Sunday, May 8, 2016

Three Worlds for TRAPPIST 1

Three Worlds for TRAPPIST 1:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 May 7



See Explanation. Clicking on the picture will download the highest resolution version available.


Three Worlds for TRAPPIST-1

Illustration Credit: ESO / M. Kornmesser


Explanation: Three new found worlds orbit the ultracool dwarf star TRAPPIST-1, a mere 40 light-years away. Their transits were first detected by the Belgian robotic TRAnsiting Planets and Planetesimals Small Telescope, TRAPPIST, at ESO's La Silla Observatory in Chile. The newly discovered exoplanets are all similar in size to Earth. Because they orbit very close to their faint, tiny star they could also have regions where surface temperatures allow for the presence of liquid water, a key ingredient for life. Their tantalizing proximity to Earth makes them prime candidates for future telescopic explorations of the atmospheres of these potentially habitable planets. All three worlds appear in this artist's vision, an imagined scene near the horizon of the system's outermost planet. Of course, the inner planet is transiting the dim, red, nearly Jupiter-sized parent star.

Tomorrow's picture: an unusual dot on the sun



< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >



Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)

NASA Official: Phillip Newman Specific rights apply.

NASA Web Privacy Policy and Important Notices

A service of: ASD at NASA / GSFC

& Michigan Tech. U.

Saturday, May 7, 2016

How Long Does it Take Mars to Orbit the Sun?

How Long Does it Take Mars to Orbit the Sun?:



Mars from orbit.  Valles Marineris and Volcanic region


Given it's similarities to Earth, Mars is often referred to as "Earth's Twin". Like Earth, Mars is a terrestrial planet, which means it is composed largely of silicate rock and minerals that are differentiated into a core, mantle and crust. It is also located within the Sun's "Goldilocks Zone" (aka. habitable zone), has polar ice caps, and once had flowing water on its surface. But beyond these, Mars and Earth are very different worlds.



In addition to their stark contrasts in temperature, surface conditions, and exposure to harmful radiation, Mars also takes a significantly longer time to complete a single orbit of the Sun. In fact, a year on Mars is almost twice as long as a year here on Earth - lasting 686.971 days, which works out to about 1.88 Earth years. And in the course of that orbit, the planet undergoes some rather interesting changes.



Interestingly enough, what Mars goes through in the course of a Martian year is quite similar to what Earth goes through (yet another thing they have in common). Depending on its distance from the Sun, and which hemisphere is pointed towards it, changes in temperatures and weather occur in one hemisphere or the other. In short, Mars experiences seasonal changes, like Earth, thanks to the tilt of the planet's axis and the eccentricity of its orbit.



Orbital Eccentricity:

Mars orbits our Sun at an average distance (semi-major axis) of 227,939,200 km, which is roughly 1.5 times the distance between the Sun and Earth (1.523679 AU). However, during the course of its 686.971 day orbital period, its distance from the Sun changes considerably. During the course of a Martian year, the planet's orbit ranges in distance from 206,700,000 km (1.3814 AU) at perihelion to 249,200,000 km (1.666 AU) at aphelion.







This amounts to an orbital eccentricity of about 0.09, which is more pronounced than any other planet in the Solar System ( except for Mercury which has an eccentricity of 0.20563). However, it is understood that this was not always the case. In fact, roughly 1.35 million years ago, Mars' orbit was nearly circular, with an eccentricity of just 0.002.



What's more, for the past 35,000 years, the orbit of Mars has been getting slightly more eccentric because of the gravitational effects of the other planets. It reached a minimum eccentricity of 0.079 some 19,000 years ago, and will peak at about 0.105 in about 24,000 years from now. In 1,000,000 years from now, its eccentricity will be close to what it is now again - with an estimated eccentricity of 0.01.



Every 780 days (779.94 to be precise), Earth and Mars achieve their closest distance. This occurs roughly 8.5 days after Mars reaches opposition, when there is a 180° difference between the geocentric longitudes of it and the Sun and the Earth passes between them. This is the closest Mars ever gets to Earth, at a distance of about 56 million km, making it the ideal time for sending exploration missions (which would take 8 months to arrive, rather than several years).



A sidereal day, the amount of time it takes for Mars to complete a single rotation on its axis, is roughly 24 hours, 37 minutes, and 22 seconds. Meanwhile, a solar day (or Sol) on Mars - i.e. the amount of time it takes for the Sun to return to the same place in the sky - lasts 24 hours, 39 minutes, and 35.244 seconds. As such, a Martian year is equivalent to 668.5991 Sols.







Seasonal Changes:

Mars' axis is titled at 25.19 degrees relative to its orbital plane, which is similar to the axial tilt of Earth (23.44 degrees). As a result, Mars has seasons like Earth. Except that on Mars, they are nearly twice as long because its orbital period is that much longer. In the northern hemisphere, spring is the longest season, lasting roughly 7 Earth months out of the year. Summer is second, lasting six months, while Fall lasts 5.3 months and Winter is just over 4 months. In the south, the length of the seasons is only slightly different.



Mars' orbital eccentricity is also a major factor when it comes to the planet's seasonal cycles. It is near perihelion when it is summer in the southern hemisphere and winter in the north, and near aphelion when it is winter in the southern hemisphere and summer in the north. As a result, the seasons in the southern hemisphere are more extreme and the seasons in the northern are milder. The summer temperatures in the south can be up to 30 K (30 °C; 54 °F) warmer than the equivalent summer temperatures in the north.



Mars also has the largest dust storms in the Solar System. These can vary from a storm over a small area, to gigantic storms (thousands of km in diameter) that cover the entire planet and obscure the surface from view. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.







The planet’s average temperature is -46 °C (-51 °F), with a low of -143 °C (-225.4 °F) during the winter at the poles, and a high of 35 °C (95 °F) during summer and midday at the equator. This works out to a variation in average surface temperature that is quite similar to Earth's - a difference of 178 °C (320.4 °F) versus 145.9 °C (262.5 °F).



All told, Mars has a lot in common with Earth. At the same time, it has several key differences. Knowing what these are and how to address them will be crucial when it comes time to mount crewed missions to Mars, not to mention building permanent settlements there.



We have written many interesting articles about Mars here at Universe Today. Here’s How Strong Is The Gravity On Mars?, How Long Does It Take To Get To Mars?, How Long Is A Day On Mars?, Mars Compared To Earth, How Can We Live On Mars?



Astronomy Cast also has several good episodes on the subject – Episode 52: Mars, Episode 92: Missions to Mars – Part 1, and Episode 94: Humans to Mars, Part 1 – Scientists.



For more information, check out NASA’s Solar System Exploration page on Mars and NASA’s Journey to Mars.

The post How Long Does it Take Mars to Orbit the Sun? appeared first on Universe Today.

