhaps decades. Global ecosystems would have collapsed and mass extinction ensued. But, they’ve had a harder time finding evidence for these consequences than for the impact itself.

Doubters of the Alvarez hypothesis don’t question the ‘smoking gun’ evidence that an impact happened near the end of the Cretaceous, but they don’t think it was the main cause of the extinctions. For one thing, inferring the exact time of the impact from its putative geological traces has proved difficult. Dr. Gerta Keller of the Department of Geosciences of Princeton University, a prominent skeptic of the Alvarez hypothesis, has questioned estimates that make the impact and the extinctions simultaneous. Analyzing core samples taken from the Chicxulub crater, and glass spherule containing deposits in northeastern Mexico, she concludes that the Chicxulub impact preceded the mass extinction by 120,000 years and had little consequence for the fossil record of life in the geological formations which she studied. Of the five major mass extinction events in Earth’s history, she noted in a 2011 paper, none other than the terminal Cretaceous event has ever been even approximately associated with an impact. Several other large impact craters besides Chicxulub have been well studied by geologists and none is associated with fossil evidence of extinctions. On the other hand, four of the five major mass extinctions appear to have some connection with volcanic eruptions.

Keller and other Alvarez skeptics look to a major volcanic event that occurred towards the end of the Cretaceous as an alternate primary cause of the extinction. The Deccan Traps formation in central India is a plateau consisting of multiple layers of solidified lava 3500 m thick. Today, it extends over an area larger than all of France. It was once three times that large. It was formed in a series of three volcanic outbursts that may have been among the largest in Earth’s history. At the October conference, Dr. Theirry Adatte of the Institute of Earth Sciences at the University of Lausanne in France presented evidence that the second of these outbursts was by far the largest, and occurred over a period of 250,000 years prior to the end of the Cretaceous. During this period, 80% of the total lava thickness of the Deccan formation was deposited. The eruptions produced lava flows that may be the longest on Earth, extending more than 1500 km.

The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project


The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project
To illustrate the likely environmental consequences of such a super-eruption, Adatte invoked the worst volcanic catastrophe in human history. Over eight months from 1783-84 a major eruption in Laki, Iceland, deposited 14.3 square kilometers of lava and emitted an estimated 122 megatons of toxic sulfur dioxide into the atmosphere. About a quarter of the people and half of the livestock in Iceland died. Across Europe the sky was darkened by a pall of haze, and acid rain fell. Europe and America experienced the most severe winter in history and global climate was disrupted for a decade. Millions of people died from the resulting drought and famine. The Laki incident was nonetheless miniscule by comparison with the second Deccan Traps outburst, which produced 1.5 million square kilometers of lava and an estimated 6,500- 17,000 gigatons of sulfur dioxide.

The Deccan Traps eruptions would also have emitted immense quantities of carbon dioxide. Carbon dioxide is a heat trapping greenhouse gas responsible for the oven-like temperatures of the planet Venus. It is released by the burning of fossil fuels and plays a major role in human-caused global warming on Earth. Thus Geller surmised that the Deccan Traps eruptions could have produced both periods of intense cold due to sulfur dioxide haze, and intense heat due to carbon dioxide induced global warming.

At the October conference she presented the results of her studies of geological formations in Tunisia that preserved a high resolution record of climate change during the time of the main pulse of Deccan Traps volcanic activity. Her evidence shows that near the onset of the 250,000 year pulse, there was a ‘hyperthermal’ period of rapid warming that increased ocean temperatures by 3-4 degrees Celsius. She claimed that temperatures remained elevated through the pulse culminating with a second ‘hyperthermal’ warming of the oceans by an additional 4-5 degrees Celsius. This second hyperthermal warming occurred within a 10,000 year period of mega-eruptions, which corresponded with the terminal Cretaceous extinction. The Chicxulub impact occurred during the 250,000 year pulse, but well prior to the extinctions and the hyperthermal event.

The debate over the relative importance of the Chicxulub impact and the Deccan Trap volcanoes in producing the terminal Cretaceous extinction isn’t over. In May of this year, a team headed by Dr. Johan Vellekoop at the Department of Earth Sciences at Ulrecht University in the Netherlands published evidence of a geologically brief episode of cooling which they claim as the first direct evidence of an “impact winter”. Whatever the outcome of the debate, it seems clear that the end of the Cretaceous, with its super-volcanoes and giant impacts, was not a good time for life on Earth.

