Wednesday, December 3, 2014

Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft

Pluto’s Closeup Will Be Awesome Based On Jupiter Pics From New Horizons Spacecraft:



A montage of images taken of Jupiter and its moon Io (foreground) by the New Horizons mission in 2007. Jupiter is shown in infrared wavelengths while Io is close to true-color. On top of Io is an eruption from the volcano Tvashtar. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


A montage of images taken of Jupiter and its moon Io (foreground) by the New Horizons mission in 2007. Jupiter is shown in infrared wavelengths while Io is close to true-color. On top of Io is an eruption from the volcano Tvashtar. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
New Horizons, you gotta wake up this weekend. There’s so much work ahead of you when you reach Pluto next year! The spacecraft has been sleeping quietly for weeks in its last great hibernation before the dwarf planet close encounter in July. On Saturday (Dec. 6), the NASA craft will open its eyes and begin preparations for that flyby.

How cool will those closeups of Pluto and its moons look? A hint comes from a swing New Horizons took by Jupiter in 2007 en route. It caught a huge volcanic plume erupting off of the moon Io, picked up new details in Jupiter’s atmosphere and gave scientists a close-up of a mysterious “Little Red Spot.” Get a taste of the fun seven years ago in the gallery below.



An eruption from the Tvashtar volcano on Io, Jupiter's moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io's surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


An eruption from the Tvashtar volcano on Io, Jupiter’s moon, in several different wavelength images taken by the New Horizons spacecraft in 2007. The left image from the Long Range Reconnaissance Imager (LORRI) shows lava glowing in the night. At top right, the Multispectral Visible Imaging Camera (MVIC) spotted sulfur and sulfor dioxide deposits on the sunny side of Io. The remaining image from the Linear Etalon Imaging Spectral Array (LEISA) shows volcanic hotspots on Io’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


Jupiter's "Little Red Spot" seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


Jupiter’s “Little Red Spot” seen by the New Horizons spacecraft in 2007. The spot turned red in 2005 for reasons scientists were then unsure of, but speculated it could be due to stuff from inside the atmosphere being stirred up by a storm surge. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


A "family portrait" of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


A “family portrait” of the four Galilean satellites around Jupiter taken by the New Horizons spacecraft and released in 2007. From left, the montage includes Io, Europa, Ganymede and Callisto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


A composite of Jupiter's bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


A composite of Jupiter’s bands (and atmospheric structures) taken in several images by the New Horizons Multispectral Visual Imaging Camera, showing differences due to sunlight and wind. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter's moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft -- even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


In February and March 2007, a huge plume erupted from the Tvashtar volcano on Jupiter’s moon Io. The image sequence taken by New Horizons showed the largest such explosion then viewed by a spacecraft — even accounting for the Galileo spacecraft that examined Io between 1996 and 2001. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo's image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


The New Horizons flyby of Io in 2007 (right) revealed a changing feature on the surface of the Jupiter moon since Galileo’s image of 1999 (left.) Inside the circle, a new volcanic eruption spewed material; other pictures showed this region was still active. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute


About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Famous Hubble Star Explosion Is Expanding, New Animation Reveals

Famous Hubble Star Explosion Is Expanding, New Animation Reveals:



The Eta Carinae nebula expands in images taken by the Hubble Space Telescope in 1995, 2001 and 2008. Image used with permission by the animation authors. Credit: Hubble, NASA, ESA. Processing and copyright: First Light, J. L. Dauvergne, P. Henarejos
Wow! One of the most famous star explosions captured by the Hubble Space Telescope — several times — shows clear evidence of expansion in this new animation. You can see here the Homunculus Nebula getting bigger and bigger between 1995 and 2008, when Hubble took pictures of the Eta Carinae star system. More details from one of the animation authors below.

“I had the idea to check the Hubble image of Eta Carinae because I know this star rather well,” wrote Philippe Henarejos, one of the authors of the animation, in an e-mail to Universe Today. Henarejos has written several times about the star for the magazine he edits, Ciel et espace (Sky and Space) and also published a French-language book on star histories.

“Telling this story, I realized that astronomers knew for a long time that the Homunculus Nebula was expanding. Also, I knew that the HST had taken many photos of this object since 1995. So I thought that thanks to the very high resolution of the HST images, it could be possible to see the expansion.”



Eta Carinae from Hubble's STIS instrument. Credit: NASA, ESA, and the Hubble SM4 ERO Team


Eta Carinae from Hubble’s STIS instrument. Credit: NASA, ESA, and the Hubble SM4 ERO Team
Along with colleague Jean-Luc Dauvergne, Henarejos tracked down two images in the archives and searched for a fixed object that wouldn’t be moving as the expansion occurred, which they decided would be two stars close to the border of the field of view. Then Dauvergne found a third image that clearly showed the expansion happening.

The two gentlemen then verified their findings with astronomer John Martin from the University of Illinois, who maintains a page on Eta Carinae. “He told me that the expansion is real,” Henarejos said.

And the animation is already getting attention. After being published in the new magazine First Light, it was featured today on the Astronomy Picture of the Day website.

Eta Carinae mysteriously brightened about 170 years ago, becoming the second-most luminous object in Earth’s night sky. Then it faded 150 years ago. Astronomers are still examining the system to see what might have caused this.



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

New Cosmological Theory Goes Inflation-Free

New Cosmological Theory Goes Inflation-Free:



This image, the best map ever of the Universe, shows the oldest light in the universe. This glow, left over from the beginning of the cosmos called the cosmic microwave background, shows tiny changes in temperature represented by color. Credit: ESA and the Planck Collaboration.


