Saturday, August 5, 2017

Naval Research Laboratory Brightens Perspective of Mysterious Mini-Halos

Naval Research Laboratory Brightens Perspective of Mysterious Mini-Halos:



Image shows emission surrounding the Perseus Cluster (NGC 1275) from the 270-430 megahertz (MHz) radio map. In this image the main structures of the mini-halo are identified as: the northern extension; the two eastern spurs; the concave edge to the south; and the south-western edge and a plume of emission to the south-south-west. The small knob at the end of the western tail is the galaxy NGC 1272. The bar at top left shows a distance of 90 kpc or roughly 240,000 light years.




The largest gravitationally bound objects in the universe are galaxy clusters that form at the intersection of cosmic web filaments. These entities are shaped and grow through massive collisions as material streams into their gravitational pull. Within the heart of some galaxy clusters are mysterious and little known radio mini-halos. These rare, dispersed, and steep-spectrum (brighter at low frequencies) radio sources surround a bright central radio galaxy and are highly luminous at radio wavelengths.

Studying this phenomenon is Dr. Tracy Clarke, a radio astronomer at the U.S. Naval Research Laboratory (NRL) Radio Astrophysics and Sensing Section and co-author of research on the topic titled, "Deep 230-470 [megahertz] VLA Observations of the mini-halo in the Perseus Cluster." She works in conjunction with the National Radio Astronomy Observatory (NRAO), the research team uses the upgraded Karl G. Jansky Very Large Array (JVLA) to peer into the cluster of galaxies in the constellation Perseus, 250 million light-years from Earth.

"In 2011, an upgrade to the receivers on the JVLA sacrificed the observatory's capability for operation at frequencies between 30 MHz and 300 MHz," said Clarke. "However, in 2013 all 27 of the 25-meter antennas of the JVLA were outfitted with new receivers, providing the bandwidth necessary for these observations."

According to Clarke the Perseus cluster is one of the most massive objects in the known universe, containing thousands of galaxies immersed in a vast cloud of multimillion-degree gas and harbors a mini­halo. Mini-halo systems are thought to provide a window on the otherwise elusive turbulence driven by minor mergers between galaxy clusters and less massive systems.

Funded by NRL, the new broadband low frequency receivers have widened the VHF/UHF receiver bandwidth from 300-340 MHz to 230-470 MHz, significantly increasing the sensitivity of the telescope. The new JVLA facilities have also produced an order of magnitude of deeper image quality than previous high fidelity data, which lets the mini-halo emissions be seen clearly at the 270-430 MHz range.

“Overall, the recently upgraded JVLA has enabled a breakthrough in radio astronomy by providing a radio telescope with unprecedented sensitivity, resolution, and imaging capabilities," said Julie Hlavacek­ Larrondo, Universite de Montreal astrophysicist and a lead author of the paper. "The new JVLA images of the Perseus cluster demonstrate the unique and state-of-the-art capabilities that this telescope offers to the community."

The deep JVLA observations of the Perseus cluster, combined with the cluster's properties, offer researchers a unique opportunity to study mini-halo structures. Lead author Marie-Lou Gendron-Marsolais, Ph.D. student at Universite de Montreal notes, "The results demonstrate the sensitivity of the new low frequency JVLA receivers, as well as the necessity to obtain deeper, higher-fidelity radio images of mini­halos in clusters to trace complex structures and further understand their origin."

Recognizing the power of the new VHF/UHF receiver, NRL wanted to enhance the availability of this new resource. In 2014, NRL and NRAO researchers worked to develop the VLA Low Band Ionospheric and Transient Experiment (VLITE) to tap into the new broadband low frequency receivers and piggyback on the $300 million dollar infrastructure of the JVLA.

"The data stream from this new system can be tapped to expand our understanding of objects such as these mini-halos while at the same time providing real-time monitoring of ionospheric weather conditions over the U.S. southwest," Clarke said.

At present, VLITE is being further expanded (eVLITE) to more than double the number of baselines from the original 45 baselines to 104 and should be fully operational by the end of August 2017. The expansion, to date, has brought a total of 66 baselines to VLITE.

Astronomers use VLITE for a wide range of astrophysics, which includes exploring the sky for short­lived bursts of radio waves. This type of research continues to grow in importance, since a small number of such events have led astronomers to suspect still-undiscovered phenomena in the universe may be producing many such powerful bursts.

Credit: nrl.navy.mil

Our Solar System’s 'Shocking' Origin

Our Solar System’s 'Shocking' Origin:



The colors represent the relative amounts of short-lived radioactive isotopes, such as iron-60, injected into a newly formed protoplanetary disk (seen face on with the protostar being the light purple blob in the middle) by a supernova shock wave. Image courtesy of Alan Boss




According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star into a neighboring cloud of dust and gas, causing it to collapse in on itself and form the Sun and its surrounding planets.

New work from Carnegie’s Alan Boss offers fresh evidence supporting this theory, modeling the Solar System’s formation beyond the initial cloud collapse and into the intermediate stages of star formation. It is published by The Astrophysical Journal.

One very important constraint for testing theories of Solar System formation is meteorite chemistry. Meteorites retain a record of the elements, isotopes, and compounds that existed in the system’s earliest days. One type, called carbonaceous chondrites, includes some of the most-primitive known samples.

An interesting component of chondrites’ makeup is something called short-lived radioactive isotopes. Isotopes are versions of elements with the same number of protons, but a different number of neutrons. Sometimes, as is the case with radioactive isotopes, the number of neutrons present in the nucleus can make the isotope unstable. To gain stability, the isotope releases energetic particles, which alters its number of protons and neutrons, transmuting it into another element.

Some isotopes that existed when the Solar System formed are radioactive and have decay rates that caused them to become extinct within tens to hundreds of million years. The fact that these isotopes still existed when chondrites formed is shown by the abundances of their stable decay products—also called daughter isotopes—found in some primitive chondrites. Measuring the amount of these daughter isotopes can tell scientists when, and possibly how, the chondrites formed.

A recent analysis of chondrites by Carnegie’s Myriam Telus was concerned with iron-60, a short-lived radioactive isotope that decays into nickel-60. It is only created in significant amounts by nuclear reactions inside certain kinds of stars, including supernovae or what are called asymptotic giant branch (AGB) stars.