The Constellation Auriga

The Constellation Auriga:



The northern constellation Auriga, showing the brightest stars of Capella, Menkalinan, and proximate Deep Sky Objects. Credit: stargazerslounge.com


Welcome back to Constellation Friday! Today, in honor of our dear friend and contributor, Tammy Plotner, we examine the Auriga constellation. Enjoy!



In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would serve as the authoritative source of astronomy for over a thousand years to come. Since the development of modern telescopes and astronomy, this list has come to be expanded to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.



One of these is the constellation of Auriga, a beautiful pentagon-shaped collection of stars that is situated just north of the celestial equator. Along with five other constellations that have stars in the Winter Hexagon asterism, Auriga is most prominent during winter evenings in the Northern Hemisphere. Auriga also belongs to the Perseus family of constellations, together with Andromeda, Cassiopeia, Cepheus, Cetus, Lacerta, Pegasus, Perseus, and Triangulum.







Name and Meaning:

The name Auriga is derived from Latin, and means "the charioteer". Auriga is associated with many characters out of Greek mythology, the foremost of which is the mythological hero Erichthonius of Athens, the son of Hephaestus who was raised by the goddess Athena. Erichthonius was generally credited as being the inventor of the quadriga (the four-horse chariot) which Erichthonius used in the battle that made him king of Athens. In honor of his ingenuity and heroic deeds, Zeus raised him into the heavens, where he rode a chariot resembling the Sun's chariot.







Auriga is also described sometimes as Myrtilus, the son of Hermes and the charioteer of Oenamaus - a Greek god who was himself the son of Ares. This association is supported by depictions of the constellation which rarely show a chariot, as Myrtilus's chariot was destroyed in a race intended to win the heart of Oenomaus's daughter (Hippodamia). After being killed by a competing suitor, Myrtilus father Hermes placed him in the sky.



Yet another mythological association is Theseus's son Hippolytus, who was ejected from Athens after he refused the romantic advances of his stepmother Phaedra. He was killed when his chariot was wrecked, but revived by Asclepius. Regardless of Auriga's specific representation, it is likely that the constellation was created by the ancient Greeks to commemorate the importance of the chariot in their society.



Notable Features:

Auriga's brightest star (Alpha Auriga) is Capella, which also happens to be the sixth brightest star in the night sky (magnitude 0.08). A spectroscopic binary that consists of two yellow giant stars (the primary a G-type star, the secondary a G-type giant) Capella is 43 light-years away from Earth. It's traditional name is a reference to its mythological position as Amalthea, the mythological she-goat from Greek mythology. It's Arabic name (al-'Ayyuq) also translates to "the goat", and its Sumerian name (mul.ÁŠ.KAR) means "the goat star".



Beta Aurigae (Menkalinan, Menkarlina) is a bright A-type subgiant. It's Arabic name comes from the phrase mankib dhu al-'inan, which means "shoulder of the charioteer". Menkalinan is an eclipsing binary star made up of two blue-white stars that are 81 light-years from Earth. The double nature of this star was discovered in 1890 through spectroscopic analysis, which made it the second spectroscopic binary to be discovered.







Other bright stars include Gamma Aurigae, a B-type giant that has since been reclassified as belonging to the Taurus constellation - making it Beta Taurid. Iota Aurigae (aka. Hasseleh and Kabdhilinan) is a K-type giant that is located 494 light-years away from Earth. The traditional name of Kabdhilinan, sometimes shortened to "Alkab", is taken from the Arabic phrase al-kab dh'il inan, which means "shoulder of the rein holder".



Delta Aurigae, the northernmost bright star in Auriga, is another K-type giant that 126 light-years from Earth. Though it is often listed as a single star, it actually has three very widely spaced optical companions. One is a double star of magnitude 11, two arcminutes from Delta, and the other is a star of magnitude 10, three arcminutes from Delta.



Then there's Eta Aurigae, a blue-white B-type main sequence dwarf located about 219 light years away. In the constellation, the star represents one of the ‘kids’ of the goat (Capella) held by the Charioteer. Its traditional name is Haedus II (or Hoedus II) and it comes from the Latin word haedus, which means ‘kid.’ It is occasionally called Mahasim (“wrist”), a name it shares with Theta Aurigae.



Lambda Aurigae (Al Hurr) is a G-type star that is between a subgiant and main-sequence and located 41 light-years from Earth. Though older than the Sun, it is similar in many ways, which includes its mass (1.07 solar masses) and its radius (1.3 solar radii), and a rotational period of 26 days. However, it differs from the Sun in its metallicity, as its iron content is 1.15 times that of the Sun, though it has relatively less nitrogen and carbon.







Zeta Aurigae is the other ‘kid’ held by the Charioteer. The star is also commonly called Sadatoni. The name comes from the Arabic phrase als-saeid alth-thani, which means “the second arm (of the Charioteer).” Sadatoni is an eclipsing binary star 790 light years distant. It consists of a red supergiant and a B8 type companion. The system’s magnitude varies between 3.61 and 3.99 with a period of 972 days.



There are also five stars with confirmed planetary systems in Auriga, not to mention a white dwarf with a suspected planetary system. These include HD 40979, which has one planet - HD 40979 b. It was discovered in 2002 using radial velocity measurements on the parent star. With a mass of 3.83 Jupiter masses, the planet orbits its parent star with a semi-major axis of 0.83 AU and a period of 263.1 days.



Another is HD 45350, which also has one planet, known as HD 45350 b. This world has 1.79 Jupiter masses and orbits its parent star every 890.76 days at a distance of 1.92 AU. It was discovered in 2004, also through the use of the radial velocity method. HD 43691 also has a confirmed exoplanet; HD 43691 b, a planet with 2.49 Jupiter masses that orbits its parent star at a distance of 0.24 AU with a period of just 36.96 days.



HD 49674 is yet another star in Auriga that has a planet orbiting it. Much like the others, HD 49674 b was detected in 2002 using the radial velocity method. Unlike the others, it is quite small, with a mass that is 0.115 times that of Jupiter. It also orbits very close to its star, at 0.058 AU, and has a orbital period of just 4.94 days.







The most recently confirmed exoplanet in Auriga is HAT-P-9-b, which was detected using the transit method in 2008. It also orbits very close to its parent star (HAT-9-P), at a distance of 0.053 AU and with a period of 3.92 days. This world has been classified as a "hot Jupiter", with a mass that is 0.67 times that of Jupiter but a radius that is 1.4 times as large.



Auriga contains three Messier objects - M36 (NGC 1960), M37 (NGC 2099), and M38 (NGC 1912) - and numerous star clusters. It also has four meteor showers associated with it - the Alpha Aurigids, the Delta Aurigids, the fainter Aurigids, and the Zeta Aurigids.



History of Observation:

The first recorded mention of Auriga's stars comes from Mesopotamia, where it was called GAM and included most of the stars from the modern constellation. This figure was alternatively called Gamlum or MUL.GAM in the MUL.APIN - the Babylonian astrological catalog. The constellation represented either a scimitar or a crook, the latter of which stood for a goat-herd or shepherd.



