Wednesday, July 30, 2014

NASA Officially Joins ESA's 'Dark Universe' Mission

NASA Officially Joins ESA's 'Dark Universe' Mission:

Artist's concept of Euclid spacecraft.
This artist's concept shows the Euclid spacecraft. The telescope will launch to an orbit around the sun-Earth Lagrange point L2. The Lagrange point is a location where the gravitational pull of two large masses, the sun and Earth in this case, precisely equals the force required for a small object, such as the Euclid spacecraft, to maintain a relatively stationary position behind Earth as seen from the sun. Image credit: ESA/C. Carreau
› Larger image

January 24, 2013

PASADENA, Calif. -- NASA has joined the European Space Agency's (ESA's) Euclid mission, a space telescope designed to investigate the cosmological mysteries of dark matter and dark energy.


Euclid will launch in 2020 and spend six years mapping the locations and measuring the shapes of as many as 2 billion galaxies spread over more than one-third of the sky. It will study the evolution of our universe, and the dark matter and dark energy that influence its evolution in ways that still are poorly understood.


The telescope will launch to an orbit around the sun-Earth Lagrange point L2. The Lagrange point is a location where the gravitational pull of two large masses, the sun and Earth in this case, precisely equals the force required for a small object, such as the Euclid spacecraft, to maintain a relatively stationary position behind Earth as seen from the sun.


"NASA is very proud to contribute to ESA's mission to understand one of the greatest science mysteries of our time," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate at the agency's Headquarters in Washington.


NASA and ESA recently signed an agreement outlining NASA's role in the project. NASA will contribute 16 state-of-the-art infrared detectors and four spare detectors for one of two science instruments planned for Euclid.


"ESA's Euclid mission is designed to probe one of the most fundamental questions in modern cosmology, and we welcome NASA's contribution to this important endeavor, the most recent in a long history of cooperation in space science between our two agencies," said Alvaro Gimenez, ESA's Director of Science and Robotic Exploration.


In addition, NASA has nominated three U.S. science teams totaling 40 new members for the Euclid Consortium. This is in addition to 14 U.S. scientists already supporting the mission. The Euclid Consortium is an international body of 1,000 members who will oversee development of the instruments, manage science operations and analyze data.


Euclid will map the dark matter in the universe. Matter as we know it -- the atoms that make up the human body, for example -- is a fraction of the total matter in the universe. The rest, about 85 percent, is dark matter consisting of particles of an unknown type. Dark matter first was postulated in 1932, but still has not been detected directly. It is called dark matter because it does not interact with light. Dark matter interacts with ordinary matter through gravity and binds galaxies together like an invisible glue.


While dark matter pulls matter together, dark energy pushes the universe apart at ever-increasing speeds. In terms of the total mass-energy content of the universe, dark energy dominates. Even less is known about dark energy than dark matter.


Euclid will use two techniques to study the dark universe, both involving precise measurements of galaxies billions of light-years away. The observations will yield the best measurements yet of how the acceleration of the universe has changed over time, providing new clues about the evolution and fate of the cosmos.


Euclid is an ESA mission with science instruments provided by a consortia of European institutes and with important participation from NASA. NASA's Euclid Project Office is based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. JPL will contribute the infrared flight detectors for the Euclid science instrument. NASA's Goddard Space Flight Center in Greenbelt, Md., will test the infrared flight detectors prior to delivery. Three U.S. science teams will contribute to science planning and data analysis. JPL is managed for NASA by the California Institute of Technology in Pasadena.


For more information about Euclid, visit: http://www.nasa.gov/euclid , http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102 and http://www.euclid-ec.org/ .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


J.D. Harrington 202-358-5241

NASA Headquarters, Washington

j.d.harrington@nasa.gov


2013-033

Cool, New Views of Andromeda Galaxy

Cool, New Views of Andromeda Galaxy:

Andromeda's Colorful Rings
The ring-like swirls of dust filling the Andromeda galaxy stand out colorfully in this new image from the Herschel Space Observatory, a European Space Agency mission with important NASA participation. Image credit: ESA/NASA/JPL-Caltech/NHSC
› Full image and caption

January 28, 2013

Two new eye-catching views from the Herschel space observatory are fit for a princess. They show the elegant spiral galaxy Andromeda, named after the mythical Greek princess known for her beauty.