References and Further Reading:
J. Coffey (2009) The Asteroid that Killed the Dinosaurs, Universe Today.

I. O’Neill (2009) (Were the Dinosaurs Really Wiped Out by an Asteroid? Possibly Not (Update), Universe Today.

G. Keller (2012), The Cretaceous-Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism, Earth and Life, J.A. Talent, Editor, Springer Science and Business media.

E. Klemetti (2013) Local and global impacts of the 1783-84 Laki eruption in Iceland, Wired Science Blogs/Eruptions

J. Vellekoop et al. (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary, Proceedings of the National Academy of Sciences USA, 111(2) p. 7537-7541.



About 

Paul Patton is a freelance science writer. He holds a Bachelor's degree in physics from the University of Wisconsin Green Bay, a Master's degree in the history and philosophy of science from Indiana University, and a Doctorate in neuroscience from the University of Chicago. He has been interested in space, astronomy, and extraterrestrial life since early childhood.

Two Comet Groups Discovered Around Beta Pictoris

Two Comet Groups Discovered Around Beta Pictoris:

This artist’s impression shows exocomets orbiting the star Beta Pictoris. Credit: ESO/L. Cacada


This artist’s impression shows exocomets orbiting the star Beta Pictoris. Credit:
ESO/L. Cacada
Between the years 2003 and 2011, the High Accuracy Radial velocity Planet Searcher – better known as HARPS – made more than a thousand observations of nearby star, Beta Pictoris. On board the ESO 3.6-metre telescope at the La Silla Observatory in Chile, the sensitive instrument normally combs the sky nightly in search of exoplanets, but lately it has contributed to another astounding discovery… exocomets!

Located about 63 light-years from the Sun, Beta Pictoris is a youthful star, estimated to be only around 20 million years old. Keeping it company in space is a vast disc of material. This swarm of gas and dust is the beginnings of an active planetary system and was likely created by the destruction of comets and collisions of rocky bodies like asteroids. Now a French team using HARPS has been able to create the most complete catalog of comets to date from this system. Researchers have found no less than five hundred comets belonging to Beta Pictoris and they divide in two unique branches of exocomets. Split into both old and new, these two active flows behave much like our own cometary groups… They have either made many trips around the parent star or are the product of a recent breakup of one or more objects.

Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study, sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter's Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008 and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris. Credit: ESO/Sky Survey II


Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter’s Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc, and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008, and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris. Credit: ESO/Sky Survey II
Just like discovering planets through the transit method, astronomers believe exocomets can cause a disturbance in the amount of light we can see from a given star. When these icy travelers exhaust themselves, their gas and dust tails could absorb a portion of the star light passing through them. For nearly three decades scientists had been aware of minute changes in the light from Beta Pictoris, but attributing it to comets was next to impossible to prove. Their tiny light was simply overpowered by the light of the star and could not be imaged from Earth.

Enter HARPS…

Using more than a thousand observations taken by this sensitive equipment, astronomers chose a sample of 493 exocomets unrelated to each other, but sharing in the Beta Pictoris system. Of these, some were dutifully followed for hours at several different times. The size and speed of the gas clouds produced were carefully measured. Researchers were even able to document the orbital properties of some of these exocomets – the size and shape of their passage paths in relation to the parent star allowing scientists to infer their distances.

Knowing that comets exist around other stars is very exciting – and knowing that solar systems around other stars work much like our own is downright rewarding. Through this study, we’re able to take a unique look at what might be several hundreds of exocomets connected to a solitary exo-planet system. What the research has revealed is two distinct branches of the comet family tree. One of these is old comets – their orbit dictated by a single, massive planet. The other half of the family fork belongs to comets that might have arisen from the destruction of a larger object.

The older group behaves in a predictable manner. These exocomets have differing orbital patterns, and their gas and dust production is greatly reduced. If they follow the same rules as the ones in our solar system, it’s typical behavior for a comet which has exhausted its volatiles during multiple trips around the parent star and is also being controlled by the system’s massive planet. This is exciting because it confirms the planet’s presence and distance!

“Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped in orbital resonance with a massive planet.” says the science team. “The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star – close to where the planet Beta Pictoris b was discovered.”

The second group also behaves in a predictable manner. These exocomets have nearly identical orbits and their emissions are active and radical. Observations of this cometary type tell us they more than likely originated from the destruction of a larger body and the rubble is caught in a orbit which allows the fragments to graze Beta Pictoris. According to the research team: “This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.”

Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

Original Story Source: “Two Families of Comets Found Around Nearby Star – Biggest census ever of exocomets around Beta Pictoris” – ESO Science News Release



About 

Tammy is a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status.

The Physics Behind “Intellstellar’s” Visual Effects Was So Good, it Lead to a Scientific Discovery

The Physics Behind “Intellstellar’s” Visual Effects Was So Good, it Lead to a Scientific Discovery:

Image Credit: Paramount Pictures


Kip Thorne’s concept for a black hole in Interstellar. Credit: Paramount Pictures
While he was working on the film Interstellar, executive producer Kip Thorne was tasked with creating the black hole that would be central to the plot. As a theoretical physicist, he also wanted to create something that was truly realistic and as close to the real thing as movie-goers would ever see.

On the other hand, Christopher Nolan – the film’s director – wanted to create something that would be a visually-mesmerizing experience. As you can see from the image above, they certainly succeeded as far as the aesthetics were concerned. But even more impressive was how the creation of this fictitious black hole led to an actual scientific discovery.


In short, in order to accurately create a visual for the story’s black hole, Kip Thorne produced an entirely new set of equations which guided the special effects team’s rendering software. The end result was a visual representation that accurately depicts what a wormhole/black hole would look like in space.

Artist's conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library


Artist’s conception of the event horizon of a black hole. Credit: Victor de Schwanberg/Science Photo Library
This was no easy task, since black holes (as the name suggests) suck in all light around them, warp space and time, and are invisible to all but X-ray telescopes (due to the bursts of energy they periodically emit). But after a year of work by 30 people and thousands of computers, Thorne and the movie’s special effects team managed to create something entirely realistic.

Relying entirely on known scientific principles, the black hole appears to spin at nearly the speed of light, dragging bits of the universe along with it. Based on the idea that it was once a star that collapsed into a singularity, the hole forms a glowing ring that orbits around a spheroidal maelstrom of light, which seems to curve over the top and under the bottom simultaneously.

To simulate the accretion disk, the special effects team generated a flat, multicolored ring and positioned it around their spinning black hole. Then something very weird and inspiring happened.

McConaughey explores another world in Interstellar (top). Thorne’s diagram of how a black hole distorts light. Credit: Kip Thorne


Thorne’s diagram of how a black hole distorts light. Credit: Kip Thorne
“We found that warping space around the black hole also warps the accretion disk,” explained Paul Franklin, a senior supervisor of Academy Award-winning effects house Double Negative. “So rather than looking like Saturn’s rings around a black sphere, the light creates this extraordinary halo.”

The Double Negative team thought it must be a bug in the renderer. But Thorne realized that they had correctly modeled a phenomenon inherent in the math he’d supplied.

“This is our observational data,” he said of the movie’s visualizations. “That’s the way nature behaves. Period.” Thorne also stated that he thinks he can get at least two published articles out of it.

But more important than that is the fact that Thorne, a thoroughgoing scientist and lover of the mysteries of space and physics, has a chance to show a mass audience some real, accurate science.

The movie premiers in North America on November 7th.

Christopher Nolan and Kip Thorne explain the science behind creating the movie’s black hole.



Further reading: Wired



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Hubble Composite Picture Shows How Close Siding Spring Comet Was To Mars

Hubble Composite Picture Shows How Close Siding Spring Comet Was To Mars:

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA


Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
We’ve seen spectacular images of Comet Siding Spring from Mars spacecraft, showing just how close the small body was to the Red Planet when it whizzed by Sunday (Oct. 19). But how close were the two objects actually, in the sky? This Hubble Space Telescope composite image shows just how astoundingly near they were.

Above are two separate exposures taken Oct. 18-19 EDT (Oct. 18-20 UTC) against the same starry field image from another survey. It was a complicated shot to get, NASA explains, but it does serve as a powerful illustration of the celestial close encounter.

“This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet,” NASA stated.

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring's closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring’s closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona
“The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations.”

The two images were blended together in this single shot, showing their separation of 1.5 arc minutes (1/20 of the Moon’s apparent diameter.) The background stars comes from data from the Palomar Digital Sky Survey “reprocessed to approximate Hubble’s resolution”, NASA stated.

While the nucleus is too small to be imaged by Hubble, you can see what it looks like in the image above from the Mars Reconnaissance Orbiter. Siding Spring passed by the Red Planet at a distance of just 87,000 miles (140,000 km).

Source: NASA



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.