Because all the iron-60 from the Solar System’s formation has long since decayed, Telus’ research, published in Geochimica et Cosmochimica Acta, focused on its daughter product, nickel-60. The amount of nickel-60 found in meteorite samples—particularly in comparison to the amount of stable, “ordinary” iron-56—can indicate how much iron-60 was present when the larger parent body from which the meteorite broke off was formed. There are not many options for how an excess of iron-60—which later decayed into nickel-60—could have gotten into a primitive Solar System object in the first place—one of them being a supernova. 

While her research did not find a “smoking gun,” definitively proving that the radioactive isotopes were injected by a shock wave, Telus did show that the amount of Fe-60 present in the early Solar System is consistent with a supernova origin. 

Taking this latest meteorite research into account, Boss revisited his earlier models of shock wave-triggered cloud collapse, extending his computational models beyond the initial collapse and into the intermediate stages of star formation, when the Sun was first being created, an important next step in tying together Solar System origin modeling and meteorite sample analysis.

“My findings indicate that a supernova shock wave is still the most-plausible origin story for explaining the short lived radioactive isotopes in our Solar System,” Boss said.

Boss dedicated his paper to the late Sandra Keiser, a long-term collaborator, who provided computational and programming support at Carnegie’s Department of Terrestrial Magnetism for more than two decades. Keiser died in March.

New Horizons' Next Target Just Got a Lot More Interesting

New Horizons' Next Target Just Got a Lot More Interesting:



One artist’s concept of Kuiper Belt object 2014 MU69, the next flyby target for NASA’s New Horizons mission. This binary concept is based on telescope observations made at Patagonia, Argentina on July 17, 2017 when MU69 passed in front of a star. New Horizons theorize that it could be a single body with a large chunk taken out of it, or two bodies that are close together or even touching. Credits: NASA/JHUAPL/SwRI/Alex Parker




Could the next flyby target for NASA’s New Horizons spacecraft actually be two targets? New Horizons scientists look to answer that question as they sort through new data gathered on the distant Kuiper Belt object (KBO) 2014 MU69, which the spacecraft will fly past on Jan. 1, 2019. That flyby will be the most distant in the history of space exploration, a billion miles beyond Pluto.

The ancient KBO, which is more than four billion miles (6.5 billion kilometers) from Earth, passed in front of a star on July 17, 2017. A handful of telescopes deployed by the New Horizons team in a remote part of Patagonia, Argentina were in the right place at the right time to catch its fleeting shadow — an event known as an occultation – and were able to capture important data to help mission flyby planners better determine the spacecraft trajectory and understand the size, shape, orbit and environment around MU69. 

Based on these new occultation observations, team members say MU69 may not be not a lone spherical object, but suspect it could be an “extreme prolate spheroid” – think of a skinny football – or even a binary pair. The odd shape has scientists thinking two bodies may be orbiting very close together or even touching – what’s known as a close or contact binary – or perhaps they’re observing a single body with a large chunk taken out of it. The size of MU69 or its components also can be determined from these data. It appears to be no more than 20 miles (30 kilometers) long, or, if a binary, each about 9-12 miles (15-20 kilometers) in diameter.

“This new finding is simply spectacular. The shape of MU69 is truly provocative, and could mean another first for New Horizons going to a binary object in the Kuiper Belt,” said Alan Stern, mission principal investigator from the Southwest Research Institute (SwRI) in Boulder, Colorado. “I could not be happier with the occultation results, which promise a scientific bonanza for the flyby.” 

The July 17 stellar occultation event that gathered these data was the third of a historic set of three ambitious occultation observations for New Horizons. The team used data from the Hubble Space Telescope and European Space Agency’s Gaia satellite to calculate and pinpoint where MU69 would cast a shadow on Earth's surface. “Both of these space satellites were crucial to the success of the entire occultation campaign,” added Stern.

Said Marc Buie, the New Horizons co-investigator who led the observation campaign, "These exciting and puzzling results have already been key for our mission planning, but also add to the mysteries surrounding this target leading into the New Horizons encounter with MU69, now less than 17 months away.”

Credit: NASA

Two Weeks in the Life of a Sunspot

Two Weeks in the Life of a Sunspot:



A blended view of the sunspot in visible and extreme ultraviolet light reveals bright coils arcing over the active region — particles spiraling along magnetic field lines. Credit: NASA’s Goddard Space Flight Center/SDO



On July 5, 2017, NASA’s Solar Dynamics Observatory watched an active region — an area of intense and complex magnetic fields — rotate into view on the Sun. The satellite continued to track the region as it grew and eventually rotated across the Sun and out of view on July 17.

With their complex magnetic fields, sunspots are often the source of interesting solar activity: During its 13-day trip across the face of the Sun, the active region — dubbed AR12665 — put on a show for NASA’s Sun-watching satellites, producing several solar flares, a coronal mass ejection and a solar energetic particle event. Watch the video below to learn how NASA’s satellites tracked the sunspot over the course of these two weeks.

Such sunspots are a common occurrence on the Sun, but less frequent at the moment, as the Sun is moving steadily toward a period of lower solar activity called solar minimum — a regular occurrence during its approximately 11-year cycle. Scientists track such spots because they can help provide information about the Sun’s inner workings. Space weather centers, such as NOAA’s Space Weather Prediction Center, also monitor these spots to provide advance warning, if needed, of the radiation bursts being sent toward Earth, which can impact our satellites and radio communications. 

On July 9, a medium-sized flare burst from the sunspot, peaking at 11:18 a.m. EDT. Solar flares are explosions on the Sun that send energy, light and high-speed particles out into space — much like how earthquakes have a Richter scale to describe their strength, solar flares are also categorized according to their intensity. This flare was categorized as an M1. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength: An M2 is twice as intense as an M1, an M3 is three times as intense and so on.

Days later, on July 14, a second medium-sized, M2 flare erupted from the Sun. The second flare was long-lived, peaking at 10:09 a.m. EDT and lasting over two hours.

This was accompanied by another kind of solar explosion called a coronal mass ejection, or CME. Solar flares are often associated with CMEs — giant clouds of solar material and energy. NASA’s Solar and Heliospheric Observatory, or SOHO, saw the CME at 9:36 a.m. EDT leaving the Sun at speeds of 620 miles per second and eventually slowing to 466 miles per second.

Following the CME, the turbulent active region also emitted a flurry of high-speed protons, known as a solar energetic particle event, at 12:45 p.m. EDT.

Research scientists at the Community Coordinated Modeling Center — located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — used these spacecraft observations as input for their simulations of space weather throughout the solar system. Using a model called ENLIL, they are able to map out and predict whether the solar storm will impact our instruments and spacecraft, and send alerts to NASA mission operators if necessary.