The Andromeda galaxy, also known as Messier 31, lies 2 million light-years away, and is the closest large galaxy to our own Milky Way. It is estimated to have up to one trillion stars, whereas the Milky Way contains hundreds of billions. Recent evidence suggests Andromeda's overall mass may in fact be less than the mass of the Milky Way, when dark matter is included.


Herschel, a European Space Agency mission with important NASA contributions, sees the longer-wavelength infrared light from the galaxy, revealing its rings of cool dust. Some of this dust is the very coldest in the galaxy -- only a few tens of degrees above absolute zero.


In both views, warmer dust is highlighted in the central regions by different colors. New stars are being born in this central, crowded hub, and throughout the galaxy's rings in dusty knots. Spokes of dust can also be seen between the rings.


One view, seen at http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16682 , is a mosaic of data from Herschel's Photodetecting Array Camera and Spectrometer (PACS) and spectral and photometric imaging receiver (SPIRE).


The second view, seen at http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16681 , shows data from only the SPIRE instrument, which captures the longest of wavelengths detectable by Herschel.


Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at NASA's Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the United States astronomical community. Caltech manages JPL for NASA.


More information is online at http://www.herschel.caltech.edu , http://www.nasa.gov/herschel and http://www.esa.int/SPECIALS/Herschel .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


2013-035

NASA to Launch Ocean Wind Monitor to Space Station

NASA to Launch Ocean Wind Monitor to Space Station:

Artist's rendering of NASA's ISS-RapidScat instrument (inset)
Artist's rendering of NASA's ISS-RapidScat instrument (inset), which will launch to the International Space Station in 2014 to measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. It will be installed on the end of the station's Columbus laboratory.
Image credit: NASA/JPL-Caltech/JSC

› Larger image

January 29, 2013

PASADENA, Calif. - In a clever reuse of hardware originally built to test parts of NASA's QuikScat satellite, the agency will launch the ISS-RapidScat instrument to the International Space Station in 2014 to measure ocean surface wind speed and direction.


The ISS-RapidScat instrument will help improve weather forecasts, including hurricane monitoring, and understanding of how ocean-atmosphere interactions influence Earth's climate.


"The ability for NASA to quickly reuse this hardware and launch it to the space station is a great example of a low-cost approach that will have high benefits to science and life here on Earth," said Mike Suffredini, NASA's International Space Station program manager.


ISS-RapidScat will help fill the data gap created when QuikScat, which was designed to last two years but operated for 10, stopped collecting ocean wind data in late 2009. A scatterometer is a microwave radar sensor used to measure the reflection or scattering effect produced while scanning the surface of Earth from an aircraft or a satellite.


NASA and the National Oceanic and Atmospheric Administration have studied next-generation replacements for QuikScat, but a successor will not be available soon. To meet this challenge cost-effectively, NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the agency's station program proposed adapting leftover QuikScat hardware in combination with new hardware for use on the space station.


"ISS-RapidScat represents a low-cost approach to acquiring valuable wind vector data for improving global monitoring of hurricanes and other high-intensity storms," said Howard Eisen, ISS-RapidScat project manager at JPL. "By leveraging the capabilities of the International Space Station and recycling leftover hardware, we will acquire good science data at a fraction of the investment needed to launch a new satellite."


ISS-RapidScat will have measurement accuracy similar to QuikScat's and will survey all regions of Earth accessible from the space station's orbit. The instrument will be launched to the space station aboard a SpaceX Dragon cargo spacecraft. It will be installed on the end of the station's Columbus laboratory as an autonomous payload requiring no interaction by station crew members. It is expected to operate aboard the station for two years.


ISS-RapidScat will take advantage of the space station's unique characteristics to advance understanding of Earth's winds. Current scatterometer orbits pass the same point on Earth at approximately the same time every day. Since the space station's orbit intersects the orbits of each of these satellites about once every hour, ISS-RapidScat can serve as a calibration standard and help scientists stitch together the data from multiple sources into a long-term record.


ISS-RapidScat also will collect measurements of Earth's global wind field at all times of day for all locations. Variations in winds caused by the sun can play a significant role in the formation of tropical clouds and tropical systems that play a dominant role in Earth's water and energy cycles. ISS-RapidScat observations will help scientists understand these phenomena better and improve weather and climate models.


The ISS-RapidScat project is a joint partnership of JPL and NASA's International Space Station Program Office at the Johnson Space Center in Houston, with support from the Earth Science Division of the Science Mission Directorate in Washington.


