Monday, November 3, 2014

Hubble Spots the Ghostly Light From Dead Galaxies

Hubble Spots the Ghostly Light From Dead Galaxies:



Hubble Frontier Fields view of Abell 2744


In a patch of sky 3.5 billion light-years away there are hazy elliptical galaxies, colorful spirals, blue arcs and distorted shapes seen clumping together. It’s the result of a vast cosmic collision that took place over the course of 350 million years.

The mess is a treasure trove of information for astronomers, allowing them to piece together the history of a cosmic pile-up of multiple galaxy clusters.

But now astronomers are digging through the nearby darkness. They’re eyeing the remnant stars that were cast adrift in intergalactic space. These stars should emit a faint glow known as intracluster light that — until now — has mostly remained a subject of speculation.

Mireia Montes and Ignacio Trujillo, both from the University of La Laguna, Spain, have used the Hubble Space Telescope to observe the aforementioned cluster, Abel 2744, in exquisite detail. The cluster has already earned the nickname Pandora’s Cluster for its violent past.

The team looked at both visible and near-infrared color images of the cluster, and then split these color images by brightness. This allowed Montes and Trujillo to pinpoint the color of the cluster’s faintest glow and therefore glean the ghost stars’ age, chemical content, and total mass.

Compared to stars within the cluster’s galaxies, the ghost stars emit bluer light and are therefore rich in heavier elements like oxygen, carbon, and nitrogen. So the scattered stars must be second- or third-generation stars enriched by previous supernovae. But they’re still between three and nine billion years younger than the stars within the cluster’s galaxies.

The team estimates that the combined light of about 100 billion outcast stars contributes approximately six percent of the cluster’s brightness.

But how did the stars get thrown from their respective galaxies in the first place? This new forensic evidence suggests that violent collisions tore apart between four and six Milky Way-size galaxies, scattering their stars into intergalactic space.

“The Hubble data revealing the ghost light are important steps forward in understanding the evolution of galaxy clusters,” said Trujillo in a news release. “It is also amazingly beautiful in that we found the telltale glow by utilizing Hubble’s unique capabilities.”

Abell 2744 is only one target in Hubble’s Frontier Fields program, which will map five more galaxy clusters in superb detail.

The results have been published in the Astrophysical Journal and are available online.



About 

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Titanic Liquid: Blinding ‘Sunglint’ Shines On Saturn’s Swampy Moon

Titanic Liquid: Blinding ‘Sunglint’ Shines On Saturn’s Swampy Moon:



In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho


In this near-infrared mosaic, the sun shines off of the seas on Saturn’s moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
See that yellow smudge in the image above? That’s what the Sun looks like reflecting off the seas of Titan, that moon of Saturn that excites astrobiologists because its chemistry resembles what early Earth could have looked like. This image represents the first time this “sunglint” and Titan’s northern polar seas have been captured in one mosaic, NASA said.

What’s more, if you look closely at the sea surrounding the sunlight, you can see what scientists dub a “bathtub ring.” Besides looking pretty, this image from the Cassini spacecraft shows the huge sea (called Kraken Mare) was actually smaller at some point in Titan’s past.

“The southern portion of Kraken Mare … displays a ‘bathtub ring’ — a bright margin of evaporate deposits — which indicates that the sea was larger at some point in the past and has become smaller due to evaporation,” NASA stated. “The deposits are material left behind after the methane and ethane liquid evaporates, somewhat akin to the saline crust on a salt flat.”

In this near-infrared global mosaic of Titan, sunglint and the moon's polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
In this near-infrared global mosaic of Titan, sunglint and the moon’s polar seas are visible above the shadow. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
The sunlight was so bright that it saturated the detector on Cassini that viewed it, called the Visual and Infrared Mapping Spectrometer (VIMS) instrument. The sun was about 40 degrees above the horizon of Kraken Mare then, which is the highest ever observed on Titan.

The T-106 flyby Oct. 23 was the second-to-last closeup view Cassini will have of Titan this year. The spacecraft has been circling Saturn’s system for more than 10 years, and is now watching Titan (and Saturn’s) northern hemisphere enter summer.

Titan is covered in a thick, orangey atmosphere that hid its surface from scientists the first time a spacecraft zoomed by it in the 1980s. Subsequent exploration (most especially by Cassini and a short-lived lander called Huygens) have revealed dunes on and near the equator and at higher altitudes, lakes of methane and ethane.

Source: Jet Propulsion Laboratory



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Incredible Fast-Moving Aurora Captured in Real Time by Thierry Legault

Incredible Fast-Moving Aurora Captured in Real Time by Thierry Legault:

by Nancy Atkinson on November 3, 2014


One image of the fast-moving aurora captured over Norway in October, 2014. Credit and copyright: Thierry Legualt.


One image of the fast-moving aurora captured over Norway in October, 2014. Credit and copyright: Thierry Legualt.
Usually, videos that feature aurora are timelapse videos, in order to show the normally slow movements of the Northern and Southern Lights. But here are some incredibly fast-moving aurorae shown in real time, as seen by astrophotographer extraordinaire Thierry Legault. He was in Norway last week and said the fast-dancing, shimmering aurora were incredible.

“At moments they were so fast that 25 fps (frames per second) was not too much!” Legault said. “The second evening they were so bright that they appeared while the sky was still blue and I rushed to setup the tripod.”

See two videos below, one short version (8 minutes) and another longer 20-minute version. They are worth watching every minute!