By the time the CME made contact with Earth’s magnetic field on July 16, the sunspot’s journey across the Sun was almost complete. As for the solar storm, it took this massive cloud of solar material two days to travel 93 million miles to Earth, where it caused charged particles to stream down Earth’s magnetic poles, sparking enhanced aurora.

Credit: NASA

Primordial Black Holes May Have Helped to Forge Heavy Elements

Primordial Black Holes May Have Helped to Forge Heavy Elements:



Artist’s depiction of a neutron star. Credit: NASA




Astronomers like to say we are the byproducts of stars, stellar furnaces that long ago fused hydrogen and helium into the elements needed for life through the process of stellar nucleosynthesis. As the late Carl Sagan once put it: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff.” But what about the heavier elements in the periodic chart, elements such as gold, platinum and uranium?

Astronomers believe most of these “r-process elements”—elements much heavier than iron—were created, either in the aftermath of the collapse of massive stars and the associated supernova explosions, or in the merging of binary neutron star systems.

“A different kind of furnace was needed to forge gold, platinum, uranium and most other elements heavier than iron,” explained George Fuller, a theoretical astrophysicist and professor of physics who directs UC San Diego’s Center for Astrophysics and Space Sciences. “These elements most likely formed in an environment rich with neutrons.”

In a paper published August 7 in the journal Physical Review Letters, he and two other theoretical astrophysicists at UCLA—Alex Kusenko and Volodymyr Takhistov—offer another means by which stars could have produced these heavy elements: tiny black holes that came into contact with and are captured by neutron stars, and then destroy them.

Neutron stars are the smallest and densest stars known to exist, so dense that a spoonful of their surface has an equivalent mass of three billion tons.

Tiny black holes are more speculative, but many astronomers believe they could be a byproduct of the Big Bang and that they could now make up some fraction of the “dark matter”—the unseen, nearly non-interacting stuff that observations reveal exists in the universe.

If these tiny black holes follow the distribution of dark matter in space and co-exist with neutron stars, Fuller and his colleagues contend in their paper that some interesting physics would occur.

They calculate that, in rare instances, a neutron star will capture such a black hole and then devoured from the inside out by it. This violent process can lead to the ejection of some of the dense neutron star matter into space.

“Small black holes produced in the Big Bang can invade a neutron star and eat it from the inside,” Fuller explained. “In the last milliseconds of the neutron star's demise, the amount of ejected neutron-rich material is sufficient to explain the observed abundances of heavy elements.”

“As the neutron stars are devoured,” he added, “they spin up and eject cold neutron matter, which decompresses, heats up and make these elements.” This process of creating the periodic table’s heaviest elements would also provide explanations for a number of other unresolved puzzles in the universe and within our own Milky Way galaxy.

“Since these events happen rarely, one can understand why only one in ten dwarf galaxies is enriched with heavy elements,” said Fuller. “The systematic destruction of neutron stars by primordial black holes is consistent with the paucity of neutron stars in the galactic center and in dwarf galaxies, where the density of black holes should be very high.”

In addition, the scientists calculated that ejection of nuclear matter from the tiny black holes devouring neutron stars would produce three other unexplained phenomenon observed by astronomers.

“They are a distinctive display of infrared light (sometimes termed a “kilonova”), a radio emission that may explain the mysterious Fast Radio Bursts from unknown sources deep in the cosmos, and the positrons detected in the galactic center by X-ray observations,” said Fuller.

“Each of these represent long-standing mysteries. It is indeed surprising that the solutions of these seemingly unrelated phenomena may be connected with the violent end of neutron stars at the hands of tiny black holes.” Funding for this project was provided by the National Science Foundation (PHY-1614864) at UC San Diego and by the U.S. Department of Energy (DE-SC0009937) at UCLA. Alex Kusenko was also supported, in part, by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

Credit: ucsd.edu

Scientists Demonstrate First Space Quantum Communication Using a Microsatellite

Scientists Demonstrate First Space Quantum Communication Using a Microsatellite:



Artist's rendering of the SOCRATES satellite. Image Credit: AES




A team of researchers from the National Institute of Information and Communications Technology (NICT) in Tokyo, Japan, has recently reported that they succeeded in the demonstration of the first quantum communication between a microsatellite and a ground station. The signal was sent by a quantum-communication transmitter onboard the SOCRATES satellite.

The instrument, known as the Small Optical TrAnsponder, or SOTA, is the world's smallest and lightest quantum-communication transmitter. It has a mass of roughly 13.22 lbs. (6 kilograms) and its dimensions are 7 x 4.5 x 10.6 inches (17.8 x 11.4 x 26.8 centimeters). This shoebox-sized tool is capable of transmitting a laser signal to the ground at a rate of 10 million bits per second from an altitude of about 370 miles (600 kilometers) at a speed of approximately 15,660 mph.

SOTA was launched into space as part of the Space Optical Communications Research Advanced TEchnology Satellite (SOCRATES) microsatellite in May 2014. The mission’s main goal was to test a standard microsatellite bus technology applicable to missions of various purposes. SOTA has successfully completed its objectives by demonstrating its quantum communication capabilities.

“We are proud to say that the SOTA mission fulfilled all the success levels as foreseen, and more-than-doubled its originally-designed working life of one year,” Alberto Carrasco-Casado of NICT’s Space Communications Laboratory told Astrowatch.net.

According to Carrasco-Casado, four different success levels were established for the SOTA instrument: minimum success, success, full success, and extra success. The minimum success level required a basic check-up of all the lasercom subsystems, while the success level consisted of acquiring the laser beams transmitted from SOTA to the ground station by using different wavelengths and performing basic communication tests.

In order to achieve the full success level a real data transmission from SOTA to the ground station by using error correcting codes to deal with variable atmospheric conditions was needed. When it comes to the most desired extra success level, SOTA needed to successfully conduct lasercom experiments with different ground stations around the world and the quantum-limited communication experiment that was recently described in the Nature Photonics journal.

“The main achievement of SOTA was to be the first lasercom terminal in a microsatellite. Being such a tiny lasercom terminal, we could test several technologies, and perform different experiments,” Carrasco-Casado noted.

The scientists used three wavelengths for communications (800-nm band, 980 nm, and 1550 nm), each of them through a different aperture (small lenses to transmit the 800-nm band and 980 nm lasers, and a 5-cm Cassegrain telescope to transmit the 1550-nm laser), and two different pointing technologies (a coarse-pointing gimbal for the 800-nm band and 980 nm lasers and an additional fine-pointing system for the 1550-nm, being able to deliver a higher power to the ground).