For more on ISS-RapidScat, visit: http://www.nasa.gov/mission_pages/station/research/experiments/ISSRapidScat.html . For more on NASA's scatterometry missions, visit: http://winds.jpl.nasa.gov/index.cfm . For more information about the International Space Station, visit: http://www.nasa.gov/station .


You can follow JPL News on Facebook at: http://www.facebook.com/nasajpl and on Twitter at: http://www.twitter.com/nasajpl . The California Institute of Technology in Pasadena manages JPL for NASA.

Alan Buis 818-354-0474

Jet Propulsion Laboratory, Pasadena, Calif.

Alan.buis@jpl.nasa.gov


Trent J. Perrotto 202-358-1100

NASA Headquarters, Washington

Trent.j.perrotto@nasa.gov


Josh Byerly 281-483-5111

NASA Johnson Space Center, Houston

Josh.byerly@nasa.gov


2013-037

Herschel Finds Past-Prime Star May Be Making Planets

Herschel Finds Past-Prime Star May Be Making Planets:

This artist's illustration shows a planetary disk (left) that weighs the equivalent of 50 Jupiter-mass planets.
This artist's illustration shows a planetary disk (left) that weighs the equivalent of 50 Jupiter-mass planets. It demonstrates a first-of-its-kind feat from astronomers using the Herschel space observatory. Image credit: NASA/JPL-Caltech

› Full image and caption

January 30, 2013

PASADENA, Calif. -- A star thought to have passed the age at which it can form planets may, in fact, be creating new worlds. The disk of material surrounding the surprising star called TW Hydrae may be massive enough to make even more planets than we have in our own solar system.


The findings were made using the European Space Agency's Herschel Space Telescope, a mission in which NASA is a participant.


At roughly 10 million years old and 176 light years away, TW Hydrae is relatively close to Earth by astronomical standards. Its planet-forming disk has been well studied. TW Hydrae is relatively young but, in theory, it is past the age at which giant planets already may have formed.


"We didn't expect to see so much gas around this star," said Edwin Bergin of the University of Michigan in Ann Arbor. Bergin led the new study appearing in the journal Nature. "Typically stars of this age have cleared out their surrounding material, but this star still has enough mass to make the equivalent of 50 Jupiters," Bergin said.


In addition to revealing the peculiar state of the star, the findings also demonstrate a new, more precise method for weighing planet-forming disks. Previous techniques for assessing the mass were indirect and uncertain. The new method can directly probe the gas that typically goes into making planets.


Planets are born out of material swirling around young stars, and the mass of this material is a key factor controlling their formation. Astronomers did not know before the new study whether the disk around TW Hydrae contained enough material to form new planets similar to our own.


"Before, we had to use a proxy to guess the gas quantity in the planet-forming disks," said Paul Goldsmith, the NASA project scientist for Herschel at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "This is another example of Herschel's versatility and sensitivity yielding important new results about star and planet formation."


Using Herschel, scientists were able to take a fresh look at the disk with the space telescope to analyze light coming from TW Hydrae and pick out the spectral signature of a gas called hydrogen deuteride. Simple hydrogen molecules are the main gas component of planets, but they emit light at wavelengths too short to be detected by Herschel. Gas molecules containing deuterium, a heavier version of hydrogen, emit light at longer, far-infrared wavelengths that Herschel is equipped to see. This enabled astronomers to measure the levels of hydrogen deuteride and obtain the weight of the disk with the highest precision yet.


"Knowing the mass of a planet-forming disk is crucial to understanding how and when planets take shape around other stars," said Glenn Wahlgren, Herschel program scientist at NASA Headquarters in Washington.


Whether TW Hydrae's large disk will lead to an exotic planetary system with larger and more numerous planets than ours remains to be seen, but the new information helps define the range of possible planet scenarios.


"The new results are another important step in understanding the diversity of planetary systems in our universe," said Bergin. "We are now observing systems with massive Jupiters, super-Earths, and many Neptune-like worlds. By weighing systems at their birth, we gain insight into how our own solar system formed with just one of many possible planetary configurations."


Herschel is a European Space Agency (ESA) cornerstone mission, with science instruments provided by a consortium of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at JPL, which contributed mission-enabling technology for two of Herschel's three science instruments. NASA's Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, supports the United States astronomical community. Caltech manages JPL for NASA.