He used Sony A7 video cameras, and said these movies show the true rhythm of the aurora, in addition with twinkling stars and trees moving in the wind.

“In the long version there are even several satellites slowly moving amongst the stars and 2 or 3 elusive shooting stars,” Legault told Universe Today. “Many constellations are visible, especially Cassiopeia with the double cluster, the Big Dipper, Cygnus, Lyra, Gemini.”

He added that the aurorae had an incredible variety of shapes and behaviors.

See more imagery on Legault’s website.

Our Universe in Color

Our Universe in Color:

Today we released six new images from Chandra’s vast data archive. Each one of these astronomical images combines X-rays from Chandra with data from telescopes that detect different types of light such as infrared, radio, and visible light.



Archives


You may notice that the color maps in this new collection of images are not the same. For example, in the image of PSR B1509-58, X-rays from Chandra are colored blue, while in NGC 4736 the X-rays are gold.

Why is this? The answer is that each astronomical image produced serves multiple purposes. The first goal -- and most important – is to accurately represent the data observed by each telescope, showing the key scientific features in the image. (For background information on how Chandra data are sent from the telescope to the ground and then converted into images, look at “X-ray 101”)



X-ray 101


Closely related to that is to make sure the image looks good. That probably sounds rather subjective (“beauty is in the eye of the beholder,” and all that). It can be, but there are well thought out rationales that go into each decision. For example, some colors when combined with others can make an image look muddy or blurry. Or, certain colors can create a garish or distracting effect when combined that essentially blocks part of the science story. So the careful use of color to tell the tale of the data, and paying attention to the aesthetics of the image created, go hand in hand.

There are some established image development conventions in astronomical images. Many astronomy image processors follow a chromatic ordering of color, where red is applied to the lowest energy, green to the medium, and blue to the highest energy data in the image. This generally makes sense when making images that contain visible light or infrared data.

However, the technique doesn’t always work out well when we make images that contain, say, X-ray data with infrared light. Or perhaps X-rays with radio. Or other combinations of light that vary widely across the electromagnetic spectrum.



EMS Thermometer


Most astronomical images contain light that is invisible to our human eyes. The data needs to be translated into a form that our brains can process. Adding color to the different data layers of the image provides more information for the viewer. So there is not necessarily a “right” sequence of color, nor is there a “wrong” one.

We like to look at each Chandra image, whether showing X-ray data alone or with other kinds of light, as an opportunity to tell the best science story possible for that object. Color is just one way to do that, and we are careful to clearly convey which layer has which color. We take it a step further on our web site and make sure you can click through each individual dataset and then look at all the layers combined in a composite image.

In fact, we care so much about how people perceive and respond to our images that we’ve put together a research group called “Aesthetics and Astronomy”. And we continue to investigate ways to make the best images possible – including how we use color – so that anyone can enjoy a window to our Universe.

-Kim Arcand, CXC

NASA's Chandra Observatory Identifies Impact of Cosmic Chaos on Star Birth

NASA's Chandra Observatory Identifies Impact of Cosmic Chaos on Star Birth:



Perseus Virgo


These two Chandra images of galaxy clusters - known as Perseus and Virgo - have provided direct evidence that turbulence is helping to prevent stars from forming. These new results could answer a long-standing question about how these galaxy clusters keep their enormous reservoirs of hot gas from cooling down to form stars, as discussed in our latest press release [link to PR].

Galaxy clusters are the largest objects in the Universe held together by gravity. They contain hundreds or thousands of individual galaxies that are immersed in gas with temperatures of millions of degrees. This hot gas, which is the heftiest component of the galaxy clusters aside from dark matter, glows brightly in X-ray light. Over time in the centers of clusters, this gas should cool enough so that stars form at prodigious rates. This, however, is not what astronomers have observed in many galaxy clusters.

A team of researchers have found evidence that the heat is generated by turbulent motions, which they identified from signatures in the Chandra data. Previously, other scientists have shown the key role of supermassive black holes in the centers of large galaxies in the middle of galaxy clusters. These black holes pump vast quantities of energy into the volumes around them through powerful jets of energetic particles. Chandra and other X-ray telescopes have detected giant cavities created in the hot cluster gas by the jets.

The latest research provides insight into just how energy can be transferred from the cavities to the surrounding gas. The interaction of the cavities with the gas may be generating turbulence, or chaotic motion similar to that on a bumpy airplane ride, which then dissipates to keep the gas hot for billions of years.

More information at http://chandra.harvard.edu/photo/2014/perseusvirgo/index.html

-Megan Watzke, CXC

NEWS : Slow-Growing Galaxies Offer Window to Early Universe

Slow-Growing Galaxies Offer Window to Early Universe:

Sluggish Galaxy Grows Stars Slowly A small galaxy, called Sextans A, is shown here in a multi-wavelength mosaic captured by the European Space Agency's Herschel mission, in which NASA is a partner, along with NASA's Galaxy Evolution Explorer (GALEX) and the National Radio Astronomy Observatory's Jansky Very Large Array observatory near Socorro, New Mexico. Image credit: ESA/NASA/JPL-Caltech/NRAO

› Full image and caption
What makes one rose bush blossom with flowers, while another remains barren? Astronomers ask a similar question of galaxies, wondering how some flourish with star formation and others barely bloom.

A new study published in the Oct. 16 issue of the journal Nature addresses this question by making some of the most accurate measurements yet of the meager rates at which small, sluggish galaxies create stars. The report uses data from the European Space Agency's Herschel mission, in which NASA is a partner, and NASA's Spitzer Space Telescope and Galaxy Evolution Explorer (GALEX).