This gorgeous image of the oldest light in the Universe was created by the Planck satellite in 2013. Patterns in the hot and cold spots shown here have been perplexing scientists for years, leading some to suggest that they are evidence of new cosmology. Credit: ESA and the Planck Collaboration.
The Cosmic Microwave Background (CMB) radiation is one of the greatest discoveries of modern cosmology. Astrophysicist George Smoot once likened its existence to “seeing the face of God.” In recent years, however, scientists have begun to question some of the attributes of the CMB. Peculiar patterns have emerged in the images taken by satellites such as WMAP and Planck – and they aren’t going away. Now, in a paper published in the December 1 issue of The Astronomical Journal, one scientist argues that the existence of these patterns may not only imply new physics, but also a revolution in our understanding of the entire Universe.

Let’s recap. Thanks to a blistering ambient temperature, the early Universe was blanketed in a haze for its first 380,000 years of life. During this time, photons relentlessly bombarded the protons and electrons created in the Big Bang, preventing them from combining to form stable atoms. All of this scattering also caused the photons’ energy to manifest as a diffuse glow. The CMB that cosmologists see today is the relic of this glow, now stretched to longer, microwave wavelengths due to the expansion of the Universe.

As any fan of the WMAP and Planck images will tell you, the hallmarks of the CMB are the so-called anisotropies, small regions of overdensity and underdensity that give the picture its characteristic mottled appearance. These hot and cold spots are thought to be the result of tiny quantum fluctuations born at the beginning of the Universe and magnified exponentially during inflation.



Temperature and polarization around hot and cold spots (Credit: NASA / WMAP Science Team)


Temperature and polarization around hot and cold spots (Credit: NASA / WMAP Science Team)
Given the type of inflation that cosmologists believe occurred in the very early Universe, the distribution of these anisotropies in the CMB should be random, on the order of a Gaussian field. But both WMAP and Planck have confirmed the existence of certain oddities in the fog: a large “cold spot,” strange alignments in polarity known as quadrupoles and octupoles, and, of course, Stephen Hawking’s initials.

In his new paper, Fulvio Melia of the University of Arizona argues that these types of patterns (Dr. Hawking’s signature notwithstanding) reveal a problem with the standard inflationary picture, or so-called ΛCDM cosmology. According to his calculations, inflation should have left a much more random assortment of anisotropies than the one that scientists see in the WMAP and Planck data. In fact, the probability of these particular anomalies lining up the way they do in the CMB images is only about 0.005% for a ΛCDM Universe.

Melia posits that the anomalous patterns in the CMB can be better explained by a new type of cosmology in which no inflation occurred. He calls this model the R(h)=ct Universe, where c is the speed of light, t is the age of the cosmos, and R(h) is the Hubble radius – the distance beyond which light will never reach Earth. (This equation makes intuitive sense: Light, traveling at light speed (c) for 13.7 billion years (t), should travel an equivalent number of light-years. In fact, current estimates of the Hubble radius put its value at about 13.4 billion light-years, which is remarkably close to the more tightly constrained value of the Universe’s age.)

R(h)=ct holds true for both the standard cosmological scenario and Melia’s model, with one crucial difference: in ΛCDM cosmology, this equation only works for the current age of the Universe. That is, at any time in the distant past or future, the Universe would have obeyed a different law. Scientists explain this odd coincidence by positing that the Universe first underwent inflation, then decelerated, and finally accelerated again to its present rate.

Melia hopes that his model, a Universe that requires no inflation, will provide an alternative explanation that does not rely on such fine-tuning. He calculates that, in a R(h)=ct Universe, the probability of seeing the types of strange patterns that have been observed in the CMB by WMAP and Planck is 7–10%, compared with a figure 1000 times lower for the standard model.

So, could this new way of looking at the cosmos be a death knell for ΛCDM? Probably not. Melia himself cites a few less earth-shattering explanations for the anomalous signals in the CMB, including foreground noise, statistical biases, and instrumental errors. Incidentally, the Planck satellite is scheduled to release its latest image of the CMB this week at a conference in Italy. If these new results show the same patterns of polarity that previous observations did, cosmologists will have to look into each possible explanation, including Melia’s theory, more intensively.



About 

Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF REU intern, investigating the impact of type 1a supernovae on the expansion of the Universe. In her spare time she enjoys writing about astrophysics and cosmology, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world.

Planets Could Travel Along with Rogue ‘Hypervelocity’ Stars, Spreading Life Throughout the Universe

Planets Could Travel Along with Rogue ‘Hypervelocity’ Stars, Spreading Life Throughout the Universe:



An artist's conception of a hypervelocity star that has escaped the Milky Way. Image Credit: NASA


An artist’s conception of a hypervelocity star that has escaped the Milky Way. Image Credit: NASA
Back in 1988, astronomer Jack Hills predicted a type of “rogue”star might exist that is not bound to any particular galaxy. These stars, he reasoned, were periodically ejected from their host galaxy by some sort of mechanism to begin traveling through interstellar space.

Since that time, astronomers have made numerous discoveries that indicate these rogue, traveling stars indeed do exist, and far from being an occasional phenomenon, they are actually quite common. What’s more, some of these stars were found to be traveling at extremely high speeds, leading to the designation of hypervelocity stars (HVS).

And now, in a series of papers that published in arXiv Astrophysics, two Harvard researchers have argued that some of these stars may be traveling close to the speed of light. Known as semi-relativistic hypervelocity stars (SHS), these fast-movers are apparently caused by galactic mergers, where the gravitational effect is so strong that it fling stars out of a galaxy entirely. These stars, the researchers say, may have the potential to spread life throughout the Universe.