More information is online at http://www.herschel.caltech.edu , http://www.nasa.gov/herschel and http://www.esa.int/SPECIALS/Herschel .








Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

J.D. Harrington 202-358-5241

NASA Headquarters, Washington

j.d.harrington@nasa.gov

2013-328

Small Asteroid to Whiz Past Earth Safely

Small Asteroid to Whiz Past Earth Safely:

Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013.
Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013. Image credit: NASA/JPL-Caltech
› Larger image

February 01, 2013

The small near-Earth asteroid 2012 DA14 will pass very close to Earth on February 15, so close that it will pass inside the ring of geosynchronous weather and communications satellites. NASA's Near-Earth Object Program Office can accurately predict the asteroid's path with the observations obtained, and it is therefore known that there is no chance that the asteroid might be on a collision course with Earth. Nevertheless, the flyby will provide a unique opportunity for researchers to study a near-Earth object up close.


Asteroid 2012 DA14 will be closest to Earth on Feb. 15, at about 11:24 p.m. PST (2 p.m. EST and 1924 UT), when it will be at a distance of about 27,700 kilometers (17,200 miles) above Earth's surface. Although this is close enough for the asteroid to pass inside the ring of geosynchronous satellites, located about 35,800 kilometers (22,200 miles) above the equator, it will still be well above the vast majority of satellites, including the International Space Station. At its closest, the asteroid will be only about 1/13th of the distance to the moon. The asteroid will fly by our planet quite rapidly, at a speed of about 17,400 mph (7.8 kilometers per second) in a south-to-north direction with respect to Earth.


Even though 2012 DA14 is coming remarkably close, it will still only appear as a point of light in the biggest of optical telescopes, because of its small size. Based on its brightness, astronomers estimate that it is only about 45 meters (150 feet) across. It will brighten only to magnitude 7.5, too faint to be seen with the naked eye, but easily visible with a good set of binoculars or a small telescope. The best viewing location for the closest approach will be Indonesia, from which the asteroid will be seen to move at a rate of almost 1 degree per minute against the star background. Eastern Europe, Asia and Australia are also well situated to see the asteroid around its closest approach. But by the time Earth rotates enough for observers in the continental United States to have a chance to see the asteroid, it will have receded and faded to about the 11th magnitude. Radar astronomers plan to take images of the asteroid about eight hours after closest approach using the Goldstone antenna in California's Mojave Desert, which is part of NASA's Deep Space Network.


2012 DA14 has not been in the catalogues for very long -- it was discovered in February of 2012 by astronomers at the La Sagra Sky Survey program in southern Spain and reported to the Minor Planet Center, which designates minor bodies in our solar system. At the time of the discovery, the asteroid had just made a fairly distant passage by Earth, about seven times farther than the distance to the moon. Since 2012 DA14's orbital period around the sun has been about 368 days, which is very similar to Earth's, the asteroid made a series of annual close approaches. This year's is the closest approach, and is the closest the asteroid will come for at least three decades. But this encounter will shorten 2012 DA14's orbital period to about 317 days, changing its orbital class from Apollo to Aten, and its future close approaches will follow a different pattern.


This passage of 2012 DA14 by Earth is a record close approach for a known object of this size. A few other known asteroids have flown by Earth even closer, but those asteroids were smaller. On average, we expect an object of this size to get this close to Earth about once every 40 years. An actual Earth collision by an object of this size would be expected much less frequently, about once every 1,200 years, on average.

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov


2013-041

NASA to Host Feb. 7 Media Telecon on Asteroid Flyby

NASA to Host Feb. 7 Media Telecon on Asteroid Flyby:

Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013.
Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013. Image credit: NASA/JPL-Caltech
› Larger image

February 04, 2013

PASADENA, Calif. -- NASA will hold a media teleconference at 11 a.m. PST (2 p.m. EST), on Thursday, Feb. 7, to discuss an asteroid, 150 feet (45 meters) in diameter, that will pass close, but safely, by Earth on Feb. 15. The flyby creates a unique opportunity for researchers to observe and learn more about asteroids.


The teleconference participants are:
--Lindley Johnson, program executive, Near-Earth Object (NEO) Observations Program, NASA Headquarters, Washington

--Timothy Spahr, director, Minor Planet Center, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.

--Donald Yeomans, manager, NEO Office, Jet Propulsion Laboratory, Pasadena, Calif.