This tradition was carried on by Bedouin astronomers, who created constellations that were named in accordance with groups of animals. To them, the stars of Auriga comprised a herd of goats, an association which was carried on by the Greek astronomical tradition (which endured even after it became associated with the charioteer).



In ancient Chinese astronomy, the stars of Auriga were incorporated into several Chinese constellations. These included Wuche, which used several of Auriga's stars to represent the five chariots of the celestial emperors, which in turn represented the grain harvest. Another is Zuoqi, which was made up of nine stars in the east of the constellation to represent chairs for the emperor and other officials.







Auriga's brightest star, Capella, was also significant to many cultures. In ancient Hindu astronomy, Capella represented the heart of Brahma, while ancient Peruvian peoples saw Capella (which they called Colca) as a star intimately connected to the affairs of shepherds. Capella was also significant to the Aztec people, which is evidenced by the archaeological site of Monte Albán, a Late Classic settlement that contained a marker for the star's heliacal rising.



To the indigenous peoples of California and Nevada, the bright pattern of the constellation was also significant. To them, Auriga's brightest stars formed a curve that was represented in crescent-shaped petroglyphs. The indigenous Pawnee of North America recognized a constellation with the same major stars as modern Auriga: Alpha, Beta, Gamma (Beta Tauri), Theta, and Iota Aurigae.



To the northern Inuit, a constellation that included Capella and other bright stars from Auriga were known as Quturjuuk, meaning "collar-bones". Its rising signaled that the constellation Aagjuuk, which was made up of stars from the constellation Aquila, would be rising soon. Since Aagjuuk represented the dawn following the winter solstice, and was used for navigation and time-keeping at night, it was extremely important to the Inuit.



Since the time of Ptolemy, Auriga has remained a constellation and is officially recognized by the International Astronomical Union today. Like all modern constellations, it is now defined as a specific region of the sky that includes both the ancient pattern and the surrounding stars. In 1922, the IAU designated its recommended three-letter abbreviation, "Aur", and the official boundaries of Auriga were created in 1930 by Eugène Delporte.







Finding Auriga:

While viewing Auriga's stars, pay particular attention to yellow giant Alpha Aurigae, aka. Capella. It is the 6th brightest star in the sky (0.08 magnitude) and also a spectroscopic binary consisting of a G5III and a G0III that revolve each other every 104 days. Menkalinen, or Beta Aurigae, is also a spectroscopic binary. However, it rotates far faster, completing its circuit in just four days! This eclipsing binary pair makes the brightness of Beta vary.



Epsilon Aurigae is also an eclipsing binary, but one that has an extraordinarily long period of 27.1 years. While it only drops by 0.8 of a magnitude, it's dark companion is a 10-12 solar mass black hole. According to studies done by Wilson and Cameron a ring of obscuring material surrounds the black hole and accounts for the magnitude drop. Don't skip Zeta Aurigae, either. It's a K4 giant that's also an eclipsing binary. It has a B8 main sequence star which revolves around it in less than 3 years.



Those who have telescopes will be interested to know that some of Auriga's other binaries can be resolved. Double star Omega Auriga can be split with small telescopes, thus allowing stargazers to see both its 5th and a 8th magnitude stars. Or try disparate double Theta Aurigae - it's a 2.62 primary and a 7.0 secondary.



For those using binoculars, the splendid Milky Way star field is rich with open clusters that are easily spotted are resolved. Open cluster M36 is a nice compression and contains about 60 stars to a small telescope. The slightly egg-shaped M38 is another easy binocular target, a very rich open cluster that is easily viewed using any instrument. For telescopes, do not overlook IC 410. This diffuse nebula with a cluster of stars is more commonly known as the "Flaming Star".







When it comes to meteor showers, the Aurigids become active between January 31st, and February 23rd and are known for sporadic bright fireballs. From August 25th through September 6th, the Alpha Aurigid meteor stream is active, with an average fall rate of about 9 meteors per hour (but outbursts of up to 30 were observed in 1935 and 1986). The Delta Aurigid meteor stream becomes active between September 22nd and October 23rd. A good time to look for peak activity for this branch is during the week beginning on October 6th through the 15th.



As always, we wish you luck in your stargazing. And know that when you find this constellation, you are looking upon an asterism that people have been designating and characterizing since time immemorial!



We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.



Be sure to check out The Messier Catalog while you’re at it!



For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Aries and Constellation Families.

The post The Constellation Auriga appeared first on Universe Today.

Enceladus’ Jets Selectively Power-Up Farther From Saturn

Enceladus’ Jets Selectively Power-Up Farther From Saturn:



Icy water vapor geysers erupting from fissures on Enceladus. Credit: NASA/JPL


A crowning achievement of the Cassini mission to Saturn is the discovery of water vapor jets spraying out from Enceladus' southern pole. First witnessed by the spacecraft in 2005, these icy geysers propelled the little 515-kilometer-wide moon into the scientific spotlight and literally rewrote the mission's objectives. After 22 flybys of Enceladus during its nearly twelve years in orbit around Saturn, Cassini has gathered enough data to determine that there is a global subsurface ocean of salty liquid water beneath Enceladus' frozen crust—an ocean that gets sprayed into space from long "tiger stripe" fissures running across the moon's southern pole.  Now, new research has shown that at least some of the vapor jets get a boost in activity when Enceladus is farther from Saturn.







By measuring the changes in brightness of a distant background star as Enceladus' plumes passed in front of it in March 2016, Cassini observed a significant increase in the amount of icy particles being ejected by one particular jet source.







Named "Baghdad 1," the jet went from contributing 2% of the total vapor content of the entire plume area to 8% when Enceladus was at the farthest point in its slightly-eccentric orbit around Saturn. This small yet significant discovery indicates that, although Enceladus' plumes are reacting to morphological changes to the moon's crust due to tidal flexing, it's select small-scale jets that are exhibiting the most variation in output (rather than a simple, general increase in outgassing across the full plumes.)



“How do the tiger stripe fissures respond to the push and pull of tidal forces as Enceladus goes around its orbit to explain this difference? We now have new clues!” said Candice Hansen, senior scientist at the Planetary Science Institute and lead planner of the study. “It may be that the individual jet sources along the tiger stripes have a particular shape or width that responds most strongly to the tidal forcing each orbit to boost more ice grains at this orbital longitude.”



The confirmation that Enceladus shows an increase in overall plume output at farther points from Saturn was first made in 2013.



Whether this new finding means that the internal structure of the fissures is different than what scientists have suspected or some other process is at work either within Enceladus or in its orbit around Saturn still remains to be determined.



"Since we can only see what's going on above the surface, at the end of the day, it's up to the modelers to take this data and figure out what's going on underground," said Hansen.