The researchers were able to gather a great deal of atmospheric-propagation data using these technologies, which is critical to characterize the atmospheric channel for future missions. They managed to replicate the experiments in different ground stations around the world (Canada, Germany and France), achieving promising results. For instance, when it comes to the French ground station, the French Space Agency (CNES) group demonstrated an adaptive-optic system to compensate the atmospheric perturbations suffered by the SOTA signals. Finally, they were able to carry out the first quantum-limited communication experiment from space.

“All these technologies are key for the future development of space optical communications and quantum communications,” Carrasco-Casado said.

He underlined that space lasercom will play a more and more important role in satellite communications in the future, and all the technologies that SOTA demonstrated are key to these future developments. For example, the SpaceX constellation plans to use over 4,000 satellites and those satellites will use laser communications to communicate with each other. Moreover, many other constellations and communication networks are being designed at the moment where free-space lasercom plays a key role, with private companies like Google or Facebook investing a great deal of effort in their deployment.

“If Quantum Key Distribution (QKD) and lasercom systems can be miniaturized following the heritage of SOTA, this technology could be spread massively, enabling a truly-secure global communication network. Prior to the commercialization of this technology, research organizations like NICT have to demonstrate its feasibility, which was the goal of the SOTA mission. In line of this endeavor, NICT is also actively collaborating in the standardization of lasercom technologies through the Consultative Committee for Space Data Systems (CCSDS), and the data obtained with SOTA is another important result of this mission,” Carrasco-Casado concluded.

Currently, the Space Communications Laboratory and the Quantum ICT Advanced Development Center in NICT are working together towards future missions that will leverage the expertise and knowledge acquired with the SOCRATES/SOTA mission in technologies related to space laser communications, quantum communications and physical-layer cryptography.

New Horizons’ KBO target may be a binary

New Horizons’ KBO target may be a binary:



New Horizons in space


Artist’s impression of NASA’s New Horizons spacecraft, en route to a January 2019 encounter with Kuiper Belt Object 2014 MU69. Image & Caption Credit: NASA / JHU-APL / SwRI
New Horizons’ second target – Kuiper Belt Object (KBO) 2014 MU69 – may actually be a binary system composed of two objects that either touch one another or orbit very close together, according to observations conducted by mission scientists when the KBO passed in front of a star on July 17, 2017.

Members of the New Horizons team observed the occultation by deploying a network of telescopes along the path of MU69’s shadow in a remote part of Argentina.

Their goal was to capture its shadow, thereby obtaining data about the KBO’s size, shape, orbit, and environment as well as information that will enable accurate refining of the spacecraft’s trajectory.

MU69 is the second target of NASA’s New Horizons spacecraft and part of its approved extended mission by the space agency. It will be the most distant object ever visited by a spacecraft.

The probe famously flew by the Pluto system on July 14, 2015, obtaining a plethora of images and data about the binary Pluto-Charon and their four small moons.

The July 17, 2017, occultation was the third of three such events this year, all of which were carefully observed by mission scientists after they used both the Hubble Space Telescope and the European Space Agency’s (ESA) Gaia satellite to pinpoint exactly where MU69’s shadow would fall on Earth each time.

Based on data collected during the first occultation in June, mission scientists raised the possibility that MU69, located a billion miles (1.6 billion kilometers) beyond Pluto and more than four billion miles (6.5 billion kilometers) from Earth, might actually be a swarm of many small objects rather than a single object.

However, observations conducted during the third occultation indicate the object is either two objects closely orbiting each other, a contact binary in which the two objects actually touch one another, or a single, strangely shaped object missing a large chunk of material.

Mission scientists think it or both objects may be shaped like a “skinny football” – a shape formally described as an “extreme prolate spheroid”.



KBO_comparison_parker.jpg
KBO_comparison-2_parker.jpg


LEFT: An artist’s concept of Kuiper Belt Object 2014 MU69, the next flyby target for NASA’s New Horizons mission. This binary concept is based on telescope observations made at Patagonia, Argentina, on July 17, 2017, when MU69 passed in front of a star. New Horizons scientists theorize that it could be a single body with a large chunk taken out of it, or two bodies that are close together or even touching. RIGHT: Another artist’s concept of Kuiper Belt Object 2014 MU69, which is the next flyby target for NASA’s New Horizons mission. Scientists speculate that the Kuiper Belt object could be a single body with a large chunk taken out of it, or two bodies that are close together or even touching. Images & Captions Credit: NASA / JHU-APL / SwRI / Alex Parker
Two of Pluto’s small moons, Kerberos and Hydra, as well as Comet 67P/Churyumov–Gerasimenko, are single objects composed of two lobes.

“This new finding is simply spectacular. The shape of MU69 is truly provocative, and could mean another first for New Horizons going to a binary object in the Kuiper Belt,” said mission Principal Investigator Alan Stern of the Southwest Research Institute (SwRI) in Boulder, Colorado. “I could not be happier with the occultation results, which promise a scientific bonanza for the flyby.”

New Horizons will fly by MU69 on January 1, 2019.

From observations of the third occultation, scientists now have a better handle on MU69’s size, which they estimate to be no longer than 20 miles (30 kilometers) if the KBO is a single object.

If MU69 is a binary composed of two objects, each one is estimated to have a diameter of nine to twelve miles (15–20 kilometers).

Stern credited the successes of the occultation observations to the Hubble Space Telescope and Gaia Observatory, which provided crucial information about the path of MU69’s shadow on Earth on all three occasions.

Occultation data and images are available on New Horizons’ KBO Chasers site.



The post New Horizons’ KBO target may be a binary appeared first on SpaceFlight Insider.

Revealed: What the Sun's Outer Atmosphere Will Look Like During the Total Solar Eclipse

Revealed: What the Sun's Outer Atmosphere Will Look Like During the Total Solar Eclipse:

Revealed: What the Sun's Outer Atmosphere Will Look Like During the Total Solar Eclipse
Researchers from the National Solar Observatory Integrated Synoptic Program predict the structure of the solar corona for the Aug. 21, 2017, total solar eclipse. The field lines of a solar coronal magnetic model shown in the image are based on measurements taken one solar rotation, or 27.2753 Earth days, before the total solar eclipse
Credit: NSO/NSF


With the Aug. 21 total solar eclipse only a few weeks away, astronomers have revealed what the sun's outer atmosphere is likely to look like as the sun disappears behind the moon.