--Amy Mainzer, principal investigator, NEOWISE observatory, Jet Propulsion Laboratory

--Edward Beshore, deputy principal investigator, Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer Asteroid Sample Return Mission, University of Arizona, Tucson


Audio of the teleconference will be streamed live at: http://www.nasa.gov/newsaudio and http://www.ustream.tv/nasajpl2 .


Related images will be available at the start of the teleconference at:
http://www.nasa.gov/mission_pages/asteroids/news/telecon20130207.html .


For detailed information concerning the Earth flyby of 2012 DA14, visit:
http://www.nasa.gov/topics/solarsystem/features/asteroidflyby.html .


A Ustream feed of the flyby from a telescope at NASA's Marshall Space Flight Center in Huntsville, Ala., will be broadcast from 6 p.m. to 9 p.m. PST (9 p.m. to midnight EST) on Feb. 15. To view the feed and ask researchers questions via Twitter about the flyby, visit: http://www.ustream.tv/channel/nasa-msfc .

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov


Dwayne Brown 202-358-1726

NASA Headquarters, Washington

Dwayne.c.brown@nasa.gov


Nancy Neal Jones 301-286-0039

Goddard Space Flight Center, Greenbelt, Md.

nancy.n.jones@nasa.gov


2012-043

Cassini Sees Titan Cooking up Smog

Cassini Sees Titan Cooking up Smog:

Reflection of Sunlight off Titan Lake
This image shows the first flash of sunlight reflected off a lake on Saturn's moon Titan. The glint off a mirror-like surface is known as a specular reflection. This kind of glint was detected by the visual and infrared mapping spectrometer (VIMS) on NASA's Cassini spacecraft on July 8, 2009. It confirmed the presence of liquid in the moon's northern hemisphere, where lakes are more numerous and larger than those in the southern hemisphere. Scientists using VIMS had confirmed the presence of liquid in Ontario Lacus, the largest lake in the southern hemisphere, in 2008. Image Credit:
NASA/JPL/University of Arizona/DLR
› Full image and caption

February 04, 2013

A paper published this week using data from NASA's Cassini mission describes in more detail than ever before how aerosols in the highest part of the atmosphere are kick-started at Saturn's moon Titan. Scientists want to understand aerosol formation at Titan because it could help predict the behavior of smoggy aerosol layers on Earth.


According to the new paper, published this week in the Proceedings of the National Academy of Sciences, Titan's trademark reddish-brown smog appears to begin with solar radiation on molecules of nitrogen and methane in the ionosphere, which creates a soup of negative and positive ions. Collisions among the organic molecules and the ions help the molecules grow into bigger and more complex aerosols. Lower down in the atmosphere, these aerosols bump into each other and coagulate, and at the same time interact with other, neutral particles. Eventually, they form the heart of the physical processes that rain hydrocarbons on Titan's surface and form lakes, channels and dunes.


The paper was led by Panayotis Lavvas, a Cassini participating scientist based at the University of Reims, Champagne-Ardenne, France. The team analyzed data from three Cassini instruments -- the plasma spectrometer, the ion and neutral mass spectrometer, and the radio and plasma wave science experiment. They compared their results to those obtained by ESA's Huygens probe on its descent through the Titan atmosphere in 2005 and found they were compatible.


The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory manages the mission for NASA's Science Mission Directorate, Washington, D.C. JPL is a division of Caltech. For more information on Cassini, visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .

Jia-Rui C. Cook 818-354-0850

Jet Propulsion Laboratory, Pasadena, Calif.


jccook@jpl.nasa.gov


2013-042

WISE Feels the Heat from Orion's Sword

WISE Feels the Heat from Orion's Sword:

The Cosmic Hearth
The Orion nebula is featured in this sweeping image from NASA's Wide-field Infrared Survey Explorer, or WISE. The constellation of Orion is prominent in the evening sky throughout the world from about December through April of each year. The nebula (also catalogued as Messier 42) is located in the sword of Orion, hanging from his famous belt of three stars. The star cluster embedded in the nebula is visible to the unaided human eye as a single star, with some fuzziness apparent to the most keen-eyed observers. Image Credit: NASA/JPL-Caltech/UCLA
› Full image and caption

February 05, 2013

The tangle of clouds and stars that lie in Orion's sword is showcased in a new, expansive view from NASA's Wide-field Infrared Survey Explorer, or WISE.