The findings are helping researchers figure out how the very first stars in our universe sprouted. Like the stars examined in the new study, the first-ever stars from billions of years ago took root in poor conditions. Growing stars in the early cosmos is like trying to germinate flower seeds in a bed of dry, poor soil. Back then, the universe hadn't had time yet to make "heavy metals," elements heavier than hydrogen and helium.

"The metals in space help act in some ways like a fertilizer to help stars grow," said George Helou, an author of the new study and director of NASA's Infrared Processing and Analysis Center (IPAC) at the California Institute of Technology, Pasadena. The lead author of the study is Yong Shi, who performed some of the research at IPAC before moving to Nanjing University in China.

The two slow-going galaxies in the study, called Sextans A and ESO 146-G14, lack in heavy metals, just like our young and remote cosmos, only they are a lot closer to us and easier to see. Sextans A is located about 4.5 million light-years from Earth, and ESO 146-G14 is more than 70 million light-years away.

These smaller galaxies are late bloomers. They managed to travel through history while remaining pristine, and never bulked up in heavy metals (heavy metals not only help stars to form, but are also created themselves by stars).

"The metal-poor galaxies are like islands left over from the early universe," said Helou. "Because they are relatively close to us, they are especially valuable windows to the past."

Studying star formation in poor growing environments such as these is tricky. The galaxies, though nearby, are still faint and hard to see. Shi and his international team wrangled the problem with a multi-wavelength approach. The Herschel data, captured at the longest infrared wavelengths of light, let the researchers see the cool dust in which stars are buried. The dust serves as a proxy for the total amount of gas in the region -- the basic ingredient of stars. To other telescopes, this dust is cold and invisible. Herschel, on the other hand, can pick up its feeble glow.

Supporting radio-wavelength measurements of some of the gas in the galaxies came from the National Radio Astronomy Observatory's Jansky Very Large Array observatory near Socorro, New Mexico, and the Australia Telescope Compact Array observatory, near Narrabri.

Meanwhile, archived data from Spitzer and GALEX were used to look at the rate of star formation. Spitzer sees shorter-wavelength infrared light, which comes from dust that is warmed by new stars. GALEX images capture ultraviolet light from the shining stars themselves.

Putting all these pieces together enabled the astronomers to determine that the galaxies are plodding along, creating stars at rates 10 times lower than their normal counterparts.

"Star formation is very inefficient in these environments," said Shi. "Extremely metal-poor nearby galaxies are the best way to know what went on billions of years ago."

The heavy metals in present-day galaxies help star formation to flourish through cooling effects. For a star to form, a ball of gas needs to fall in on itself with the help of its own gravity. Ultimately, the material has to become dense enough for atoms to fuse and ignite, creating starlight. But as this cloud collapses, it heats up and puffs back out again, counteracting the process. Heavy metals cool everything down by radiating away the heat, enabling the cloud to condense into a star.

How stars in the early universe were able to do this without the cooling benefits of heavy metals remains unknown.

Studies like this shine light on the very first stellar buds, giving us a glimpse into the roots of our cosmic history.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. The GALEX mission, which ended in 2013, was also managed by JPL for NASA and led by Caltech. JPL served as the NASA Herschel Project Office for the European Space Agency's Herschel mission, which also ended in 2013.

Data from Spitzer and Herschel are accessible through the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

Media Contact

Whitney Clavin

818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

2014-353

Mars Orbiter Image Shows Comet Nucleus is Small

Mars Orbiter Image Shows Comet Nucleus is Small:

These images were taken of comet C/2013 A1 Siding Spring by NASA's Mars Reconnaissance Orbiter on Oct. 19, 2014
These images were taken of comet C/2013 A1 Siding Spring by NASA's Mars Reconnaissance Orbiter on Oct. 19, 2014, during the comet's close flyby of Mars and the spacecraft. Image credit: NASA/JPL-Caltech/University of Arizona

› Full image and caption
The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter captured views of comet C/2013 A1 Siding Spring while that visitor sped past Mars on Sunday (Oct. 19), yielding information about its nucleus.

The images are the highest-resolution views ever acquired of a comet coming from the Oort Cloud at the fringes of the solar system. Other spacecraft have approached and studied comets with shorter orbits. This comet's flyby of Mars provided spacecraft at the Red Planet an opportunity to investigate from close range.

Images of comet Siding Spring from HiRISE are online at:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA18618

The highest-resolution of images of the comet's nucleus, taken from a distance of about 86,000 miles (138,000 kilometers), have a scale of about 150 yards (138 meters) per pixel. Telescopic observers had modeled the size of the nucleus as about half a mile, or one kilometer wide. However, the best HiRISE images show only two to three pixels across the brightest feature, probably the nucleus, suggesting a size smaller than half that estimate.

For more about HiRISE, visit:

http://hirise.lpl.arizona.edu

For more about Mars Reconnaissance Orbiter, visit:

http://mars.nasa.gov/mro/

For more about comet Siding Spring, including other images of the comet, visit:

http://mars.jpl.nasa.gov/comets/sidingspring/

Media Contact

Guy Webster 818-354-6278

Jet Propulsion Laboratory, Pasadena, Calif.

guy.webster@jpl.nasa.gov

2014-366

Galactic Wheel of Life Shines in Infrared

Galactic Wheel of Life Shines in Infrared:

Ring of Stellar Fire
A new image from NASA's Spitzer Space Telescope, taken in infrared light, shows where the action is taking place in galaxy NGC 1291. Image credit: NASA/JPL-Caltech

› Full image and caption
It might look like a spoked wheel or even a "Chakram" weapon wielded by warriors like "Xena," from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released image from NASA's Spitzer Space Telescope shows the galaxy NGC 1291. Though the galaxy is quite old, roughly 12 billion years, it is marked by an unusual ring where newborn stars are igniting.