The Aug. 21 eclipse will sweep across the continental U.S. from Oregon to South Carolina along a stretch of land about 70 miles (113 kilometers) wide. Skywatchers within this path will experience totality, when the moon appears to move directly in front of the solar disk and casts a long shadow on Earth. Viewers outside of the path of totality will still experience a partial solar eclipse.

During a total solar eclipse, skywatchers have the opportunity to see the sun's glowing outer atmosphere, known as the corona. The jets and streamers present in the corona become visible because the moon blots out much of the bright light of the sun's disk, which typically overwhelms the light from the corona. [How to Safely Watch the 2017 Total Solar Eclipse]

The corona is more than a glowing halo of light. It is incredibly hot — it can reach temperatures of 3.5 million degrees Kelvin (3.49 million degrees Celsius or 6.29 million degrees Fahrenheit) — and has an intricate structure created by the sun's magnetic-field lines.

Using measurements from the National Solar Observatory Integrated Synoptic Program (NSO/NISP), astronomers were able to model the shape of the solar coronal magnetic field as of July 25, which represents one solar rotation, or 27.2753 Earth days, before the Aug. 21 total solar eclipse.

"Since we are exactly one solar rotation away from the solar eclipse, we're able to use today's observations to predict the structure of the corona on Aug. 21st," Gordon Petrie, an astronomer from the NSO, said in a statement. "The corona is not likely to change too much between now and the eclipse, unless we get lucky and a large active region appears!"

"We expect to see faint, straight structures protruding from the north and south poles of the sun — these are the polar plumes," Petrie added. "We will be able to see brighter bulbs of material closer to the equator — these are called helmet streamers."

Electric currents inside the sun generate a magnetic field that changes over time, depending on where the sun is in its 11-year activity cycle. Astronomers are able to trace the magnetic fields of the corona by observing the superheated gases present in the sun's atmosphere. Astronomers compare this technique to "the middle-school experiment where you sprinkle iron filings over a bar magnet to get a butterfly shape," according to the statement.

"The corona changes its shape over time, and looks drastically different during solar maximum compared to solar minimum," David Boboltz, the National Science Foundation's program officer for the NSO, said in the statement. "During solar maximum, such as the 2012 eclipse, the corona looks like a spiky ring around the entire sun. In contrast, a solar minimum eclipse such as the one this month, will have lots of complexity near the equator but will be drastically different near the north and south poles of the sun."

While skywatchers in the path of totality will experience no more than 2 minutes and 40 seconds of darkness in any one location, scientists will be able to combine observations taken of the sun's corona over the course of 90 minutes — the time it takes the moon's dark shadow to travel from the West Coast to the East Coast. This will allow astronomers to further study the corona and its structure.

What's more, the NSO is also helping to build the Daniel K. Inouye Solar Telescope (DKIST) on the Hawaiian island of Maui, which will allow scientists to measure the magnetic fields in the solar corona directly for the first time, according to the statement.

"The solar corona is largely an enigma," Valentin Pillet, director of the NSO, said in the statement. "For now, the best we can do is compare high resolution images of the solar corona, such as those we'll obtain during the eclipse, to our theoretical models. But DKIST will allow us to actually measure the magnetic fields in the corona. This will be revolutionary in the field of solar physics."

Follow Samantha Mathewson @Sam_Ashley13. Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.

China's Tiangong-1 Space Lab to Fall to Earth by April 2018

China's Tiangong-1 Space Lab to Fall to Earth by April 2018:

China's Tiangong-1 Space Lab to Fall to Earth by April 2018
Artist's illustration of China's 8-ton Tiangong-1 space lab, which is expected to fall to Earth late next year, unless it's boosted to a higher altitude.
Credit: CMSE


The United Nations Office for Outer Space Affairs (UNOOSA) has reissued a notification by China on the future uncontrolled re-entry of the country's robotic Tiangong-1 space lab, which is expected to take place in the next eight months.

Tiangong-1, which has been orbiting Earth since September 2011, ceased functioning on March 16, 2016. To date, the spacecraft has maintained its structural integrity.

The space lab's operational orbit is under constant and close surveillance by China. Its current average altitude is 217 miles (349 kilometers), but its orbit is decaying at a daily rate of approximately 525 feet (160 meters), according to the notification. [Gallery: Tiangong 1, China's First Space Laboratory]

Re-entry date

The lab's re-entry is expected between October 2017 and April 2018. According to the calculations and analysis that have been carried out, most of Tiangong-1's structural components will be burned up during the craft's re-entry into Earth's atmosphere.

"The probability of endangering and causing damage to aviation and ground activities is very low," the notification adds.

Taking measures

The notice advises that China attaches great importance to the re-entry of Tiangong-1 and will take the following measures to monitor its fall and provid public information:

— China will enhance monitoring and forecasting and make strict arrangements to track and closely keep an eye on Tiangong-1 and will publish a timely forecast of its re-entry

— China will make use of the international joint monitoring information under the framework of the Inter-Agency Space Debris Coordination Committee in order to be better informed about the descent of Tiangong-1.

— China will improve the information reporting mechanism. Dynamic orbital status and other information relating to Tiangong-1 will be posted on the website of the China Manned Space Agency in both Chinese and English. In addition, timely information about important milestones and events during the orbital decay phases will be released through the news media.

— As to the final forecast of the time and region of re-entry, China will issue the relevant information and early warning in a timely manner and bring it to the attention of the United Nations Office for Outer Space Affairs and the Secretary-General of the United Nations through diplomatic channels.

Altitude history of China’s Tiangong-1 space lab.
Credit: The Aerospace Corporation’s Center for Orbital and Reentry Debris Studies (CORDS)


Possible leftovers

Tiangong-1 was launched into Earth orbit on September 29, 2011. It conducted six successive rendezvous and dockings with the spacecraft Shenzhou-8 (uncrewed), Shenzhou-9 (crewed) and Shenzhou-10 (crewed) as part of China's human space exploration activities. The vehicle weighed 18,740 lbs. (8,500 kilograms) at launch.

According to the Aerospace Corporation, based on Tiangong-1's inclination, the lab will re-enter somewhere between 43 degrees north and 43 degrees south latitudes. As for leftovers, "it is highly unlikely that debris from this reentry will strike any person or significantly damage any property," Aerospace Corporation representatives wrote in a Tiangong-1 re-entry FAQ.

They added: "Potentially, there may be a highly toxic and corrosive substance called hydrazine on board the spacecraft that could survive re-entry. For your safety, do not touch any debris you may find on the ground nor inhale vapors it may emit."