This finding comes on the heels of two other major announcements. The first occurred in early November when a paper published in the Astrophysical Journal reported that as many as 200 billion rogue stars have been detected in a cluster of galaxies some 4 billion light years away. These observations were made by the Hubble Space Telescope’s Frontier Fields program, which made ultra-deep multiwavelength observations of the Abell 2744 galaxy cluster.

This was followed by a study published in Science, where an international team of astronomers claimed that as many as half the stars in the entire universe live outside of galaxies.

Using ESO's Very Large Telescope, astronomers have recorded a massive star moving at more than 2.6 million kilometres per hour. Stars are not born with such large velocities. Its position in the sky leads to the suggestion that the star was kicked out from the Large Magellanic Cloud, providing indirect evidence for a massive black hole in the Milky Way's closest neighbour. Credit: ESO


Image of a moving star captured by the ESO Very Large Telescope, believed to have been ejected from the Large Magellanic Cloud. Credit: ESO
However, the recent observations made by Abraham Loeb and James Guillochon of Harvard University are arguably the most significant yet concerning these rogue celestial bodies. According to their research papers, these stars may also play a role in spreading life beyond the boundaries of their host galaxies.

In their first paper, the researchers trace these stars to galaxy mergers, which presumably lead to the formation of massive black hole binaries in their centers. According to their calculations, these supermassive black holes (SMBH) will occasionally slingshot stars to semi-relativistic speeds.

“We predict the existence of a new population of stars coasting through the Universe at nearly the speed of light,” Loeb told Universe Today via email. “The stars are ejected by slingshots made of pairs of massive black holes which form during mergers of galaxies.”

These findings have further reinforced that massive compact bodies, widely known as a supermassive black holes (SMBH), exist at the center of galaxies. Here, the fastest known stars exist, orbiting the SMBH and accelerating up to speeds of 10,000 km per second (3 percent the speed of light).

According to Leob and Guillochon, however, those that are ejected as a result of galactic mergers are accelerated to anywhere from one-tenth to one-third the speed of light (roughly 30,000 – 100,000 km per second).



Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Credit: Vanderbilt University


Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Credit: Vanderbilt University
Observing these semi-relativistic stars could tell us much about the distant cosmos, according to the Harvard researchers. Compared to conventional research, which relied on subatomic particles like photons, neutrinos, and cosmic rays from distant galaxies, studying ejected stars offers numerous advantages.

“Traditionally, cosmologists used light to study the Universe but objects moving less than the speed of light offer new possibilities,” said Loeb. “For example, stars moving at different speeds allow us to probe a distant source galaxy at different look-back times (since they must have been ejected at different times in order to reach us today), in difference from photons that give us just one snapshot of the galaxy.”

In their second paper, the researchers calculate that there are roughly a trillion of these stars out there to be studied. And given that these stars were detected thanks to the Spitzer Space Telescope, it is likely that future generations will be able to study them using more advanced equipment.

All-sky infrared surveys could locate thousands of these stars speeding through the cosmos. And spectrographic analysis could tell us much about the galaxies they came from.

But how could these fast moving stars be capable of spreading life throughout the cosmos?



Could an alien spore really travel light years between different star systems? Well, as long as your theory doesn't require it to still be alive when it arrives - sure it can.


The Theory of Panspermia argues that life is distributed throughout the universe by celestial objects. Credit: NASA/Jenny Mottar
“Tightly bound planets can join the stars for the ride,” said Loeb. “The fastest stars traverse billions of light years through the universe, offering a thrilling cosmic journey for extra-terrestrial civilizations. In the past, astronomers considered the possibility of transferring life between planets within the solar system and maybe through our Milky Way galaxy. But this newly predicted population of stars can transport life between galaxies across the entire universe.”

The possibility that traveling stars and planets could have been responsible for the spread of life throughout the universe is likely to have implications as a potential addition to the Theory of Panspermia, which states that life exists throughout the universe and is spread by meteorites, comets, asteroids.

But Loeb told Universe Today that a traveling planetary system could have potential uses for our species someday.

“Our descendants might contemplate boarding a related planetary system once the Milky Way will merge with its sister galaxy, Andromeda, in a few billion years,” he said.

Further Reading: arxiv.org/1411.5022, arxiv.org/1411.5030



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Saturday, November 29, 2014

NASA Saucer Named 'Best of What's New'

NASA Saucer Named 'Best of What's New':

This artist's concept shows the test vehicle for NASA's Low-Density Supersonic Decelerator (LDSD)
This artist's concept shows the test vehicle for NASA's Low-Density Supersonic Decelerator (LDSD), designed to test landing technologies for future Mars missions. Image credit: NASA/JPL-Caltech

› Full image and caption
NASA's "flying saucer" (aka Low-Density Supersonic Decelerator project, or LDSD for short) has earned recognition from Popular Science magazine as an innovation worthy of the publication's "Best of What's New" Award in the aerospace category.

The LDSD project successfully flew a rocket-powered, saucer-shaped test vehicle into near-space in late June from the U.S. Navy's Pacific Missile Range Facility on Kauai, Hawaii. The goal of this experimental flight test, the first of three planned for the project, was to determine if the balloon-launched, rocket-powered, saucer-shaped design could reach the altitudes and airspeeds needed to test two new breakthrough technologies destined for future Mars missions.