Sources: Planetary Science Institute and NASA/JPL





The post Enceladus’ Jets Selectively Power-Up Farther From Saturn appeared first on Universe Today.

Thursday, May 5, 2016

Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?

Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole?:



New research indicates that it may now be possible to predict when a neutron star will collapse to form a new black hole. Credit and Copyright: Paramount Pictures/Warner Bros.


A neutron star is perhaps one of the most awe-inspiring and mysterious things in the Universe. Composed almost entirely of neutrons with no net electrical charge, they are the final phase in the life-cycle of a giant star, born of the fiery explosions known as supernovae. They are also the densest known objects in the universe, a fact which often results in them becoming a black hole if they undergo a change in mass.For some time, astronomers have been confounded by this process, never knowing where or when a neutron star might make this final transformation. But thanks to a recent study by a team of researchers from Goethe University in Frankfurt, Germany, it may now be possible to determine the absolute maximum mass that is required for a neutron star to collapse, giving birth to a new black hole.As with everything else relating to neutron stars, the process by which they become black holes has long been a source of fascination and bewilderment for astronomers. As the densest of all objects in the known universe, their mass cannot grow without bound - meaning that any increase in mass will also cause an increase in their density.Normally, this process will cause a neutron star to simply achieve a new state of equilibrium, or will result in a non-rotating neutron star beginning to  spin. This latter effect will allow it to remain stable for longer than it could otherwise, since the additional centrifugal force can help to balance out the intense gravitational force at work in its interior.However, even this process cannot last forever. As Professor Luciano Rezzolla of Goethe University told Universe Today via email:

"If the star is nonrotating, then this mass is not too difficult to compute and is called the maximum nonrotating mass, or M_TOV. However, this is not the largest mass possible because if the star is rotating, it can sustain more mass than if is not rotating. Even in this case, however, there is a limit because there is a limit to how much a star can rotate before being broken apart from the centrifugal force. Hence, the absolute largest mass that a neutron star can achieve is known as the "maximum mass of a maximally rotating configuration", M_max.  This is the largest possible mass of the most rapidly rotating model. Suppose you have built such a model: if you added a single atom onto it, it would collapse to a black hole, while it would break apart if you spun it a bit more."
As neutron stars accumulate mass, the speed of their rotation will increase; and here too, there is a limit. Basically, sooner or later, a neutron star will reach its absolute maximum mass and beyond this, it will inevitably collapse in on itself to become a black hole. Unfortunately, in the past, astronomers have had a hard time determining what the value of this limit was.The reason for this is because such a maximum value is dependent on the equation of state of the matter composing the star. This thermodynamic equation describes the state of matter under a given set of physical conditions - i.e. temperature, pressure, volume, or internal energy. And while astronomers have been able to ascertain within a degree of certainty what the maximum mass of a nonrotating neutron stars would be, they have been less successful in calculating what the maximum mass is for those that are rotating.In short, they have been unable to determine how much mass is needed before a rotating neutron star will surpass its maximum speed of rotation and finally form a new black hole. As Rezzolla explained:

"What made it difficult in the past to calculate M_max is its value will differ from what composes the neutron star (i.e. its "equation of state") and this is something we don't really know. Neutron-star matter is so different from the one we know that we can only make educated guesses; and unfortunately, there are many guesses because there are several different ways to compute the properties of the equation of state. So one ended up up with a situation in which not only the maximum mass was different for different equations of state, but even the maximum rotation speed was different for different equations of state."
However, in their study, titled "Maximum mass, moment of inertia and compactness of relativistic stars" - which appeared recently in the Monthly Notices of the Royal Astronomical Society - Rezzolla and Cosima Breu (a Masters student in theoretical physics at Goethe University and co-author of the study) argue that it may now be possible to infer what the maximum mass of a rapidly rotating star would be.For the sake of their research, Rezzolla and Breu relied on recent work by astronomers that has shown that it is possible to express the properties of stellar equilibrium configurations that does not depend on the specific equation of the state of their mass. In short, these studies have shown that there are certain "universal relations" when it comes to the equilibrium of stars.As a result, they were able to show that it is possible to predict the maximum mass a rapidly rotating neutron star can attain by simply considering what the maximum mass is of a neutron star in a corresponding, non-rotating configuration. But as Rezzolla indicated, even with these data sets available, what was needed was a fresh perspective:

"Universal relations simply state that objects that are apparently different actually share many things in common. For example, although we are different from other mammals, say pigs, our genome has a huge amount of common features, essentially because we have to synthesize the same proteins, breath the same air, etc. Hence, if we learn of hemoglobin actually works for one mammal, we have learned for many more mammals. This seems to happen also for neutron stars so that although there are many equations of state that predict different results for M_max, they all show there is a universal relation between M_max and M_TOV. More specifically, we have found that M_max = (1.203 +- 0.022) M_TOV."
These findings are likely to have interesting implications when it comes to future astronomical research. For starters, knowing the maximum mass a neutron star can achieve will be useful when analyzing the gravitational-wave signals produced by neutron stars, allowing astronomers to extract information on the equation of state before the object collapses into a black hole.Second, it will be useful in determining the moment of inertia for neutron stars, i.e. knowing how much mass is required before it begins to rotate. In short, scientists will be able to know with greater accuracy what it takes to set a neutron star to spinning and will able to predict with greater accuracy when a spinning neutron star will be on the verge of collapsing, and thus knowing when and where a new black hole will be.Al this, in turn, is likely to be a boon for research into black holes, the one object in the universe that is arguably more awe-inspiring and less understood than neutron stars. One step closer to understanding this grand, mysterious thing known as the Universe!Further Reading: phys.org 

The post Can We Now Predict When A Neutron Star Will Give Birth To A Black Hole? appeared first on Universe Today.

When Will Earth Lock to the Moon?

When Will Earth Lock to the Moon?:

We always see the same side of the Moon. It’s always up there, staring down at us with its terrifying visage. Or maybe it’s a creepy rabbit? Anyway, it’s always showing us the same face, and never any other part.

This is because the Moon is tidally locked to the Earth; the same fate that affects every single large moon orbiting a planet. The Moon is locked to the Earth, the Jovian moons are locked to Jupiter, Titan is locked to Saturn, etc.

As the Moon orbits the Earth, it slowly rotates to keep the same hemisphere facing us. Its day is as long as its year. And standing on the surface of the Moon, you’d see the Earth in roughly the same spot in the sky. Forever and ever.

Forever and ever and ever... unless we finally manage to destroy the Moon. Credit: NASA/Goddard/Arizona State University
Because of tidal locking, you’d see Earth in roughly the same spot from the Moon forever. For-eh-ver. For-EH-VER. Credit: NASA / Goddard / Arizona State University
We see this all across the Solar System.

But there’s one place where this tidal locking goes to the next level: the dwarf planet Pluto and its large moon Charon are tidally locked to each other. In other words, the same hemisphere of Pluto always faces Charon and vice versa.