The Aerospace Corporation will perform a person and property risk calculation for the Tiangong-1 re-entry a few weeks prior to the event.  

Leonard David is author of "Mars: Our Future on the Red Planet," published by National Geographic. The book is a companion to the National Geographic Channel series "Mars." A longtime writer for Space.com, David has been reporting on the space industry for more than five decades. Follow us @SpacedotcomFacebook or Google+. This version of this story was posted on Space.com.

NASA Voyager Probes Still Going Strong After 40 Years

NASA Voyager Probes Still Going Strong After 40 Years:



Forty years ago, the Voyager 1 and 2 missions began their journey from Earth to become the farthest-reaching missions in history. In the course of their missions, the two probes spent the next two decades sailing past the gas giants of Jupiter and Saturn. And while Voyager 1 then ventured into the outer Solar System, Voyager 2 swung by Uranus and Neptune, becoming the first and only probe in history to explore these worlds.

This summer, the probes will be marking the fortieth anniversary of their launch – on September 5th and August 20th, respectively. Despite having traveled for so long and reaching such considerable distances from Earth, the probes are still in contact with NASA and sending back valuable data. So in addition to being the most distant missions from Earth, they are the longest-running mission in history.

In addition to their distance and longevity, the Voyager spacecraft have also set numerous other records for robotic space missions. For example, in 2012, the Voyager 1 probe became the first and only spacecraft to have entered interstellar space. Voyage 2, meanwhile, is the only probe that has explored all four of the Solar System’s gas/ice giants – Jupiter, Saturn, Uranus and Neptune.



Voyager 2 Mission


The launch of the Voyager 2 probe, which took place on August 20th, 1977. Credit: NASA
Their discoveries also include the first active volcanoes beyond Earth – on Jupiter’s moon Io – the first evidence of a possible subsurface ocean on Europa, the dense atmosphere around Titan (the only body beyond Earth with a dense, nitrogen-rich atmosphere), the craggy surface of Uranus’ “Frankenstein Moon” Miranda, and the ice plume geysers of Neptune’s largest moon, Triton.

These accomplishments have had immeasurable benefits for planetary science, astronomy and space exploration. They’ve also paved the way for future missions, such as the Galileo and Juno probes, the Cassini-Huygens mission, and the New Horizons spacecraft. As Thomas Zurbuchen, the associate administrator for NASA’s Science Mission Directorate (SMD), said in a recent press statement:

“I believe that few missions can ever match the achievements of the Voyager spacecraft during their four decades of exploration. They have educated us to the unknown wonders of the universe and truly inspired humanity to continue to explore our solar system and beyond.”
But what is perhaps most memorable about the Voyager missions is the special cargo they carry. Each spacecraft carries what is known as the Golden Record, a collection of sounds, pictures and messages that tell of Earth, human history and culture. These records were intended to serve as a sort of time capsule and/or message to any civilizations that retrieved them, should they ever be recovered.





Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth. Credit: NASA
As noted, both ships are still in contact with NASA and sending back mission data. The Voyager 1 probe, as of the writing of this article, is about 20.9 billion km (13 billion mi; 140 AU) from Earth. As it travels northward out of the plane of the planets and into interstellar space, the probe continues to send back information about cosmic rays – which are about four times as abundant in interstellar space than around Earth.

From this, researchers have learned that the heliosphere – the region that contains the Solar System’s planets and solar wind – acts as a sort of radiation shield. Much in the say that Earth’s magnetic field protects us from solar wind (which would otherwise strip away our atmosphere), the heliopause protects the Solar planets from atomic nuclei that travel at close to the speed of light.

Voyager 2, meanwhile, is currently about 17.7 billion km (11 billion mi; 114.3 AU) from Earth. It is traveling south out of the plane of the planets, and is expected to enter interstellar space in a few years. And much like Voyager 1, it is also studying how the heliosphere interacts with the surroundings interstellar medium, using a suite of instruments that measure charged particles, magnetic fields, radio waves and solar wind plasma.

Once Voyager 2 crosses into interstellar space, both probes will be able to sample the medium from two different locations simultaneously. This is expected to tell us much about the magnetic environment that encapsulates our system, and will perhaps teach us more about the history and formation of the Solar System. On top of that, it will let us know what kinds of hazards a possible interstellar mission will have to contend with.





Illustration showing how NASA’s Hubble Space Telescope is looking along the paths of NASA’s Voyager 1 and 2 spacecraft as they journey through the solar system and into interstellar space. Credit: NASA/ESA/Z. Levy (STScI)
The fact that the two probes are still active after all this time is nothing short of amazing. As Edward Stone – the David Morrisroe Professor of Physics at Caltech, the former VP and Director of NASA’s Jet Propulsion Laboratory, and the Voyager project scientist – said:

“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey. The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.”
Keeping the probes going has also been a challenge since the amount of power they generate decreases at a rate of about four watts per year. This has required that engineers learn how to operate the twin spacecraft with ever-decreasing amounts of power, which has forced them to consult documents that are decades old in order to understand the probes’ software and command functions.

Luckily, it has also given former NASA engineers who worked on the Voyager probes the opportunity to offer their experience and expertise. At present, the team that is operating the spacecraft estimate that the probes will run out of power by 2030. However, they will continue to drift along their trajectories long after they do so, traveling at a distance of 48,280 km per hour (30,000 mph), covering a single AU every 126 days.





The Voyager 1 spacecraft has started to transverse what JPL has dubbed as a “cosmic purgatory” between our solar system – and interstellar space. Credit: NASA/JPL
At this rate, they will be within spitting distance of the nearest star in about 40,000 years, and will have completed an orbit of the Milky Way within 225 million years. So its entirely possible that someday, the Golden Records will find their way to a species capable of understanding what they represent. Then again, they might find their way back to Earth someday, informing our distant, distant relatives about life in the 20th century.

And if the craft avoid any catastrophic collisions and can survive in the interstellar medium of space, it is likely that they will continue to be emissaries for humanity long after humanity is dead. It’s good to leave something behind!

Further Reading: NASA

The post NASA Voyager Probes Still Going Strong After 40 Years appeared first on Universe Today.

Friday, August 4, 2017

NASA's Solar Dynamics Observatory Watches a Sunspot

NASA's Solar Dynamics Observatory Watches a Sunspot: On July 5, 2017, NASA’s Solar Dynamics Observatory watched an active region — an area of intense and complex magnetic fields — rotate into view on the Sun. This image shows a blended view of the sunspot in visible and extreme ultraviolet light, revealing bright coils arcing over the active region — particles spiraling along magnetic field lines.