More information on the award winners is online at:

http://bestofwhatsnew.popsci.com

NASA's Space Technology Mission Directorate funds the LDSD mission, a cooperative effort led by NASA's Jet Propulsion Laboratory in Pasadena, California. NASA's Technology Demonstration Mission program manages the mission at NASA's Marshall Space Flight Center in Huntsville, Alabama. NASA's Wallops Flight Facility in Wallops Island, Virginia, coordinated support with the Pacific Missile Range Facility, provided the core electrical systems for the test vehicle, and coordinated the balloon and recovery services for the LDSD test. The California Institute of Technology in Pasadena manages JPL for NASA.

For more information about the LDSD space technology demonstration mission:

http://go.usa.gov/N5zm

Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

David Steitz
NASA Headquarters, Washington
202-358-1730
david.steitz@nasa.gov

2014-404

NASA Issues 'Remastered' View of Jupiter's Moon Europa

NASA Issues 'Remastered' View of Jupiter's Moon Europa:

Europa's Stunning Surface The puzzling, fascinating surface of Jupiter's icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. Image credit: NASA/JPL-Caltech/SETI Institute

› Full image and caption
Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo spacecraft. This is the first time that NASA is publishing a version of the scene produced using modern image processing techniques.

The image is available at:

http://go.nasa.gov/1u36gqQ

This view of Europa stands out as the color view that shows the largest portion of the moon's surface at the highest resolution.

An earlier, lower-resolution version of the view, published in 2001, featured colors that had been strongly enhanced. The new image more closely approximates what the human eye would see. Space imaging enthusiasts have produced their own versions of the view using the publicly available data, but NASA has not previously issued its own rendition using near-natural color.

The image features many long, curving and linear fractures in the moon's bright ice shell. Scientists are eager to learn if the reddish-brown fractures, and other markings spattered across the surface, contain clues about the geological history of Europa and the chemistry of the global ocean that is thought to exist beneath the ice.

In addition to the newly processed image, a new video details why this likely ocean world is a high priority for future exploration.

The video is available at:

http://youtu.be/kz9VhCQbPAk

Hidden beneath Europa's icy surface is perhaps the most promising place in our solar system beyond Earth to look for present-day environments that are suitable for life. The Galileo mission found strong evidence that a subsurface ocean of salty water is in contact with a rocky seafloor. The cycling of material between the ocean and ice shell could potentially provide sources of chemical energy that could sustain simple life forms.

The Galileo mission was managed by NASA's Jet Propulsion Laboratory in Pasadena, California, for the agency's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology, Pasadena.

More information about Europa is available at:

http://solarsystem.nasa.gov/europa

Media Contact

Preston Dyches

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-7013

preston.dyches@jpl.nasa.gov

2014-406

Wednesday, November 19, 2014

Supernova Shock Waves, Neutron Stars, and Lobsters

Supernova Shock Waves, Neutron Stars, and Lobsters:



MSH 11-62 and G327.1-1.1*


A supernova that signals the death of a massive star sends titanic shock waves rumbling through interstellar space. An ultra-dense neutron star is usually left behind, which is far from dead, as it spews out a blizzard of high-energy particles. Two new images from NASA's Chandra X-ray Observatory provide fascinating views - including an enigmatic lobster-like feature - of the complex aftermath of a supernova.

When a massive star runs out of fuel resulting in a supernova explosion, the central regions usually collapse to form a neutron star. The energy generated by the formation of the neutron star triggers a supernova. As the outward-moving shock wave sweeps up interstellar gas, a reverse shock wave is driven inward, heating the stellar ejecta.

Meanwhile, the rapid rotation and intense magnetic field of the neutron star, a.k.a. a pulsar, combine to generate a powerful wind of high-energy particles. This so-called pulsar wind nebula can glow brightly in X-rays and radio waves.

More information at http://chandra.harvard.edu/photo/2014/msh11g327/index.html

-Megan Watzke, CXC

How Do Planets Form? Semarkona Meteorite Shows Some Clues

How Do Planets Form? Semarkona Meteorite Shows Some Clues:



Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO


Artist’s impression of a baby star still surrounded by a protoplanetary disc in which planets are forming. Credit: ESO
It may seem all but impossible to determine how the Solar System formed, given that it happened roughly 4.5 billion years ago. Luckily, much of the debris that was left over from the formation process is still available today for study, circling our Solar System in the form of rocks and debris that sometimes make their way to Earth.

Among the most useful pieces of debris are the oldest and least altered type of meteorites, which are known as chondrites. They are built mostly of small stony grains, called chondrules, that are barely a millimeter in diameter.

And now, scientists are being provided with important clues as to how the early Solar System evolved, thanks to new research based on the the most accurate laboratory measurements ever made of the magnetic fields trapped within these tiny grains.

To break it down, chondrite meteorites are pieces of asteroids — broken off by collisions — that have remained relatively unmodified since they formed during the birth of the Solar System. The chondrules they contain were formed when patches of solar nebula – dust clouds that surround young suns – was heated above the melting point of rock for hours or even days.

The dust caught in these “melting events” was melted down into droplets of molten rock, which then cooled and crystallized into chondrules. As chondrules cooled, iron-bearing minerals within them became magnetized by the local magnetic field in the gas cloud. These magnetic fields are preserved in the chondrules right on up to the present day.



A slice of the NWA 5205 meteorite from the Sahara Desert displays wall-to-wall chondrules. Credit: Bob King


A slice of the NWA 5205 meteorite from the Sahara Desert displays wall-to-wall chondrules. Credit: Bob King
The chondrule grains whose magnetic fields were mapped in the new study came from a meteorite named Semarkona – named after the town in India where it fell in 1940.

Roger Fu of MIT – working under Benjamin Weiss – was the chief author of the study; with Steve Desch of Arizona State University’s School of Earth and Space Exploration attached as co-author.