"The rest of the galaxy is done maturing," said Kartik Sheth of the National Radio Astronomy Observatory of Charlottesville, Virginia. "But the outer ring is just now starting to light up with stars."

NGC 1291 is located about 33 million light-years away in the constellation Eridanus. It is what's known as a barred galaxy, because its central region is dominated by a long bar of stars (in the new image, the bar is within the blue circle and looks like the letter "S").

The bar formed early in the history of the galaxy. It churns material around, forcing stars and gas from their original circular orbits into large, non-circular, radial orbits. This creates resonances -- areas where gas is compressed and triggered to form new stars. Our own Milky Way galaxy has a bar, though not as prominent as the one in NGC 1291.

Sheth and his colleagues are busy trying to better understand how bars of stars like these shape the destinies of galaxies. In a program called Spitzer Survey of Stellar Structure in Galaxies, or S4G, Sheth and his team of scientists are analyzing the structures of more than 3,000 galaxies in our local neighborhood. The farthest galaxy of the bunch lies about 120 million light-years away -- practically a stone's throw in comparison to the vastness of space.

The astronomers are documenting structural features, including bars. They want to know how many of the local galaxies have bars, as well as the environmental conditions in a galaxy that might influence the formation and structure of bars.

"Now, with Spitzer we can measure the precise shape and distribution of matter within the bar structures," said Sheth. "The bars are a natural product of cosmic evolution, and they are part of the galaxies' endoskeleton. Examining this endoskeleton for the fossilized clues to their past gives us a unique view of their evolution."

In the Spitzer image, shorter-wavelength infrared light has been assigned the color blue, and longer-wavelength light, red. The stars that appear blue in the central, bulge region of the galaxy are older; most of the gas, or star-making fuel, there was previously used up by earlier generations of stars. When galaxies are young and gas-rich, stellar bars drive gas toward the center, feeding star formation.

Over time, as the fuel runs out, the central regions become quiescent and star-formation activity shifts to the outskirts of a galaxy. There, spiral density waves and resonances induced by the central bar help convert gas to stars. The outer ring, seen here in red, is one such resonance area, where gas has been trapped and ignited into star-forming frenzy.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit:

http://spitzer.caltech.edu and http://www.nasa.gov/spitzer

Media Contact

Whitney Clavin

818-354-4673

Jet Propulsion Laboratory, Pasadena, California

whitney.clavin@jpl.nasa.gov

2014-367

Illusions in the Cosmic Clouds

Illusions in the Cosmic Clouds:

Do you see any recognizable shapes in this nebulous region?
Do you see any recognizable shapes in this nebulous region captured by NASA's WISE and Chandra missions?

› Full image and caption
Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

When an image from NASA's Chandra X-ray Observatory of PSR B1509-58 -- a spinning neutron star surrounded by a cloud of energetic particles --was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASA's Wide-field Infrared Survey Explorer (WISE) telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISE's infrared data. What do you see?

NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

PSR B1509-58 is about 17,000 light-years from Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Media Contact

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

2014-370

MAVEN Ultraviolet Image of Comet Siding Spring's Hydrogen Coma

MAVEN Ultraviolet Image of Comet Siding Spring's Hydrogen Coma:

MAVEN Ultraviolet Image of Comet Siding Spring's Hydrogen Coma
NASA's MAVEN spacecraft obtained this ultraviolet image of hydrogen surrounding comet Siding Spring on Oct. 17, 2014, two days before the comet's closest approach to Mars. Credit: NASA/Laboratory for Atmospheric and Space Physics/Univ. of Colorado

› Image with scale/annotation
NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft obtained this ultraviolet image of hydrogen surrounding comet C/2013 A1 Siding Spring on Oct. 17, 2014, two days before the comet's closest approach to Mars. The Imaging Ultraviolet Spectrograph (IUVS) instrument imaged the comet at a distance of 5.3 million miles (8.5 million kilometers).

The image shows sunlight that has been scattered by atomic hydrogen, shown as blue in this false-color representation. Comets are surrounded by a huge cloud of atomic hydrogen because water (H2O) vaporizes from the icy nucleus, and solar ultraviolet light breaks it apart into hydrogen and oxygen. Hydrogen atoms scatter solar ultraviolet light, and it was this light that was imaged by the IUVS. Two observations were combined to create this image, after removing the foreground signal that results from sunlight being scattered from hydrogen surrounding Mars.

The bulk of the scattered sunlight shows a cloud that was about a half degree across on the "sky" background, comparable in size to the Earth's moon as seen from Earth. Hydrogen was detected to as far as 93,000 miles (150,000 kilometers) away from the comet's nucleus. The distance is comparable to the distance of the comet from Mars at its closest approach. Gas from the comet is likely to have hit Mars, and would have done so at a speed of 125,000 miles per hour (56 kilometers per second). This gas may have disturbed the Mars atmosphere

Media Contact

Guy Webster

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6278

guy.webster@jpl.nasa.gov

2014-371

Mars Orbiter's Spectrometer Shows Oort Comet's Coma

Mars Orbiter's Spectrometer Shows Oort Comet's Coma:

Images From Mars-Orbiting Spectrometer Show Comet's Coma
These two infrared images of comet C/2013 A1 Siding Spring were taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA's Mars Reconnaissance Orbiter on Oct. 19, 2014. NASA/JPL-Caltech/JHUAPL

› Full image and caption
The Compact Imaging Spectrometer for Mars (CRISM) observed comet C/2013 A1 Siding Spring as the comet sped close to Mars on Oct. 19. CRISM recorded imaging data in 107 different wavelengths, showing the inner part of the cloud of dust, called the coma, surrounding the comet's nucleus.