Original enclosures:


NEBULA - Pelican Nebula Close Up

Pelican Nebula Close Up:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2017 August 3


See Explanation. Clicking on the picture will download the highest resolution version available.


Pelican Nebula Close-up

Image Credit & Copyright: Sara Wager


Explanation: The prominent ridge of emission featured in this vivid skyscape is designated IC 5067. Part of a larger emission region with a distinctive shape, popularly called The Pelican Nebula, the ridge spans about 10 light-years and follows the curve of the cosmic pelican's head and neck. Fantastic, dark shapes inhabiting the view are clouds of cool gas and dust sculpted by energetic radiation from young, hot, massive stars. But stars are also forming within the dark shapes. Twin jets emerging from the tip of the long, dark tendril left of center are the telltale signs of an embedded protostar cataloged as Herbig-Haro 555 (HH 555). In fact, other Herbig-Haro objects indicating the presence of protostars are found within the frame. The Pelican Nebula itself, also known as IC 5070, is about 2,000 light-years away. To find it, look northeast of bright star Deneb in the high flying constellation Cygnus.

Tomorrow's picture: North North Jupiter



< | Archive | Submissions | Index | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

Bad News For Proxima b: An Earth-Like Atmosphere Might Not Survive There

Bad News For Proxima b: An Earth-Like Atmosphere Might Not Survive There:

Back in of August of 2016, the existence of an Earth-like planet right next door to our Solar System was confirmed. To make matters even more exciting, it was confirmed that this planet orbits within its star’s habitable zone too. Since that time, astronomers and exoplanet-hunters have been busy trying to determine all they can about this rocky planet, known as Proxima b. Foremost on everyone’s mind has been just how likely it is to be habitable.

However, numerous studies have emerged since that time that indicate that Proxima b, given the fact that it orbits an M-type (red dwarf), would have a hard time supporting life. This was certainly the conclusion reached in a new study led by researchers from NASA’s Goddard Space Flight Center. As they showed, a planet like Proxima b would not be able to retain an Earth-like atmosphere for very long.

Red dwarf stars are the most common in the Universe, accounting for an estimated 70% of stars in our galaxy alone. As such, astronomers are naturally interested in knowing just how likely they are at supporting habitable planets. And given the distance between our Solar System and Proxima Centauri – 4.246 light years – Proxima b is considered ideal for studying the habitability of red dwarf star systems.





This infographic compares the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Credit: Pale Red Dot
On top of all that, the fact that Proxima b is believed to be similar in size and composition to Earth makes it an especially appealing target for research. The study was led by Dr. Katherine Garcia-Sage of NASA’s Goddard Space Flight Center and the Catholic University of America in Washington, DC. As she told Universe Today via email:

“So far, not many Earth-sized exoplanets have been found orbiting in the temperate zone of their star. That doesn’t mean they don’t exist – larger planets are found more often, because they are easier to detect – but Proxima b is of interest because it’s not only Earth-sized and at the right distance from its star, but it’s also orbiting the closest star to our Solar System.”
For the sake of determining the likelihood of Proxima b being habitable, the research team sought to address the chief concerns facing rocky planets that orbit red dwarf stars. These include the planet’s distance from their stars, the variability of red dwarfs, and the presence (or absence) of magnetic fields. Distance is of particular importance, since habitable zones (aka. temperate zones) around red dwarfs are much closer and tighter.

“Red dwarfs are cooler than our own Sun, so the temperate zone is closer to the star than Earth is to the Sun,” said Dr. Garcia-Sage. “But these stars may be very magnetically active, and being so close to a magnetically active star means that these planets are in a very different space environment than what the Earth experiences. At those distances from the star, the ultraviolet and x-ray radiation may be quite large. The stellar wind may be stronger. There could be stellar flares and energetic particles from the star that ionize and heat the upper atmosphere.”





At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA
In addition, red dwarf stars are known for being unstable and variable in nature when compared to our Sun. As such, planets orbiting in close proximity would have to contend with flare ups and intense solar wind, which could gradually strip away their atmospheres. This raises another important aspect of exoplanet habitability research, which is the presence of magnetic fields.

To put it simply, Earth’s atmosphere is protected by a magnetic field that is driven by a dynamo effect in its outer core. This “magnetosphere” has prevented solar wind from stripping our atmosphere away, thus giving life a chance to emerge and evolve. In contrast, Mars lost its magnetosphere roughly 4.2 billion years ago, which led to its atmosphere being depleted and its surface becoming the cold, desiccated place it is today.

To test Proxima b’s potential habitability and capacity to retain liquid surface water, the team therefore assumed the presence of an Earth-like atmosphere and a magnetic field around the planet. They then accounted for the enhanced radiation coming from Proxima b. This was provided by the Harvard Smithsonian Center for Astrophysics (CfA), where researchers determined the ultraviolet and x-ray spectrum of Proxima Centauri for this project.

From all of this, they constructed models that began to calculate the rate of atmospheric loss, using Earth’s atmosphere as a template. As Dr. Garcia-Sage explained:

“At Earth, the upper atmosphere is ionized and heated by ultraviolet and x-ray radiation from the Sun. Some of these ions and electrons escape from the upper atmosphere at the north and south poles. We have a model that calculates how fast the upper atmosphere is lost through these processes (it’s not very fast at Earth)… We then used that radiation as the input for our model and calculated a range of possible escape rates for Proxima Centauri b, based on varying levels of magnetic activity.”




Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO
What they found was not very encouraging. In essence, Proxima b would not be able to retain an Earth-like atmosphere when subjected to Proxima Centauri’s intense radiation, even with the presence of a magnetic field. This means that unless Proxima b has had a very different kind of atmospheric history than Earth, it is most likely a lifeless ball of rock.

However, as Dr. Garcia-Sage put it, there are other factors to consider which their study simply can’t account for:

“We found that atmospheric losses are much stronger than they are at Earth, and the for high levels of magnetic activity that we expect at Proxima b, the escape rate was fast enough that an entire Earth-like atmosphere could be lost to space. That doesn’t take into account other things like volcanic activity or impacts with comets that might be able to replenish the atmosphere, but it does mean that when we’re trying to understand what processes shaped the atmosphere of Proxima b, we have to take into account the magnetic activity of the star. And understanding the atmosphere is an important part of understanding whether liquid water could exist on the surface of the planet and whether life could have evolved.”
So it’s not all bad news, but it doesn’t inspire a lot of confidence either. Unless Proxima b is a volcanically-active planet and subject to a lot of cometary impacts, it is not likely be temperate, water-bearing world. Most likely, its climate will be analogous to Mars – cold, dry, and with water existing mostly in the form of ice. And as for indigenous life emerging there, that’s not too likely either.