According to the study, which was published this week in Science, the measurements they collected point to shock waves traveling through the cloud of dusty gas around the newborn sun as a major factor in solar system formation.

“The measurements made by Fu and Weiss are astounding and unprecedented,” says Steve Desch. “Not only have they measured tiny magnetic fields thousands of times weaker than a compass feels, they have mapped the magnetic fields’ variation recorded by the meteorite, millimeter by millimeter.”

The scientists focused specifically on the embedded magnetic fields captured by “dusty” olivine grains that contain abundant iron-bearing minerals. These had a magnetic field of about 54 microtesla, similar to the magnetic field at Earth’s surface (which ranges from 25 to 65 microtesla).

Coincidentally, many previous measurements of meteorites also implied similar field strengths. But it is now understood that those measurements detected magnetic minerals that were contaminated by the Earth’s own magnetic field, or even from the hand magnets used by the meteorite collectors.



Artist depiction of a protoplanetary disk permeated by magnetic fields. Objects in the foregrounds are millimeter-sized rock pellets known as chondrules. Credit: Hernán Cañellas


Artist depiction of a protoplanetary disk permeated by magnetic fields. Objects in the foregrounds are millimeter-sized rock pellets known as chondrules.
Credit: Hernán Cañellas
“The new experiments,” Desch says, “probe magnetic minerals in chondrules never measured before. They also show that each chondrule is magnetized like a little bar magnet, but with ‘north’ pointing in random directions.”

This shows, he says, that they became magnetized before they were built into the meteorite, and not while sitting on Earth’s surface. This observation, combined with the presence of shock waves during early solar formation, paints an interesting picture of the early history of our Solar System.

“My modeling for the heating events shows that shock waves passing through the solar nebula is what melted most chondrules,” Desch explains. Depending on the strength and size of the shock wave, the background magnetic field could be amplified by up to 30 times. “Given the measured magnetic field strength of about 54 microtesla,” he added, “this shows the background field in the nebula was probably in the range of 5 to 50 microtesla.”

There are other ideas for how chondrules might have formed, some involving magnetic flares above the solar nebula, or passage through the sun’s magnetic field. But those mechanisms require stronger magnetic fields than what has been measured in the Semarkona samples.

This reinforces the idea that shocks melted the chondrules in the solar nebula at about the location of today’s asteroid belt, which lies some two to four times farther from the sun than the Earth’s orbits.

Desch says, “This is the first really accurate and reliable measurement of the magnetic field in the gas from which our planets formed.”

Further Reading: ASU



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

OSIRIS-REx: The Audacious Plan To Scoop An Asteroid And Fly Back To Earth

OSIRIS-REx: The Audacious Plan To Scoop An Asteroid And Fly Back To Earth:

by Elizabeth Howell on November 18, 2014


We’ve been super-excited about the Philae landing recently, the first soft landing on a comet. But imagine if the spacecraft was equipped to bring a sample of Comet 67P/Churyumov–Gerasimenko back to Earth. What sort of secrets could we learn from examining the materials of the comet up close?

That dream will remain a dream for 67P, but guess what — if all goes to plan, that idea will execute for asteroid Bennu. Check out the new video above for more details on the audacious mission; below the jump is a brief mission description.

There is a mission expected to launch in 2016 called OSIRIS-REx that will spend two years flying to the asteroid to nab a sample, then will come back to Earth in 2023 to deliver it to scientists. This is exciting because asteroids are a sort of time capsule showing how the Solar System used to be in the early days, before gravity pulled rocks and ice together to gradually form the planets and moons that we have today.

“Scientists tell us that asteroid Bennu has been a silent witness to titanic events in the solar system’s 4.6 billion year history,” NASA wrote on a website commemorating the new video. “When it returns in 2023 with its precious cargo, OSIRIS-REx will help to break that silence and retrace Bennu’s journey.”

For more information on OSIRIS-REx, check out the mission’s website.



Artist's conception of asteroid Bennu from the NASA film "Bennu's Journey." Credit: NASA/YouTube (screenshot)


Artist’s conception of asteroid Bennu from the film “Bennu’s Journey.” Credit: NASA/University of Arizona/YouTube (screenshot)


About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

The Origins of Life Could Indeed Be “Interstellar”

The Origins of Life Could Indeed Be “Interstellar”:



Star-forming region in interstellar space. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration


Star-forming region in interstellar space.
Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration
Some of science’s most pressing questions involve the origins of life on Earth. How did the first lifeforms emerge from the seemingly hostile conditions that plagued our planet for much of its history? What enabled the leap from simple, unicellular organisms to more complex organisms consisting of many cells working together to metabolize, respire, and reproduce? In such an unfamiliar environment, how does one even separate “life” from non-life in the first place?

Now, scientists at the University of Hawaii at Manoa believe that they may have an answer to at least one of those questions. According to the team, a vital cellular building block called glycerol may have first originated via chemical reactions deep in interstellar space.


Glycerol is an organic molecule that is present in the cell membranes of all living things. In animal cells this membrane takes the form of a phospholipid bilayer, a dual-layer membrane that sandwiches water-repelling fatty acids between outer and inner sheets of water-soluble molecules. This type of membrane allows the cell’s inner aqueous environment to remain separate and protected from its external, similarly watery world. Glycerol is a vital component of each phospholipid because it forms the backbone between the molecule’s two characteristic parts: a polar, water-soluble head, and a non-polar, fatty tail.

Many scientists believe that cell membranes such as these were a necessary prerequisite to the evolution of multicellular life on Earth; however, their complex structure requires a very specific environment – namely, one low in calcium and magnesium salts with a fairly neutral pH and stable temperature. These carefully balanced conditions would have been hard to come by on the prehistoric Earth.