Two images from CRISM presenting three of the recorded wavelengths are online at:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA15291

Comet Siding Spring -- an Oort Cloud comet that may contain material from the formation of the solar system some 4.6 billion years ago -- was making its first voyage through the inner solar system. CRISM and many other instruments and spacecraft combined forces to provide an unprecedented data set for an Oort Cloud comet.

The appearance of color variations in the CRISM observations of the inner coma could be due to the properties of the comet's dust, possibly dust grain size or composition. The full spectra will be analyzed to better understand the reason for the color variations.

The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, provided and operates CRISM. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems in Denver built the orbiter.

For more about CRISM, visit:

http://crism.jhuapl.edu/

For more about Mars Reconnaissance Orbiter, visit:

http://mars.nasa.gov/mro/

For more about comet Siding Spring, including other images of the comet, visit:

http://mars.jpl.nasa.gov/comets/sidingspring/

Media Contact

Guy Webster

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6278

guy.webster@jpl.nasa.gov

Geoffrey Brown
Johns Hopkins Applied Physics Laboratory
240-228-5618
geoffrey.brown@jhuapl.edu

2014-372

NASA Finds Methane Ice Cloud in Titan's Stratosphere

NASA Finds Methane Ice Cloud in Titan's Stratosphere:

Images From Mars-Orbiting Spectrometer Show Comet's Coma These two infrared images of comet C/2013 A1 Siding Spring were taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA's Mars Reconnaissance Orbiter on Oct. 19, 2014. NASA/JPL-Caltech/JHUAPL

› Full image and caption
The Compact Imaging Spectrometer for Mars (CRISM) observed comet C/2013 A1 Siding Spring as the comet sped close to Mars on Oct. 19. CRISM recorded imaging data in 107 different wavelengths, showing the inner part of the cloud of dust, called the coma, surrounding the comet's nucleus.

Two images from CRISM presenting three of the recorded wavelengths are online at:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA15291

Comet Siding Spring -- an Oort Cloud comet that may contain material from the formation of the solar system some 4.6 billion years ago -- was making its first voyage through the inner solar system. CRISM and many other instruments and spacecraft combined forces to provide an unprecedented data set for an Oort Cloud comet.

The appearance of color variations in the CRISM observations of the inner coma could be due to the properties of the comet's dust, possibly dust grain size or composition. The full spectra will be analyzed to better understand the reason for the color variations.

The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, provided and operates CRISM. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems in Denver built the orbiter.

For more about CRISM, visit:

http://crism.jhuapl.edu/

For more about Mars Reconnaissance Orbiter, visit:

http://mars.nasa.gov/mro/

For more about comet Siding Spring, including other images of the comet, visit:

http://mars.jpl.nasa.gov/comets/sidingspring/

Media Contact

Guy Webster

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6278

guy.webster@jpl.nasa.gov

Geoffrey Brown
Johns Hopkins Applied Physics Laboratory
240-228-5618
geoffrey.brown@jhuapl.edu

2014-372

NASA Hosts First Agency-wide Social Media Event for Orion's First Flight Test

NASA Hosts First Agency-wide Social Media Event for Orion's First Flight Test:

An artist's impression of the first Orion spacecraft in orbit attached to a Delta IV
An artist's impression of the first Orion spacecraft in orbit attached to a Delta IV Upper Stage during Exploration Flight Test-1. Image Credit: NASA

› Larger image
NASA invites social media followers to apply for credentials to get a preview of the Orion spacecraft's first flight test during NASA Social events Dec. 3 involving each of its 10 centers.

Orion will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Liftoff is targeted for 4:05 a.m. PST (7:05 a.m. EST) Dec. 4.

NASA Socials are in-person events for people who engage with the agency through social media networks. Events will be held simultaneously at NASA centers including: Ames Research Center in Moffett Field, California; Glenn Research Center in Cleveland; Goddard Space Flight Center in Greenbelt, Maryland; Johnson Space Center in Houston; Langley Research Center in Hampton, Virginia; Marshall Space Flight Center, Huntsville, Alabama; Stennis Space Center near Bay St. Louis, Mississippi; and the Jet Propulsion Laboratory in Pasadena, California, which is hosting a joint event at JPL with the Armstrong Flight Research Center, Edwards, California.

Each center will be connected via a multi-center NASA Television simulcast with NASA's Kennedy Space Center in Florida during its event, which was previously announced.

Along with a discussion on Orion and NASA's plan to send humans to Mars, participants will get a unique behind-the-scenes look at the diverse work of the agency through center tours and presentations by scientists, engineers and managers. The events also will provide guests the opportunity to interact with fellow social media users, space enthusiasts and members of NASA's social media team.

Registration for these NASA Socials opens at 2 p.m. PDT (5 p.m. EDT) Friday, Oct. 24, and closes at 2 p.m. PST (5 p.m. EST) Sunday, Nov. 2. People may register for NASA Socials at multiple locations but will be chosen only for one event. All social media accreditation applications will be considered on a case-by-case basis, and the number of attendance slots varies by center.