It take Pluto about 6 and a half days for the Sun to return to the same point in the sky, which is the same time it takes Charon to complete an orbit, which is the same time it takes the Sun to pass through the sky on Charon.

Since Pluto eventually locked to its moon, can the same thing happen here on Earth. Will we eventually lock with the Moon?

Before we answer this question, let’s explain what’s going on here. Although the Earth and the Moon are spheres, they actually have a little variation. The gravity pulling on each world creates love handle tidal bulges on each world.

And these bulges act like a brake, slowing down the rotation of the world. Because the Earth has 81 times the mass of the Moon, it was the dominant force in this interaction.

In the early Solar System, both the Earth and the Moon rotated independently. But the Earth’s gravity grabbed onto those love handles and slowed down the rotation of the Moon. To compensate for the loss of momentum in the system, the Moon drifted away from the Earth to its current position, about 370,000 kilometers away.

But Moon has the same impact on the Earth. The same tidal forces that cause the tides on Earth are slowing down the Earth’s rotation bit by bit. And the Moon is continuing to drift away a few centimeters a year to compensate.

It’s hard to estimate exactly when, but over the course of tens of billions of years, the Earth will become locked to the Moon, just like Pluto and Charon.

Pluto and Charon are tidally locked to each other. Credit: NASA/JHUAPL/SwRI
Pluto and Charon are tidally locked to each other. Credit: NASA / JHUAPL / SwRI
Of course, this will be long after the Sun has died as a red giant. And there’s no way to know what kind of mayhem that’ll cause to the Earth-Moon system. Other planets in the Solar System may shift around, and maybe even eject the Earth into space, taking the Moon with it.

What about the Sun? Is it possible for the Earth to eventually lock gravitationally to the Sun?

Astronomers have found extrasolar planets orbiting other stars which are tidally locked. But they’re extremely close, well within the orbit of Mercury.

Here in our Solar System, we’re just too far away from the Sun for the Earth to lock to it. The gravitational influence of the other planets like Venus, Mars and Jupiter perturb our orbit and keep us from ever locking. Without any other planets in the Solar System, though, and with a Sun that would last forever, it would be an inevitability.

It is theoretically possible that the Earth will tidally lock to the Moon in about 50 billion years or so. Assuming the Earth and Moon weren’t consumed during the Sun’s red giant phase. I guess we’ll have to wait and see.

The post When Will Earth Lock to the Moon? appeared first on Universe Today.

The Laws Of Cosmology May Need A Re-Write

The Laws Of Cosmology May Need A Re-Write:



A map of the CMB as captured by the Wilkinson Microwave Anisotropy Probe. Credit: WMAP team


Something's up in cosmology that may force us to re-write a few textbooks. It's all centred around the measurement of the expansion of the Universe, which is, obviously, a pretty key part of our understanding of the cosmos.The expansion of the Universe is regulated by two things: Dark Energy and Dark Matter. They're like the yin and yang of the cosmos. One drives expansion, while one puts the brakes on expansion. Dark Energy pushes the universe to continually expand, while Dark Matter provides the gravity that retards that expansion. And up until now, Dark Energy has appeared to be a constant force, never wavering.How is this known? Well, the Cosmic Microwave Background (CMB) is one way the expansion is measured. The CMB is like an echo from the early days of the Universe. It's the evidence left behind from the moment about 380,000 years after the Big Bang, when the rate of expansion of the Universe stabilized. The CMB is the source for most of what we know of Dark Energy and Dark Matter. (You can hear the CMB for yourself by turning on a household radio, and tuning into static. A small percentage of that static is from the CMB. It's like listening to the echo of the Big Bang.)The CMB has been measured and studied pretty thoroughly, most notably by the ESA's Planck Observatory, and by the Wilkinson Microwave Anisotropy Probe (WMAP). The Planck, in particular, has given us a snapshot of the early Universe that has allowed cosmologists to predict the expansion of the Universe. But our understanding of the expansion of the Universe doesn't just come from studying the CMB, but also from the Hubble Constant.The Hubble Constant is named after Edwin Hubble, an American astronomer who observed that the expansion velocity of galaxies can be confirmed by their redshift. Hubble also observed Cepheid variable stars, a type of standard candle that gives us reliable measurements of distances between galaxies. Combining the two observations, the velocity and the distance, yielded a measurement for the expansion of the Universe.So we've had two ways to measure the expansion of the Universe, and they mostly agree with each other. There've been discrepancies between the two of a few percentage points, but that has been within the realm of measurement errors.But now something's changed.In a new paper, Dr. Adam Riess of Johns Hopkins University, and his team, have reported a more stringent measurement of the expansion of the Universe. Riess and his team used the Hubble Space Telescope to observe 18 standard candles in their host galaxies, and have reduced some of the uncertainty inherent in past studies of standard candles.The result of this more accurate measurement is that the Hubble constant has been refined. And that, in turn, has increased the difference between the two ways the expansion of the Universe is measured. The gap between what the Hubble constant tells us is the rate of expansion, and what the CMB, as measured by the Planck spacecraft, tells us is the rate of expansion, is now 8%. And 8% is too large a discrepancy to be explained away as measurement error.The fallout from this is that we may need to revise our standard model of cosmology to account for this, somehow. And right now, we can only guess what might need to be changed. There are at least a couple candidates, though.It might be centred around Dark Matter, and how it behaves. It's possible that Dark Matter is affected by a force in the Universe that doesn't act on anything else. Since so little is known about Dark Matter, and the name itself is little more than a placeholder for something we are almost completely ignorant about, that could be it.Or, it could be something to do with Dark Energy. Its name, too, is really just a placeholder for something we know almost nothing about. Maybe Dark Energy is not constant, as we have thought, but changes over time to become stronger now than in the past. That could account for the discrepancy.A third possibility is that standard candles are not the reliable indicators of distance that we thought they were. We've refined our measurements of standard candles before, maybe we will again.Where this all leads is open to speculation at this point. The rate of expansion of the Universe has changed before; about 7.5 billion years ago it accelerated. Maybe it's changing again, right now in our time. Since Dark Energy occupies so-called empty space, maybe more of it is being created as expansion continues. Maybe we're reaching another tipping or balancing point.The only thing certain is that it is a mystery. One that we are driven to understand.

The post The Laws Of Cosmology May Need A Re-Write appeared first on Universe Today.

What Causes Air Pollution?