Orion, the famous hunter, is visible in evening skies throughout the world from about December through April. The constellation appears tranquil and still to the naked eye, but lying in its sword, at what appears to be a slightly fuzzy star, is a turbulent cauldron of stellar birth.


WISE scanned the whole sky in infrared light, capturing this vast view of the dynamic region, called the Orion nebula. The telescope picked up the infrared glow from dust heated by newborn stars. The colors green and red highlight this warmed dust, while the white regions are the hottest. Massive stars burned through the dust, carving out cavities, the largest of which is seen at the center of the picture.


Astronomers think that our sun was probably born in a similar cloud some five billion years ago. Over time, the cloud would have dispersed and the stars would have drifted apart, leaving us more isolated in space. The crowded newborn stars in the Orion nebula are less than 10 million years old -- billions of years from now, they will likely spread out.


NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages, and operated, WISE for NASA's Science Mission Directorate. The spacecraft was put into hibernation mode in 2011, after it scanned the entire sky twice, completing its main objectives. Edward Wright is the principal investigator and is at UCLA. The mission was selected competitively under NASA's Explorers Program managed by the agency's Goddard Space Flight Center in Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory in Logan, Utah. The spacecraft was built by Ball Aerospace & Technologies Corp. in Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.


More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and http://jpl.nasa.gov/wise .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


2013-046

Pacific Locked in 'La Nada' Limbo

Pacific Locked in 'La Nada' Limbo:

The latest image of sea surface heights in the Pacific Ocean from NASA's Jason-1 satellite
The latest image of sea surface heights in the Pacific Ocean from NASA's Jason-1 satellite shows that the equatorial Pacific Ocean is now in its 10th month of being locked in what some call a neutral, or "La Nada" state. "La Nadas" make long-range climate forecasting more difficult due to their greater unpredictability. Yellows and reds indicate areas where waters are relatively warmer and have expanded above normal sea level, while blues and purple areas show where waters are relatively colder and sea level is lower than normal. Green indicates near-normal sea level conditions. Image credit is NASA-JPL/Caltech/Ocean Surface Topography Team.

› Larger image

February 06, 2013

Sea-surface height data from NASA's Jason-1 satellite show that the equatorial Pacific Ocean is still locked in what some call a neutral, or 'La Nada' state. This condition follows two years of strong, cool-water La Niña events.


A new image, based on the average of 10 days of data centered on Jan. 26, 2013, shows near-normal conditions (depicted in green) across the equatorial Pacific. The image is available at: http://sealevel.jpl.nasa.gov/images/latestdata/jason/2013/20130126P.jpg .


This latest image highlights the processes that occur on time scales of more than a year, but usually less than 10 years, such as El Niño and La Niña. These processes are known as the interannual ocean signal. To show that signal, scientists refined data for this image by removing trends over the past 20 years, seasonal variations and time-averaged signals of large-scale ocean circulation.


The height of the water relates, in part, to its temperature, and thus is an indicator of the amount of heat stored in the ocean below. As the ocean warms, its level rises; as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and have expanded above normal sea level, while green (which dominates in this image) indicates near-normal sea level, and blue and purple areas show where the waters are relatively colder and sea level is lower than normal. Above-normal height variations along the equatorial Pacific indicate El Niño conditions, while below-normal height variations indicate La Niña conditions. The temperature of the upper ocean can have a significant influence on weather patterns and climate. For a more detailed explanation of what this type of image means, visit: http://sealevel.jpl.nasa.gov/science/elninopdo/latestdata/ .


"This past spring, after two years of La Niña, the expected El Niño was a no-show," says Bill Patzert, climatologist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "La Niña faded and 'La Nada' conditions locked in."


"This absence of El Niño and La Niña, termed 'neutral' by some, has left long-range climate forecasters adrift," Patzert added. "Seasonal, long-range forecasting works best when signals like El Niño and La Niña are strong."
Patzert calls the present condition 'La Nada,' because the word 'neutral' misleadingly implies to some that weather will be 'normal.'


"For me 'normal' is the cycle on a washing machine," Patzert said. "I never say the word 'normal' when it comes to winter weather in the American West. For instance, in the last 100 years, we've only had a total of six 'normal' years of rainfall in Los Angeles, meaning about 15 inches of rain per winter in downtown L.A. Historically, La Nadas have delivered both the wettest and driest winters on record. For long-range forecasters, La Nada is a teeth grinder."
NASA scientists will continue to monitor this persistent La Nada - now in its 10th month -- to see what the Pacific Ocean has in store next for the world's climate.