No two locations are the same. Each center has a different itinerary depending on its location.

The event being held by NASA's Jet Propulsion Laboratory and NASA Armstrong Flight Research Center will take place at JPL in Pasadena, California. Up to 40 social media followers will learn about the Southern California centers' contributions to Orion and NASA's Journey to Mars. The program includes a behind-the-scenes tour of JPL, with stops at the Mars Yard, where engineering models of our Curiosity rover are tested in a sandy Mars-like environment; and the Spacecraft Assembly Facility, where hardware for upcoming projects is under construction. Guests will interact with those who design, build, test and operate the robots that precede human explorers, as well as those developing new technology, like the Low-Density Supersonic Decelerator (LDSD), a system that will help land humans safely on Mars. Experts from NASA Armstrong will discuss their role in testing Orion's Launch Abort System, designed to propel the Crew Module safely from a launch pad or in-flight emergency. An Armstrong pilot will give a briefing on NASA's Ikhana unmanned aircraft system (UAS), which will serve as a chase aircraft feeding live video of the Orion capsule as it makes its way to splashdown on Dec. 4.

For more information on each center's activities and the requirements for NASA Social registration, visit:

http://www.nasa.gov/social-orion-multicenter

For more information on Orion and its first test flight, visit:

http://www.nasa.gov/orion

Follow the Orion mission on Facebook and Twitter at:

http://www.facebook.com/nasaorion

and

http://www.twitter.com/nasa_orion

For information on connecting and collaborating with NASA, visit:

http://www.nasa.gov/connect

Media Contact

Courtney O'Connor

Jet Propulsion Laboratory, Pasadena, California

818-354-2274

oconnor@jpl.nasa.gov

2014-375

NASA Instrument Preparing for Launch to Space Station

NASA Instrument Preparing for Launch to Space Station:

JPL's tiny Radiometer Atmospheric Cubesat Experiment will launch on this Orbital Sciences Corporation Antares rocket this afternoon.
JPL's tiny Radiometer Atmospheric Cubesat Experiment will launch on this Orbital Sciences Corporation Antares rocket this afternoon. Image credit: NASA/Joel Kowsky

› Larger image
UPDATED: 4:00 p.m. PDT (7:00 p.m. EDT), Oct. 28. A mishap occurred shortly after liftoff. Orbital has declared a contingency. NASA and Orbital are still determining when a press conference will be held. For more information as it becomes available, visit: http://www.nasa.gov/

UPDATED: 5:19 p.m. PDT (8:19 p.m. EDT), Oct. 27.

The next launch attempt for Orbital Sciences' Antares rocket is scheduled for 3:22 p.m. PDT (6:22 p.m. EDT) Tuesday, Oct. 28 from NASA's Wallops Flight Facility in Virginia.

Monday's launch attempt was scrubbed because of a boat down range in the trajectory Antares would have flown had it lifted off.

A dramatic Virginia sunrise frames the launchpad where a JPL-built instrument sits, poised for launch on the Orbital Sciences Corporation Antares rocket this afternoon. The launchpad is at NASA's Wallops Flight Facility in Virginia. The photo was taken on Sunday, Oct. 26. The rocket is delivering the tiny satellite - called the Radiometer Atmospheric Cubesat Experiment (RACE, for short) - as part of its load of supplies for the International Space Station. Launch is scheduled for 3:45 p.m. PDT (6:45 p.m. EDT).

RACE will test new technology to measure water vapor, a measurement important for climate and weather studies. CubeSats are small, lightweight and low-cost satellites.

Image credit: NASA/ Joel Kowsky

Media Contact

Alan Buis

818-354-0474

Jet Propulsion Laboratory, Pasadena, California

Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen
NASA Earth Science News Team

2014-377

Cassini Sees Sunny Seas on Titan

Cassini Sees Sunny Seas on Titan:

Specular Spectacular
This near-infrared, color view from Cassini shows the sun glinting off of Titan's north polar seas. Image credit: NASA/JPL-Caltech/Univ. Arizona/Univ. Idaho

› Full image and caption
As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

In the past, Cassini had captured, separately, views of the polar seas and the sun glinting off them, but this is the first time both have been seen together in the same view.

The image is available at:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA18432

Also in the image:

-- An arrow-shaped complex of bright methane clouds hovers near Titan's north pole. The clouds could be actively refilling the lakes with rainfall.

-- A "bathtub ring," or bright margin, around Kraken Mare -- the sea containing the reflected sunglint -- indicates that the sea was larger at some point, but evaporation has decreased its size.

Titan's seas are mostly liquid methane and ethane. Before Cassini's arrival at Saturn, scientists suspected that Titan might have bodies of open liquid on its surface. Cassini found only great fields of sand dunes near the equator and lower latitudes, but located lakes and seas near the poles, particularly in the north.

The new view shows Titan in infrared light. It was obtained by Cassini's Visible and Infrared Mapping Spectrometer (VIMS) on Aug. 21.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. The VIMS team is based at the University of Arizona in Tucson.

More information about Cassini is available at the following sites:

http://www.nasa.gov/cassini

http://saturn.jpl.nasa.gov

Media Contact

Preston Dyches

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-7013

preston.dyches@jpl.nasa.gov

2014-378

Sunday, October 26, 2014

Beautiful Images of the October 23, 2014 Partial Solar Eclipse

Beautiful Images of the October 23, 2014 Partial Solar Eclipse:

The partial solar eclipse of October 23, 2014, with a giant sunspot visible. Credit and copyright: Derek Mellott.