What Causes Air Pollution?:



Carbon dioxide in Earth's atmosphere if half of global-warming emissions are not absorbed. Credit: NASA/JPL/GSFC


By definition, pollution refers to any matter that is "out of place". In other words, it is what happens when toxins, contaminants, and other harmful products are introduced into an environment, disrupting its normal patterns and functions. When it comes to our atmosphere, pollution refers to the introduction of chemicals, particulates, and biological matter that can be harmful to humans, plants and animals, and cause damage to the natural environment.Whereas some causes of pollution are entirely natural - being the result of sudden changes in temperature, seasonal changes, or regular cycles - others are the result of human impact (i.e. anthropogenic, or man-made). More and more, the effects of air pollution on our planet, especially those that result from human activity, are of great concern to developers, planners and environmental organizations, given the long-term effect they can have.By composition, Earth's atmosphere is made up of nitrogen gas (78%), oxygen gas (21%), and other trace gases (such as argon and carbon dioxide). This balance is essential to all life here on Earth, so the introduction of pollutants can have a profound and damaging effect. All told, pollution can take many forms, like carbon compounds such as carbon monoxide (CO) and carbon dioxide (CO²). sulfuric compounds like sulfur dioxide (SO²), methane, radioactive decay, or toxic chemicals.In addition, air pollution can be divided into Primary and Secondary types of pollutants. Whereas primary pollutants are caused by primary sources - i.e. the direct result of processes (such as industrial emissions or volcanic eruptions ) - secondary pollutants are the results of intermingling and reactions by primary pollutants (such as carbon emissions and water vapor, which creates smog).

Natural Causes:

Natural forms of pollution are those that result from naturally-occurring phenomena. This means they are caused by periodic activities that are not man-made or the result of human activity. What's more, these sources of pollution are subject to natural cycles, being more common under certain conditions and less common under others. Being part of Earth's natural climatic variations also means that they are sustainable over long periods of time.Dust and Wildfires: In large areas of open land that have little to no vegetation, and are particularly dry due to a lack of precipitation, wind can naturally create dust storms. This particulate matter, when added to the air, can have a natural warming effect and can also be a health hazard for living creatures. Particulate matter, when scattered into regions that have natural vegetation, can also be a natural impediment to photosynthesis.Wildfires are a natural occurrence in wooded areas when prolonged dry periods occur, generally as a result of season changes and a lack of precipitation. The smoke and carbon monoxide caused by these fires contribute to carbon levels in the atmosphere, which allows for greater warming by causing a Greenhouse Effect.Animal and Vegetation: Animal digestion (particularly by cattle) is another cause of natural air pollution, leading to the release of methane, another greenhouse gas. In some regions of the world, vegetation - such as black gum, poplar, oak, and willow trees - emits significant amounts of volatile organic compounds (VOCs) on warmer days. These react with primary anthropogenic pollutants - specifically nitrogen oxides, sulfur dioxide and carbon compounds - to produce low-lying seasonal hazes that are rich in ozone.Volcanic Activity: Volcanic eruptions are a major source of natural air pollution. When an eruption occurs, it produces tremendous amounts of sulfuric, chlorine, and ash products, which are released into the atmosphere and can be picked up by winds to be dispersed over large areas. Additionally, compounds like sulfur dioxide and volcanic ash have been known to have a natural cooling effect, due to their ability to reflect solar radiation.

Anthropogenic Causes:

But by far the greatest contributing to air pollution today are those that are a result of human impact - i.e. man-made causes. These are largely the result of human reliance on fossil fuels and heavy industry, but can also be due to the accumulation of waste, modern agriculture, and other man-made processes.Fossil-Fuel Emissions: The combustion of fossil fuels like coal, petroleum and other factory combustibles is a major cause of air pollution. These are generally used in power plants, manufacturing facilities (factories) and waste incinerators, as well as furnaces and other types of fuel-burning heating devices. Providing air conditioning and other services also requires significant amounts of electricity, which in turn leads to more emissions.According to the Union of Concerned Scientists, industry accounts for 21% of greenhouse gas emissions in the US, while electricity generation accounted for another 31%. Meanwhile, emissions caused by gasoline-burning vehicles - i.e. CO, CO², nitrogen oxides, particulates and water vapor  - are also a significant source of air pollution.A study conducted by the UCS in 2013 showed that transportation accounted for more than half of the carbon monoxide and nitrogen oxides, and almost a quarter of the hydrocarbons emitted into the air in the US. Globally, the situation is similar, with minor variations according to sector. According to the IPCC Fifth Assessment Report (2014), industry accounted for 21% of total greenhouse gas emissions, electricity and heat production for another 25%, and transportation accounted for 14%.Agriculture and Animal Husbandry: Greenhouse gas emissions from agriculture (aka. the cultivation of crops and livestock) is created by a combination of factors, one is the production of methane by cattle. Another cause is deforestation, where the need for pastureland and growing fields requires the removal of trees that would otherwise sequester carbon and clean the air.According to the IPCC Fifth Assessment Report, agriculture accounts for 24% of annual emissions. However, this estimate does not include the CO2 that ecosystems remove from the atmosphere by sequestering carbon in biomass, dead organic matter and soils, which offset approximately 20% of emissions from this sector.Waste: Landfills are also known to generate methane, which is not only a major greenhouse gas, but also an asphyxiant and highly flammable and potentially hazardous if a landfills grow unchecked. Population growth and urbanization have a proportional relationship with the production of waste, which in turn leads to greater demand for dumping grounds that are far removed from urban environments. These locations thus became a significant source of methane production.https://upload.wikimedia.org/wikipedia/commons/transcoded/c/ca/Human_Fingerprint_on_Global_Air_Quality.webm/Human_Fingerprint_on_Global_Air_Quality.webm.480p.webmFor some time, environmental scientists have been aware that the Earth has several self-regulating mechanisms. When it comes to the Earth's atmosphere, these mechanisms allow for the sequestration of carbon and other pollutants, ensuring that the balance of its ecosystem remains unaffected. Unfortunately, the growing impact humanity has had on the planet is threatening to permanently alter that balance.Basically, we are adding pollutants to the air (as well as the oceans and land masses) faster than the Earth's natural mechanisms can remove them. Ad the results of this are being felt in terms of acid rain, smog, global warming, and a number of health problems that can be directly attributed to exposure to these harmful pollutants. If we intend to go on living on planet Earth, then sustainability and less pollution need to be our goals!We have written many articles about air pollution for Universe Today. Here's Air Pollution Linked To Growth Of Life In Oceans, Could Nitrogen Pollution Give Tropical Flora a Much Needed Boost?, and How Does Carbon Capture Work?For more information, check out Visible Earth Homepage. And here's a link to NASA's Earth Observatory.Astronomy Cast also has episodes about planet Earth and humanity's impact on the environment - Episode 51: Earth, and Episode 308: Climate Change.

The post What Causes Air Pollution? appeared first on Universe Today.