The comings and goings of El Niño, La Niña and La Nada are part of the long-term, evolving state of global climate, for which measurements of sea surface height are a key indicator. Jason-1 is a joint effort between NASA and the French Space Agency, Centre National d'Etudes Spatiales (CNES). Jason-2 is a joint effort between NASA, the National Oceanic and Atmospheric Administration, CNES and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). JPL manages the U.S. portion of both missions for NASA's Science Mission Directorate, Washington, D.C.
In early 2015, NASA and its international partners CNES, NOAA and EUMETSAT will launch Jason-3, which will extend the timeline of ocean surface topography measurements begun by the Topex/Poseidon and Jason 1 and 2 satellites. Jason-3 will make highly detailed measurements of sea level on Earth to gain insight into ocean circulation and climate change.


For more on NASA's satellite altimetry programs, visit: http://sealevel.jpl.nasa.gov .


You can follow JPL News on Facebook at: http://www.facebook.com/nasajpl and on Twitter at: http://www.twitter.com/nasajpl . The California Institute of Technology in Pasadena manages JPL for NASA.

Alan Buis 818-354-0474

Jet Propulsion Laboratory, Pasadena, Calif.

Alan.buis@jpl.nasa.gov


2013-049

Kepler Data Suggest Earth-size Planets May Be Next Door

Kepler Data Suggest Earth-size Planets May Be Next Door:

Astronomers estimate that six percent of red dwarfs have a temperate Earth-size planet, as close as 13 light-years away.
Astronomers estimate that six percent of red dwarfs have a temperate Earth-size planet, as close as 13 light-years away. Image credit: D. Aguilar/Harvard-Smithsonian Center for Astrophysics

› Full image and caption

February 06, 2013

Using publicly available data from NASA's Kepler space telescope, astronomers at the Harvard-Smithsonian Center for Astrophysics estimate that six percent of red dwarf stars in the galaxy have Earth-size planets in the "habitable zone," the range of distances from a star where the surface temperature of an orbiting planet might be suitable for liquid water.


The majority of the sun's closest stellar neighbors are red dwarfs. Researchers now believe that an Earth-size planet with a moderate temperature may be just 13 light-years away.


"We don't know if life could exist on a planet orbiting a red dwarf, but the findings pique my curiosity and leave me wondering if the cosmic cradles of life are more diverse than we humans have imagined," said Natalie Batalha, Kepler mission scientist at NASA's Ames Research Center in Moffett Field, Calif.


The research team analyzed 95 planet candidates in the Kepler catalog orbiting 64 red dwarf stars. Most of these candidates aren't the right size or temperature to be considered Earth-like, as defined by the size relative to Earth and the distance from the host star. However, three candidates are both temperate and smaller than twice the size of Earth.


Red dwarf stars are smaller, cooler and fainter than our sun. An average red dwarf is only one-third as large and one-thousandth as bright as the sun. Consequently, the not-too-hot or not-too-cold habitable zone would be much closer to a cooler star than it is to the sun.


"This close-in habitable zone around cooler stars makes planets more vulnerable to the effects of stellar flares and gravitational interactions, complicating our understanding of their likely habitability," said Victoria Meadows, professor at the University of Washington, Seattle, and principal investigator with the NASA Astrobiology Institute. "But, if the planets predicted by this study are indeed found very nearby, then it will make it easier for us to make the challenging observations needed to learn more about them, including whether or not they can or do support life."


The three planetary candidates highlighted in this study are Kepler Object of Interest (KOI) 1422.02, which is 90 percent the size of Earth in a 20-day orbit; KOI-2626.01, 1.4 times the size of Earth in a 38-day orbit; and KOI-854.01, 1.7 times the size of Earth in a 56-day orbit.


Located between 300 and 600 light-years away, the three candidates orbit stars with temperatures ranging from 5,660 to 5,840 degrees Fahrenheit (3,400 to 3,500 degrees Kelvin). By comparison, the temperature of the sun is nearly 5,800 degrees Kelvin (9,980 degrees Fahrenheit).


Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone. Kepler is detecting planets and possible candidates with a wide range of sizes and orbital distances to help scientists better understand our place in the galaxy.


Ames manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with JPL at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.


The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters.


For more information about the discovery, see the full press release .