These and other recent studies have painted a rather bleak picture about the habitability of red dwarf star systems. Given that these are the most common types of stars in the known Universe, the statistical likelihood of finding a habitable planet beyond our Solar System appears to be dropping. Not exactly good news at all for those hoping that life will be found out there within their lifetimes!

But it is important to remember that what we can say definitely at this point about extra-solar planets is limited. In the coming years and decades, next-generation missions – like the James Webb Space Telescope (JWST) and the Transiting Exoplanet Survey Satellite (TESS) –  are sure to paint a more detailed picture. In the meantime, there’s still plenty of stars in the Universe, even if most of them are extremely far away!

Further Reading: The Astrophysical Journal Letters

The post Bad News For Proxima b: An Earth-Like Atmosphere Might Not Survive There appeared first on Universe Today.

Thursday, August 3, 2017

How the discovery of a hot Jupiter's stratosphere could help the search for life on other planets

How the discovery of a hot Jupiter's stratosphere could help the search for life on other planets:

For the first time ever, an exoplanet located 880 light-years away was found to have a stratosphere — a layer in the upper atmosphere where the temperature increases the higher up you go. The discovery may help astronomers refine the techniques that could lead to the discovery of alien life on other exoplanets.

The planet, described in a study published today in Nature, is called WASP-121b. It belongs to a class of exoplanets called hot Jupiters — worlds that are so big and hot that they are fairly easy to study, thus allowing astronomers to hone their skills and confirm their theories. Today's discovery confirms what astronomers suspected: super hot gas giants outside our Solar System can have a stratosphere.

WASP-121b is massive — nearly twice the size of our Jupiter. And because it orbits much closer to its host star than Mercury orbits around the Sun, its atmosphere heats up to more than 4,500 degrees Fahrenheit. (At that temperature, you could boil iron.) Using NASA’s Hubble Space Telescope, the researchers were able to detect glowing water molecules in the planet’s atmosphere, a clear signal that WASP-121b has a stratosphere. What exactly is causing the stratosphere is more of a mystery, but it could be gases like vanadium oxide and titanium oxide, which are believed to act like the ozone on Earth, the study says.

On Earth, the lower atmosphere is divided into two regions: the troposphere, which is closer to the surface, and the stratosphere, which is the upper layer. The stratosphere contains ozone, which absorbs harmful ultraviolet radiation from the Sun and heats up the stratosphere in the process. That means that, while the temperature decreases the higher up you go in the troposphere, in the stratosphere, the higher up you go, the temperature gets warmer. Most other planets in our Solar System — like Mars, Jupiter, Saturn, and even moons like Saturn’s Titan — have stratospheres. (On Jupiter and Titan, for instance, methane is responsible for them.) So astronomers have long thought that planets outside our Solar System would also have one.





How Earth’s stratosphere works. Image: News & Views by Kevin Heng / Nature


On hot Jupiters, scientists believe that stratospheres are created by chemicals like vanadium oxide and titanium oxide, which absorb radiation from stars and exist as gases only at the highest temperatures. But up until now, scientists hadn’t been able to find conclusive evidence that stratospheres on exoplanets exist. “The fact that we hadn't seen any [stratosphere] where we expected we would was challenging our expectations,” Michael Line, an assistant professor in the School of Earth and Space Exploration at Arizona State University, who wasn’t involved in the study, tells The Verge. So finally finding one is very exciting.

To study WASP-121b, the researchers looked at how the planet’s brightness changed at different wavelengths of light. They saw that water molecules in WASP-121b’s upper atmosphere were glowing and emitting light instead of absorbing light. That means there’s a layer of hot water gas up there, not a cooler layer that’d be expected if there’s no stratosphere. The change in temperature within WASP-121b’s stratosphere is extreme: about 1,800 degrees Fahrenheit. For reference, on planets in our Solar System, the change in temperature is usually less than 212 degrees Fahrenheit. “It’s some of the best evidence to date of a stratosphere in an exoplanet,” lead author Thomas Evans, a research fellow at the University of Exeter, tells The Verge.





An illustration of WASP-121b. Image: NASA, ESA, and G. Bacon (STSci)


There’s still a lot we don’t understand about WASP-121b and its atmosphere. For starters, we don’t know exactly what’s causing the stratosphere, Evans says. The researchers were able to detect vanadium oxide and some titanium oxide, but the data was not conclusive. The discovery also raises questions about other similar hot Jupiters that were found to have no stratosphere, says Thomas Beatty, a postdoc at the Center for Exoplanets and Habitable Worlds at Penn State, who did not take part in the study. Why does WASP-121b have a stratosphere, and others don’t? What’s really going on in WASP-121b’s atmosphere?

The field of exoplanet research is just at the beginning, and part of it focuses on finding traces of life outside of our Solar System. Worlds like WASP-121b are way too hot to possibly host any kind of life as we know it — whether or not they have a stratosphere. But studying them is still key: it allows researchers to test their theories and learn more about the underlying physics. “They are a first step towards honing our skills, developing our tools, getting ready for the things that are more Earth-like,” says Kevin Heng, the director of the Center for Space and Habitability at the University of Bern. “This is the first step in a long road.”

It’s a bit like playing Super Mario Bros. 3, says Line at Arizona State University. In the game, you can use a Warp Whistle and skip levels to get to the game's final world. But without going through all the levels, learning skills and collecting tools, you have a slim chance of beating Bowser at the end. Studying planets like WASP-121b is like going through all those levels: it allows astronomers to build their knowledge, so when we have an Earth-like planet that could host life, we’re better prepared to study it. “You don’t want to skip [hot Jupiters] along your journey because you want to build your tools,” Line says. “So when we think we’re measuring biosignatures on maybe a terrestrial planet, we’ll have a better understanding of the underlying physics that could possibly trip us up.”

Next, Evans wants to keep observing WASP-121b for longer periods of time. Eventually, he hopes to study the planet using NASA’s James Webb Space Telescope, which will launch next year and will be the most powerful space telescope ever built. JWST will allow astronomers to make even more precise measurements, and hopefully it’ll solve the mystery of what’s causing the stratosphere on WASP-121b. “James Webb is going to be the so-called game-changer,” Line says. “The amount of data per planet is going to be orders of magnitudes greater.”