Icy bodies born in interstellar space offer an alternative scenario. Scientists have already discovered organic molecules such as amino acids and lipid precursors in the Murchison meteorite that landed in Australia in 1969. Although the idea remains controversial, it is possible that glycerol could have been brought to Earth in a similar manner.



The Murchison Meteorite. Image credit: James St. John


The Murchison Meteorite.
Image credit: James St. John
Meteors typically form from tiny crumbs of material in cold molecular clouds, regions of gaseous hydrogen and interstellar dust that serve as the birthplace of stars and planetary systems. As they move through the cloud, these grains accumulate layers of frozen water, methanol, carbon dioxide, and carbon monoxide. Over time, high-energy ultraviolet radiation and cosmic rays bombard the icy fragments and cause chemical reactions that enrich their frozen cores with organic compounds. Later, as stars form and ambient material falls into orbit around them, the ices and the organic molecules they contain are incorporated into larger rocky bodies such as meteors. The meteors can then crash into planets like ours, potentially seeding them with building blocks of life.

In order to test whether or not glycerol could be created by the high-energy radiation that typically bombards interstellar ice grains, the team at the University of Hawaii designed their own meteorites: small bits of icy methanol cooled to 5 degrees Kelvin. After blasting their model ices with energetic electrons meant to mimic the effects of cosmic rays, the scientists found that some molecules of methanol within the ices did, in fact, transform into glycerol.

While this experiment appears to be a success, scientists realize that their laboratory models do not exactly replicate conditions in interstellar space. For instance, methanol traditionally makes up only about 30% of the ice in space rocks. Future work will investigate the effects of high-energy radiation on model ices made primarily of water. High-energy electrons fired in a lab are also not a perfect substitute for true cosmic rays and do not represent effects on ice that may result from ultraviolet radiation in interstellar space.

More research is necessary before scientists can draw any global conclusions; however, this study and its predecessors do provide compelling evidence that life as we know it truly could have come from above.



About 

Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF REU intern, investigating the impact of type 1a supernovae on the expansion of the Universe. In her spare time she enjoys writing about astrophysics and cosmology, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world.

Shortly After Mars Comet, NASA’s New Red Planet Spacecraft Officially Starts Mission

Shortly After Mars Comet, NASA’s New Red Planet Spacecraft Officially Starts Mission:



MAVEN's Ultraviolet Imaging Spectrograph (IUVS) uses limb scans to map the chemical makeup and vertical structure across Mars' upper atmosphere. It detected strong enhancements of magnesium and iron from ablating incandescing dust from Comet Siding Spring. Credit: NASA


MAVEN’s Ultraviolet Imaging Spectrograph (IUVS) uses limb scans to map the chemical makeup and vertical structure across Mars’ upper atmosphere. It detected strong enhancements of magnesium and iron from ablating incandescing dust from Comet Siding Spring. Credit: NASA
NASA’s newest Mars spacecraft is “go” for at least a year — and potentially longer. After taking a time-out from commissioning to observe Comet Siding Spring whizz by the Red Planet in October, the Mars Atmosphere and Volatile Evolution (MAVEN) officially began its science mission Monday (Nov. 17). And so far things are going well.

“From the observations made both during the cruise to Mars and during the transition phase, we know that our instruments are working well,” stated principal investigator Bruce Jakosky, who is with NASA’s Goddard Space Flight Center in Maryland. “The spacecraft also is operating smoothly, with very few ‘hiccups’ so far. The science team is ready to go.”

MAVEN arrived in orbit Sept. 16 after facing down and overcoming a potential long delay for its mission. NASA and other federal government departments were in shutdown while MAVEN was in final launch preparations, but the mission received a special waiver because it is capable of communicating with the rovers on Mars. Given the current relay spacecraft are aging, MAVEN could serve as the next-generation spacecraft if those ones fail.



Three views of an escaping atmosphere, obtained by MAVEN’s Imaging Ultraviolet Spectrograph. By observing all of the products of water and carbon dioxide breakdown, MAVEN's remote sensing team can characterize the processes that drive atmospheric loss on Mars. Image Credit: University of Colorado/NASA


Three views of an escaping atmosphere, obtained by MAVEN’s Imaging Ultraviolet Spectrograph. By observing all of the products of water and carbon dioxide breakdown, MAVEN’s remote sensing team can characterize the processes that drive atmospheric loss on Mars.
Image Credit:
University of Colorado/NASA
But that’s providing that MAVEN can last past the next year in terms of hardware and funding. Meanwhile, its primary science mission is better understanding how the atmosphere of Mars behaves today and how it has changed since the Red Planet was formed.

“The nine science instruments will observe the energy from the Sun that hits Mars, the response of the upper atmosphere and ionosphere, and the way that the interactions lead to loss of gas from the top of the atmosphere to space,” Jakosky added.

“Our goal is to understand the processes by which escape to space occurs, and to learn enough to be able to extrapolate backwards in time and determine the total amount of gas lost to space over time. This will help us understand why the Martian climate changed over time, from an early warmer and wetter environment to the cold, dry planet we see today.”

Source: NASA



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Warm, Flowing Water on Mars Was Episodic, Study Suggests

Warm, Flowing Water on Mars Was Episodic, Study Suggests:



Credit: NASA/MRO/Rendering: James Dickson, Brown University


New research suggests that warmer temperatures and water flow on ancient Mars were likely related to periodic volcanism early in the planet’s history. Credit: NASA/MRO/Rendering: James Dickson, Brown University
Though the surface of Mars is a dry, dessicated and bitterly cold place today, it is strongly believed that the planet once had rivers, streams, lakes, and flowing water on its surface. Thanks to a combination of spacecraft imagery, remote sensing techniques and surface investigations from landers and rovers, ample evidence has been assembled to support this theory.