The partial solar eclipse of October 23, 2014, with a giant sunspot visible. Credit and copyright: Derek Mellott.
“The Sun looks like it has a bite taken out of it!” said one enthusiastic viewer of the partial solar eclipse on October 23. Although I only had my paper plate pinhole projector that I shared with a crowd of folks (you can see an image of it near the bottom of the images here), the funny-looking Sun projected onto the plate definitely looked like a cookie with bite out of it or a clipped fingernail. But thankfully, as the Moon moved in front of the Sun today, legions of astrophotographers were out to take fantastic images of the eclipse. And the gigantic sunspot named AR 2192 made a cameo appearance as well. Enjoy the gallery below!

Thanks to everyone who uploaded images to our Flickr page or shared their images on Twitter.

An artistic view of the Partial Solar Eclipse, October 23, 2014. Credit and copyright: A Nartist.


An artistic view of the Partial Solar Eclipse, October 23, 2014. Credit and copyright: A Nartist.
The setting Sun, shadowed by the Moon and spotted with intense magnetic activity on October 23, 2014. Credit and copyright: Tavi Greiner.


The setting Sun, shadowed by the Moon and spotted with intense magnetic activity on October 23, 2014. Credit and copyright: Tavi Greiner.
Solar eclipse over the Flatirons near Boulder, Colorado. A syzygy, with the Earth and Moon simultaneously transiting the Sun. Credit and copyright: Alex Parker.


Solar eclipse over the Flatirons near Boulder, Colorado. A syzygy, with the Earth and Moon simultaneously transiting the Sun. Credit and copyright: Alex Parker.
Partial Solar Eclipse of October 23, 2014 at 280mm. Credit and copyright: Forrest Tanaka.


Partial Solar Eclipse of October 23, 2014, at 280mm. Credit and copyright: Forrest Tanaka.
The sun sets while still in eclipse as seen from Duluth, Minn. Thursday evening October 23. Credit and copyright: Bob King.


The sun sets while still in eclipse as seen from Duluth, Minn., Thursday evening October 23. Credit and copyright: Bob King.
The solar eclipse on October 23, 2014, showing the Sun dotted by sunspots and airplane contrails. Credit and copyright: Greg Hogan.


The solar eclipse on October 23, 2014, showing the Sun dotted by sunspots and airplane contrails. Credit and copyright: Greg Hogan.
A cloudy closeup of the partial solar eclipse on October 23, 2014. Credit and copyright: JCC_Starguy on Flickr.


A cloudy closeup of the partial solar eclipse on October 23, 2014. Credit and copyright: JCC_Starguy on Flickr.
The cusps of the Sun's disk are just visible above the horizon as the solar eclipse of October 23, 2014 fades out over Iowa. Credit and copyright: Alan Boyle/NBC News.


The cusps of the Sun’s disk are just visible above the horizon as the solar eclipse of October 23, 2014, fades out over Iowa. Credit and copyright: Alan Boyle/NBC News.
A partial solar eclipse is visable just before sunset Thursday, Oct. 23, 2014, in Arlington, VA. Photo Credit: (NASA/Bill Ingalls)


A partial solar eclipse is visable just before sunset Thursday, Oct. 23, 2014, in Arlington, VA. Photo Credit: (NASA/Bill Ingalls)
The partial solar eclipse as viewed through a paper plate pinhole projector. Credit, copyright and pinhole: Nancy Atkinson.


The partial solar eclipse as viewed through a paper plate pinhole projector. Credit, copyright and pinhole: Nancy Atkinson.
OK, here’s what it looked like outside the SETI Institute. pic.twitter.com/ucqWzJeB4c

— SethShostak (@SethShostak) October 24, 2014
The Moon is beginning to eclipse an enormous filament on the Sun http://t.co/oFH0aPfEay via @Slooh pic.twitter.com/JbM3OHI4wQ

— Alan Duffy (@astroduff) October 23, 2014
What we did for fun… hundreds of crescent suns from a collapsible “spaghetti strainer” #eclipse: pic.twitter.com/ih9vvHUwMI

— David Dickinson (@Astroguyz) October 23, 2014
PHOTOS: Partial Solar Eclipse: https://t.co/nZowDIognC #SanJose #BayArea #SolarEclipse pic.twitter.com/Kdu4XIMoa0

— Chris Calubaquib (@ChrisAstro) October 24, 2014
See more great images on Universe Today’s Flickr pool page.

You Could Fit All the Planets Between the Earth and the Moon

You Could Fit All the Planets Between the Earth and the Moon:

by Fraser Cain on October 25, 2014
You could fit all the planets within the average distance to the Moon.


You could fit all the planets within the average distance to the Moon.


I ran into this intriguing infographic over on Reddit that claimed that you could fit all the planets of the Solar System within the average distance between the Earth and the Moon.


I’d honestly never heard this stat before, and it’s pretty amazing how well they tightly fit together.

But I thought it would be a good idea to doublecheck the math, just to be absolutely certain. I pulled my numbers from NASA’s Solar System Fact Sheets, and they’re a little different from the original infographic, but close enough that the comparison is still valid.

The average distance from the Earth to the Moon is 384,400 km. And check it out, that leaves us with 4,392 km to spare.

So what could we do with the rest of that distance? Well, we could obviously fit Pluto into that slot. It’s around 2,300 km across. Which leaves us about 2,092 km to play with. We could fit one more dwarf planet in there (not Eris though, too big).