Hawking Supports Tiny Spacecraft To Alpha Centauri

Hawking Supports Tiny Spacecraft To Alpha Centauri:



Artist’s impression of the planet around Alpha Centauri B. Credit: ESO


We know that Earth will die.Even if we beat global warming, and survive long enough to face and survive the next ice age, Earth will still die. Even if we build a peaceful civilization, protect the planet from asteroids, fight off mutant plagues and whatever else comes our way, life on Earth will die. No matter what we do, the Sun will reach the end of its life, and render Earth uninhabitable.So reaching for the stars is imperative. What sounds unrealistic to a great many people is a matter of practicality for people knowledgeable about space. To survive, we must have more than Earth.A project launched by billionaire Yuri Milner, and backed by Mark Zuckerberg, intends to send tiny spacecraft to our nearest stellar neighbour, the Alpha Centauri system. With an expert group assembled to gauge the feasibility, and with the support of eminent cosmologist Stephen Hawking, this idea is gaining traction.The distance to the Centauri system is enormous: 4.3 light years, or 1.34 parsecs. The project plans to use lasers to propel the craft, which should mean the travel time would be approximately 30 years, rather than the 30,000 year travel time that current technology restricts us to.[embed]https://www.youtube.com/watch?v=U2zCo6MCcCA[/embed]Of course, there are still many technological hurdles to overcome. The laser propulsion system itself is still only a nascent idea. But theoretically it's pretty sound, and if it can be mastered, should be able to propel space vehicles at close to relativistic speeds.There are other challenges, of course. The tiny craft will need robust solar sails as part of the propulsion system. And any instruments and cameras would have to be miniaturized, as would any communication equipment to send data back to Earth. But in case you haven't been paying attention, humans have a pretty good track record of miniaturizing electronics.Though the craft proposed are tiny, no larger than a microchip, getting them to the Alpha Centauri system is a huge step. Who knows what we'll learn? But if we're ever to explore another solar system, it has to start somewhere. And since astronomers think it's possible that the Centauri system could have potentially habitable planets, it's a great place to start.

The post Hawking Supports Tiny Spacecraft To Alpha Centauri appeared first on Universe Today.

NASA Discovers 72 New Asteroids Near Earth

NASA Discovers 72 New Asteroids Near Earth:



Artist's impression of a Near-Earth Asteroid passing by Earth. Credit: ESA


Of the more than 600,000 known asteroids in our Solar System, almost 10 000 are known as Near-Earth Objects (NEOs). These are asteroids or comets whose orbits bring them close to Earth's, and which could potentially collide with us at some point in the future. As such, monitoring these objects is a vital part of NASA's ongoing efforts in space. One such mission is NASA's Near-Earth Object Wide-field Survey Explorer (NEOWISE), which has been active since December 2013.And now, after two years of study, the information gathered by the mission is being released to the public. This included, most recently, NEOWISE's second year of survey data, which accounted for 72 previously unknown objects that orbit near to our planet. Of these, eight were classified as potentially hazardous asteroids (PHAs), based on their size and how closely their orbits approach Earth.Originally launched back in 2009 as the Wide-field Survey Explorer (WISE), the spacecraft relied on its infrared telescope to look for previously undetected star clusters and main belt asteroids. In February of 2011, the mission ended and the spacecraft was put into hibernation. As of December 2013, it was reactivated for the purpose of surveying Near-Earth Objects (i.e. comets and asteroids) for the remainder of its service life.This mission not only involves scanning for NEOs at infrared wavelengths, but also characterizing previously known asteroids and comets to provide information about their sizes and compositions. James Bauer, the mission's deputy principal investigator, explained NEOWISE's operations to Universe Today via email:

"NEOWISE detects asteroids and comets, both near to Earth and further away, in the asteroid Main Belt for example, using infrared light. Because we look in the thermal infrared, the part of the spectrum where these small solar-system bodies are re-emitting the light they absorbed at other wavelengths, we can detect some of the darkest ones more easily than ground-based observatories, which look at their reflected light from the Sun. We can also get a better idea of the sizes, based on how much infrared light they re-emit. This way we detect and characterize Near Earth Objects that we may want to visit in the near future, and find new ones that may present impact risks as well as opportunities for exploration. NEOWISE has detected over 500 NEOs to date, including more than 81 discovered."
Paired with ground-based telescopes that examine space in visible-light wavelengths, the data it has provided has told us much in the past two years about asteroids within our Solar System. Since beginning its "second life", the NEOWISE mission has taken millions of images of the sky and measured more than 19,000 asteroids and comets.In addition to characterizing thousands of asteroids and identifying several new ones, the surveys revealed some interesting facts about NEOs that will make monitoring them easier, and help us mount missions to one someday. As Dr. Amy Mainzer, the principal investigator of the NEOWISE mission at NASA's Jet Propulsion Laboratory, told Universe Today via email:

"NEOWISE results indicate that about a third of the NEOs are extremely dark, which affects how we plan future surveys. With our IR measurements, we can determine NEO sizes, which helps us figure out how much energy a potential impactor would have. Objects that make close approaches to Earth offer both opportunity and risk: asteroids that make close approaches are more likely to be easier to get to from Earth. By finding close approaching NEOs, we can also find the most accessible destinations for future exploration."
Of the 19,000 asteroids studied, the mission team was able to identify 439 of them as NEOs, and further determined that eight of them can be classified as potentially hazardous asteroids (PHAs). But before anyone gets to worrying that these objects might collide with us someday, it would be good to keep some statistics in mind.For starters, since NASA and other space agencies began searching the Solar System for asteroids that have orbits that bring them close to Earth, some 14,166 NEOs have been discovered. What's more, the vast majority (over 13,000) have only been discovered since the year 2000, and over half since 2010. Of these, roughly half (7077) measure 140 meters in diameter.Sounds scary, doesn't it? But not so much when you consider that of these, only 879 are large enough to ever pose a serious threat to Earth (i.e. measuring 1 km or more in diameter). And whereas small objects (i.e. those averaging 4 meters or 13 feet in diameter) strike Earth about once a year, asteroids measuring 1 km or more in diameter have been known to hit Earth at an average of only twice every one million years.Of course, incidents like the Chelyabinsk meteorite (which measured 20 meters in diameter) remind us that even small NEOs that break up in the atmosphere can have a damaging effect - which in this case included 1,491 reported injuries and $33 million USD in property damage. However, the vast majority of the injuries caused by the airburst explosion were due to a lack of prior warning. Had the population been warned in advance, it is likely that most (if not all) of the injuries could have been prevented.Knowing precisely where NEOs (and PHAs) are with respect to Earth, their sizes, and what paths their orbits will take, are all crucial to making sure that, in the unlikely event that any of them hit Earth, that they don't cause harm. And thanks to NEOWISE, we've now got tabs on eight more of them. And until such time as we can create some kind of orbital defense platform to shoot incoming PHAs (I'm thinking guided missiles and laser guns!) knowing is all of the battle!And be sure to check out the new NASA movie below, which beautifully visualizes the data collected by NEOWISE so far:https://youtu.be/omnznsZThHAFurther Reading: NASA

The post NASA Discovers 72 New Asteroids Near Earth appeared first on Universe Today.

Are there Storms on the Moon?