However, it is hard to reconcile this view with the latest climate models of Mars which suggest that it should have been a perennially cold and icy place. But according to a new study, the presence of warm, flowing water may have been an episodic occurrence, something that happened for decades or centuries when the planet was warmed sufficiently by volcanic eruptions and greenhouse gases.

The study, which was conducted by scientists from Brown University and Israel’s Weizmann Institute of Science, suggests that warmth and water flow on ancient Mars were probably episodic, related to brief periods of volcanic activity that spewed tons of greenhouse-inducing sulfur dioxide gas into the atmosphere.

The work combines the effect of volcanism with the latest climate models of early Mars and suggests that periods of temperatures warm enough for water to flow likely lasted for only tens or hundreds of years at a time.

The notion that Mars had surface water predates the space age by centuries. Long before Percival Lowell’s observed what he thought were “canals” on the Martian surface in 1877, the polar ice caps and dark spots on the surface were being observed by astronomers who thought that they were indications of liquid water.



Curiosity found evidence of an ancient, flowing stream on Mars at a few sites, including the "Hottah" rock outcrop pictured here. Credit: NASA/JPL


Curiosity found evidence of an ancient, flowing stream on Mars at a few sites, including the “Hottah” rock outcrop pictured here. Credit: NASA/JPL
But with all that’s been learned about Mars in recent years, the mystery of the planet’s ancient water has only deepened. The latest generation of climate models for early Mars suggests that the atmosphere was too thin to heat the planet enough for water to flow. Billions of years ago, the sun was also much dimmer than it is today, which further complicates this picture of a warmer early Mars.

“These new climate models that predict a cold and ice-covered world have been difficult to reconcile with the abundant evidence that water flowed across the surface to form streams and lakes,” said James W. Head, professor of earth, environmental and planetary sciences at Brown University and co-author of the new paper with Weizmann’s Itay Halevy. “This new analysis provides a mechanism for episodic periods of heating and melting of snow and ice that could have each lasted decades to centuries.”

Halevy and Head explored the idea that heating may have been linked to periodic volcanism. Many of the geological features that suggest water was flowing on the Martian surface have been dated to 3.7 billion years ago, a time when massive volcanoes are thought to have been active.

And whereas on Earth, widespread volcanism has often led to global dimming rather than warming – on a count of sulfuric acid particles reflecting the sun’s rays – Head and Halevy think the effects may have been different in Mars’ dusty atmosphere.

To test this theory, they created a model of how sulfuric acid might react with the widespread dust in the Martian atmosphere. The work suggests that those sulfuric acid particles would have glommed onto dust particles and reduced their ability to reflect the sun’s rays. Meanwhile, sulfur dioxide gas would produced enough of greenhouse effect to warm the Martian equatorial region so that water could flow.



Image of the McMurdo Dry Valleys, Antarctica, acquired by Landsat 7’s Enhanced Thematic Mapper plus (ETM+) instrument. Credit: NASA/EO


Image of the McMurdo Dry Valleys, Antarctica, acquired by Landsat 7’s Enhanced Thematic Mapper plus (ETM+) instrument. Credit: NASA/EO
Head has been doing fieldwork for years in Antarctica and thinks the climate on early Mars may have been very similar to what he has observed in the cold, desert-like.

“The average yearly temperature in the Antarctic Dry Valleys is way below freezing, but peak summer daytime temperatures can exceed the melting point of water, forming transient streams, which then refreeze,” Head said. “In a similar manner, we find that volcanism can bring the temperature on early Mars above the melting point for decades to centuries, causing episodic periods of stream and lake formation.”

As that early active volcanism on Mars ceased, so did the possibility of warmer temperatures and flowing water.

According to Head, this theory might also help in the ongoing search for signs that Mars once hosted life. If it ever did exist, this new research may offer clues as to where the fossilized remnants ended up.

“Life in Antarctica, in the form of algal mats, is very resistant to extremely cold and dry conditions and simply waits for the episodic infusion of water to ‘bloom’ and develop,” he said. “Thus, the ancient and currently dry and barren river and lake floors on Mars may harbor the remnants of similar primitive life, if it ever occurred on Mars.”

The research was published in Nature Geoscience.

Further Reading: Brown University



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Amazingly Detailed New Maps of Asteroid Vesta

Amazingly Detailed New Maps of Asteroid Vesta:



Artist's concept of the Dawn spacecraft arriving at Vesta. Image credit: NASA/JPL-Caltech


Artist’s concept of the Dawn spacecraft arriving at Vesta. Credit: NASA/JPL-Caltech
Vesta is one of the largest asteroids in the Solar System. Comprising 9% of the mass in the Asteroid Belt, it is second in size only to the dwarf-planet Ceres. And now, thanks to data obtained by NASA’s Dawn spacecraft, Vesta’s surface has been mapped out in unprecedented detail.
These high-resolution geological maps reveal the variety of Vesta’s surface features and provide a window into the asteroid’s history.

“The geologic mapping campaign at Vesta took about two-and-a-half years to complete, and the resulting maps enabled us to recognize a geologic timescale of Vesta for comparison to other planets,” said David Williams of Arizona State University.


Geological mapping is a technique used to derive the geologic history of a planetary object from detailed analysis of surface morphology, topography, color and brightness information. The team found that Vesta’s geological history is characterized by a sequence of large impact events, primarily by the Veneneia and Rheasilvia impacts in Vesta’s early history and the Marcia impact in its late history.