The amazing Wolfram-Alpha can make this calculation for you automatically: total diameter of the planets. Although, this includes the diameter of Earth too.

A nod to CapnTrip on Reddit for posting this.

Thursday, October 23, 2014

Want to See Some Pretty Pictures? Here are the Winners of the 2014 Photo Nightscape Awards

Want to See Some Pretty Pictures? Here are the Winners of the 2014 Photo Nightscape Awards:

by Nancy Atkinson on October 16, 2014

PNA 2014 - First in the 'Espoir' (hope) category: ‘Milky way over Baobabs.’ Credit and copyright: Mohammad Taha Ghouckkanly/PNA.


PNA - First prize in the'Pro' Category: ‘Night at Tatio Geysers.' Credit and copyright: Jean-Marc Lecleire/PNA


PNA – First prize in the’Pro’ Category: ‘Night at Tatio Geysers.’ Credit and copyright: Jean-Marc Lecleire/PNA
We told you earlier this year about an astrophotography contest held by Ciel et Espace Photos in France, called the Photo Nightscape Awards. This is the first year of the competition and the winners have now been announced — and they are gorgeous!

They had two categories: pro and ‘espoir’ (amateur, or literally, ‘hope,’) and more than 100 photographers from around the world participated. Above is the winning entry for the pro category, a wonderful shot of a geyser field located in the Andes Mountains of northern Chile with a beautiful night sky overhead, taken by Jean-Marc Lecleire.

See a video compilation of the winners and other submissions, below, along with more beautiful images:





PNA 2014 – First in the ‘Espoir’ (hope) category: ‘Milky way over Baobabs.’ Credit and copyright: Mohammad Taha Ghouckkanly/PNA.
The organizers of the contest said they are looking for “astrophotography that mixes photographic art and poetry. The judge for the contest was Miguel Claro, whose astrophotography we feature often here on Universe Today.

Other winners were 1st prize ‘Pro': Tommy Eliassen; 2nd prize ‘Pro': Mohammad Taha Ghouchkanlu for the “Baobabs” image, below; 1st prize ‘Espoir': Pascal Colas; 2nd prize ‘Espoir': Jérémy Gachon; 1st prize in young astronomers 9-12 group was Louis-Hadrien Gros and 2nd 9-12 was Justin Galant. 1st prize in the young astronomers 13-17 group was Tess Gautier, 2nd prize ’13-17.

You can see all the winning photos at the website here, where you can also learn about next year’s competition.

PNA 'Pro' Category 2014: ‘Still Untouched’ Credit and copyright: Rogelio Bernal Andreo/PNA.


PNA ‘Pro’ Category 2014: ‘Still Untouched’ Credit and copyright: Rogelio Bernal Andreo/PNA.

Titan’s Majestic Mirror-Like Lakes Will Come Under Cassini’s Scrutiny This Week

Titan’s Majestic Mirror-Like Lakes Will Come Under Cassini’s Scrutiny This Week:

This colorized mosaic from NASA's Cassini mission shows the most complete view yet of Titan's northern land of lakes and seas. Saturn's moon Titan is the only world in our solar system other than Earth that has stable liquid on its surface. The liquid in Titan's lakes and seas is mostly methane and ethane. Image credit: NASA/JPL-Caltech/ASI/USGS


This colorized mosaic from NASA’s Cassini mission shows the most complete view yet of Titan’s northern land of lakes and seas. Saturn’s moon Titan is the only world in our solar system other than Earth that has stable liquid on its surface. The liquid in Titan’s lakes and seas is mostly methane and ethane. Image credit: NASA/JPL-Caltech/ASI/USGS
There’s a very early-stage NASA concept to take a submarine and dive into a lake of Titan, that moon of Saturn that has chemistry that could prove to be a similar precursor to what eventually formed life on Earth. The moon has weather and a hydrological system and an atmosphere, making it an exciting location for astrobiologists.

Luckily for scientists, the Cassini spacecraft beams back regular updates on what it sees at Titan. And this week comes yet another opportunity, as the machine whizzes by the moon to look for “mirror-like surface echoes” in a lake-filled region in Titan’s northern sector.

Principal among the targets will be Kraken Mare, a liquid hydrocarbon sea that is about five times the size of Lake Superior in North America. It’s an astounding 154,000 square miles (400,000 square kilometers). On this pass, Cassini is going to sail over the eastern area of the sea.

“Measurements of the absolute strength of the echo and its polarization properties, when detectable, yield important information about the surface status (liquid/solid), surface reflectivity, surface dielectric constant and implied composition, and surface roughness,” Cassini’s website says in a description of the T-106 flyby, which will take place Thursday (Oct. 23).

Saturn's moon Titan with Tethys hovering in the background. Image taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute


Saturn’s moon Titan with Tethys hovering in the background. Image taken by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute
This is the second-to-last flyby Cassini will have of Titan in 2014, with the last one coming Dec. 10. In that case, the focus will be learning more about Titan’s atmosphere to learn more about measurement differences obtained by instruments on Cassini.

This past week, meanwhile, Titan has been busy looking at Saturn. It examined a northern aurora, looked at the planet’s F ring, and also searched for small satellites.

Scientists have been working at Saturn for the past 10 years with the Cassini mission, which is now entering a new phase as Saturn enters northern summer. This is expected to produce more changes on Titan, such as winds picking up, as more sunlight strikes the surface and atmosphere.



About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.