Are there Storms on the Moon?:

Here on Earth, we’re always concerned with the weather.

“OK Google, am I going to need an umbrella tomorrow?”

[Google] No, rain is not expected tomorrow in Curtney. The forecast is 20 degrees and partly cloudy.

Uh, it’s pronounced “Courtenay”.

Fine, what if I lived on the Moon? OK Google, am I going to need an umbrella tomorrow on the Moon?

[Google] …

Let’s take Google’s silence for uncertainty.

The names of geological features on the Moon sure evoke mental images of weather. There’s the Ocean of Storms, also known as Oceanus Procellarum, or the Ocean of Clouds – aka Mare Nubium. In fact, most of the regions of the Moon are named after oceans. That’s got to count for something, right?

Many of the features on the moon are named as oceans. Credit: NASA
Many of the features of the moon were thought to be oceans. Credit: NASA
They got these names because the early astronomers thought they were seeing actual oceans on the Moon. They imagined vast seas, where heroic 6-legged creepy bug people plied the icy waves seeking fame, fortune and lunar plunder. I don’t know, like gold cheese or something. Seriously, they were making a lot of this stuff up until telescopes were invented.

But when the NASA astronauts finally set foot on the Moon, they knew they wouldn’t need to pack their snorkeling gear because there weren’t any oceans on the Moon, or really any atmosphere. The Moon is almost as dead and lifeless as space itself.

The storms we see battering the astronauts on every Mars science fiction story just can’t happen on the Moon because there’s no air there.

There’s an ongoing lethal radiation solar wind blowing from the Sun and deep space, but nothing that you’d be able to windsurf too.

So why isn’t there an atmosphere on the Moon? It all comes down to gravity. The Moon has about 1% of the mass of the Earth, which means that it doesn’t have enough gravity to hold onto any gas atmosphere. Anything that it did have would have been blown away by the solar wind billions of years ago.

We did a whole episode on what it would take to terraform the Moon, and it turns out you’d need to constantly replenish the atmosphere.

In fact, this is one of the reasons why the Martian atmosphere is so thin. It was probably thicker in the past, but the solar winds stripped off all the lighter atmosphere long ago. Now it’s just 1% the thickness of the Earth’s atmosphere.

Now, I’ve said that the Moon has almost no atmosphere. But almost no means partly yes. There is in fact an incredibly thin atmosphere surrounding the Moon which measures about a hundred trillionth the thickness of the Earth’s atmosphere.

There are a few sources of this atmosphere. First there’s volcanic outgassing that comes from the Moon. this contributes a little helium and radon. Then there’s the constant micrometeorite bombardment that kicks up pulverized lunar regolith.

Lunar sunrise sketches drawn by Commander E. A. Cernan during the Apollo 17 mission. Credit: NASA

Lunar sunrise sketches drawn by Commander E. A. Cernan during the Apollo 17 mission. Credit: NASA
But perhaps the strangest atmospheric feature is a storm that does rage across the surface of the Moon right at the terminator, the exact line between the Moon’s day side and its night side. It turns out the day side of the Moon is positively charged, and the night side is negatively charged.

As the terminator moves, the polarity of the dust flips and it drives it sideways. In fact, the astronauts who walked on the Moon actually reported seeing this. They saw bands or twilight rays in the sky around lunar sunrise/sunset.

Without a thick atmosphere, the surface of the Moon just doesn’t have any appreciable weather and definitely doesn’t have storms like we have on Earth. Mark Watney will need some other reason than weather to be stuck behind on the Moon.

The post Are there Storms on the Moon? appeared first on Universe Today.

2016 Eta Aquarid Meteor Shower Peaks May 5-6

2016 Eta Aquarid Meteor Shower Peaks May 5-6:



A bright Eta Aquarid earthgrazer streaks across the northern lights in May 2013. Credit: Bob King


Itching to watch a meteor shower and don't mind getting up at an early hour? Good because this should be a great year for the annual Eta Aquarid (AY-tuh ah-QWAR-ids) shower which peaks on Thursday and Friday mornings May 5-6. While the shower is best viewed from tropical and southern latitudes, where a single observer might see between 25-40 meteors an hour, northern views won't be too shabby. Expect to see between 10-15 per hour in the hours before dawn.



Most showers trace their parentage to a particular comet. The Perseids of August originate from dust strewn along the orbit of comet 109P/Swift-Tuttle, which drops by the inner solar system every 133 years after “wintering” for decades just beyond the orbit of Pluto.







The upcoming Eta Aquarids  have the best known and arguably most famous parent of all: Halley’s Comet. Twice each year, Earth’s orbital path intersects dust and minute rock particles strewn by Halley during its cyclic 76-year journey from just beyond Uranus to within the orbit of Venus.



Our first pass through Halley’s remains happens this week, the second in late October during the Orionid meteor shower. Like bugs hitting a windshield, the grains meet their demise when they smash into the atmosphere at 147,000 mph (237,000 km/hr) and fire up for a brief moment as meteors. Most comet grains are only crumb-sized and don't have a chance of reaching the ground as meteorites. To date, not a single meteorite has ever been positively associated with a particular shower.







The farther south you live, the higher the shower radiant will appear in the sky and the more meteors you’ll spot.  A low radiant means less sky where meteors might be seen. But it also means visits from "earthgrazers". These are meteors that skim or graze the atmosphere at a shallow angle and take many seconds to cross the sky. Several years back, I saw a couple Eta Aquarid earthgrazers during a very active shower. One other plus this year — no moon to trouble the view, making for ideal conditions especially if you can observe from a dark sky.



From mid-northern latitudes the radiant or point in the sky from which the meteors will appear to originate is low in the southeast before dawn. At latitude 50° north the viewing window lasts about 1 1/2 hours before the light of dawn encroaches; at 40° north, it’s a little more than 2 hours. If you live in the southern U.S. you’ll have nearly 3 hours of viewing time with the radiant 35° high.







Grab a reclining chair, face east and kick back for an hour or so between 3 and 4:30 a.m. An added bonus this spring season will be hearing the first birdsong as the sky brightens toward the end of your viewing session. And don't forget the sights above: a spectacular Milky Way arching across the southern sky and the planets of Mars and Saturn paired up in the southwestern sky.



Meteor shower members can appear in any part of the sky, but if you trace their paths in reverse, they’ll all point back to the radiant. Other random meteors you might see are called sporadics and not related to the Eta Aquarids. Meteor showers take on the name of the constellation from which they originate.



Aquarius is home to at least two showers. This one’s called the Eta Aquarids because it emanates from near the star Eta Aquarii. An unrelated shower, the Delta Aquarids, is active in July and early August. Don't sweat it if weather doesn't cooperate the next couple mornings. The shower will be active throughout the weekend, too.



Happy viewing and clear skies!

The post 2016 Eta Aquarid Meteor Shower Peaks May 5-6 appeared first on Universe Today.