The geologic mapping of Vesta was made possible by the Dawn spacecraft’s framing camera, which was provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center.  This camera takes panchromatic images and seven bands of color-filtered images, which are used to create topographic models of the surface that aid in the geologic interpretation.

A team of 14 scientists mapped the surface of Vesta using Dawn data. The study was led by three NASA-funded participating scientists: Williams; R. Aileen Yingst of the Planetary Science Institute; and W. Brent Garry of the NASA Goddard Spaceflight Center.



This high-res geological map of Vesta is derived from Dawn spacecraft data. Brown colors represent the oldest, most heavily cratered surface. Credit: NASA/JPL-Caltech/ASU


This high-res geological map of Vesta is derived from Dawn spacecraft data. Credit: NASA/JPL-Caltech/ASU
The brown colored sections of the map represent the oldest, most heavily cratered surface. Purple colors in the north and light blue represent terrains modified by the Veneneia and Rheasilvia impacts, respectively. Light purples and dark blue colors below the equator represent the interior of the Rheasilvia and Veneneia basins. Greens and yellows represent relatively young landslides or other downhill movement and crater impact materials, respectively.

The map indicates the prominence of impact events – such as the Veneneia, Rheasilvia and Marcia impacts, respectively – in shaping the asteroid’s surface. It also indicates that the oldest crust on Vesta pre-dates the earliest Veneneia impact. The relative timescale is supplemented by model-based absolute ages from two different approaches that apply crater statistics to date the surface.

“This mapping was crucial for getting a better understanding of Vesta’s geological history, as well as providing context for the compositional information that we received from other instruments on the spacecraft: the visible and infrared (VIR) mapping spectrometer and the gamma-ray and neutron detector (GRaND),” said Carol Raymond, Dawn’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California.

The objective of NASA’s Dawn mission is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter – Vesta and the dwarf planet Ceres.



These Hubble Space Telescope images of Vesta and Ceres show two of the most massive asteroids in the asteroid belt, a region between Mars and Jupiter. Credit: NASA/European Space Agency


These Hubble Space Telescope images of Vesta and Ceres show two of the most massive asteroids in the asteroid belt. Credit: NASA/European Space Agency
Asteroids like Vesta are remnants of the formation of the solar system, giving scientists a peek at its early history. They can also harbor molecules that are the building blocks of life and reveal clues about the origins of life on Earth. Hence why scientists are eager to learn more about its secrets.

The Dawn spacecraft was launched in September of 2007 and orbited Vesta between July 2011 and September 2012. Using ion propulsion in spiraling trajectories to travel from Earth to Vesta, Dawn will orbit Vesta and then continue on to orbit the dwarf planet Ceres by April 2015.

The high resolution maps were included with a series of 11 scientific papers published this week in a special issue of the journal Icarus. The Dawn spacecraft is currently on its way to Ceres, the largest object in the asteroid belt, and will arrive at Ceres in March 2015.

Further Reading: NASA



About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Lunar Mission One Wants To Crowdfound A Robotic Moon Lander

Lunar Mission One Wants To Crowdfound A Robotic Moon Lander:

Just hours after announcing that it plans to put a robotic lander on the moon in the next decade, the British-led group Lunar Mission One is already a sixth of a way to its £600,000 (US$940,000) initial crowdfunding goal.

The money is intended to jumpstart the project and move it into more concrete stages after seven years of quiet, weekend work, the group said on its Kickstarter page.

“We’ve reached the limit of what we can do part-time. The next three years are going to be hard, full-time work to set the project up. We need to confirm and agree the lunar science and develop the instrument package,” the page read.



Artist's conception of Lunar Mission One's robotic lander touching down on the surface. Credit: Lunar Missions Ltd.


Artist’s conception of Lunar Mission One’s robotic lander touching down on the surface. Credit: Lunar Missions Ltd.
“We need to plan and research the online public archive. We need to get commercial partners on board to design and develop the lunar landing module and the drilling mechanism. We need to pilot the education programme. We need to prepare the sales and marketing campaign for our memory boxes. And we need to do all of this globally.”

Among the rewards is something called a “digital memory box”, where you can upload your favorite sounds to be placed on the spacecraft. The group also plans to offer a little bit of physical space to put a strand of your hair along with the small digital archive.

And what does the group want to do there? Drill. It would place the lander at the Moon’s south pole and push down at least 20 meters (65 feet), potentially as far as 100 meters (328 feet), to learn more about the Moon’s history.



Artist's conception of a moon drill that could potentially be used by Lunar Mission One's lunar lander. Credit: Lunar Missions Ltd.


Artist’s conception of a moon drill that could potentially be used by Lunar Mission One’s lunar lander. Credit: Lunar Missions Ltd.
“By doing this, we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment,” the group wrote. “Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”

Private ideas for bold missions is something we’ve heard about repeatedly in the last few years, with initiatives ranging from the Mars One mission to send people on a one-way mission to the Red Planet, to the potential asteroid-mining ventures Planetary Resources and Deep Space Initiatives. As with these other ventures, the nitty gritty in terms of costs, systems and mission plans is still being worked out. This coupled with the long timelines to get these ventures off the ground means that success is not necessarily a guarantee.

Lunar Mission One, however, does have an experienced space hand helping it out: RAL Space, who the Kickstarter campaign page says has helped out with 200 missions. That’s including the high-profile Philae lander that just landed on Comet 67P/Churyumov–Gerasimenko last week and did a brief surge of science before going into hibernation.

For more information on the mission, check out their leading team here and the official website here.



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.