For information about the Kepler Mission, visit: http://www.nasa.gov/kepler .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


2013-048

NASA Telescopes Discover Strobe-Like Flashes in Young Stars

NASA Telescopes Discover Strobe-Like Flashes in Young Stars:

Artist's Impression of Pulsating Object LRLL 54361
This is an artist's impression of two young binary stars that may be the source of mysterious clock-like bursts of light from an object called LRLL 54361 that lies inside the star-forming region IC 348, located 950 light-years away. Image credit: NASA/ESA/JPL-Caltech
› Full image and caption

February 07, 2013

PASADENA, Calif.-- Two of NASA's great observatories, the Spitzer and Hubble space telescopes, have teamed up to uncover a mysterious infant star that behaves like a strobe light.


Every 25.34 days, the object, designated LRLL 54361, unleashes a burst of light. Although a similar phenomenon has been observed in two other young stellar objects, this is the most powerful such beacon seen to date.


The heart of the fireworks is hidden behind a dense disk and an envelope of dust. Astronomers propose the light flashes are caused by periodic interactions between two newly formed stars that are binary, or gravitationally bound to each other. LRLL 54361 offers insights into the early stages of star formation when lots of gas and dust is being rapidly accreted, or pulled together, to form a new binary star.


Astronomers theorize the flashes are caused by material suddenly being dumped onto the growing stars, known as protostars. A blast of radiation is unleashed each time the stars get close to each other in their orbits. This phenomenon, called pulsed accretion, has been seen in later stages of star birth, but never in such a young system or with such intensity and regularity.


"This protostar has such large brightness variations with a precise period that it is very difficult to explain," said James Muzerolle of the Space Telescope Science Institute in Baltimore, Md. His paper recently was published in the science journal Nature.


Discovered by NASA's Spitzer Space Telescope, LRLL 54361 is a variable object inside the star-forming region IC 348, located 950 light-years from Earth. Data from Spitzer revealed the presence of protostars. Based on statistical analysis, the two stars are estimated to be no more than a few hundred thousand years old.


The Spitzer infrared data, collected repeatedly during a period of seven years, showed unusual outbursts in the brightness of the suspected binary protostar. Surprisingly, the outbursts recurred every 25.34 days, which is a very rare phenomenon.


Astronomers used NASA's Hubble Space Telescope to confirm the Spitzer observations and reveal the detailed stellar structure around LRLL 54361. Hubble observed two cavities above and below a dusty disk. The cavities are visible by tracing light scattered off their edges. They likely were blown out of the surrounding natal envelope of dust and gas by an outflow launched near the central stars. The disk and the envelope prevent the suspected binary star pair from being observed directly. By capturing multiple images over the course of one pulse event, the Hubble observations uncovered a spectacular movement of light away from the center of the system, an optical illusion known as a light echo.


Muzerolle and his team hypothesized the pair of stars in the center of the dust cloud move around one another in a very eccentric orbit. As the stars approach each other, dust and gas are dragged from the inner edge of a surrounding disk. The material ultimately crashes onto one or both stars, which triggers a flash of light that illuminates the circumstellar dust. The system is rare because close binaries account for only a few percent of our galaxy's stellar population. This is likely a brief, transitory phase in the birth of a star system.


Muzerolle's team next plans to continue monitoring LRLL 54361 using other facilities, including the European Space Agency's Herschel Space Telescope. The team hopes to eventually obtain more direct measurements of the binary star and its orbit.


For related images and video, visit: http://hubblesite.org/news/2013/04 .


NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit: http://spitzer.caltech.edu and http://www.nasa.gov/spitzer .


The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md.,
manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. For more information on Hubble visit: www.nasa.gov/hubble and http://hubblesite.org/ .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


Ray Villard 410-338-4514

Space Telescope Science Institute, Baltimore, Md.

villard@stsci.edu


J.D. Harrington 202-358-5241

Headquarters, Washington

j.d.harrington@nasa.gov


2013-050

NASA Satellites Find Freshwater Losses in Middle East

NASA Satellites Find Freshwater Losses in Middle East:

Variations in total water storage from normal, in millimeters, in the Tigris and Euphrates river basins
Variations in total water storage from normal, in millimeters, in the Tigris and Euphrates river basins, as measured by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites, from January 2003 through December 2009. Reds represent drier conditions, while blues represent wetter conditions. The majority of the water lost was due to reductions in groundwater caused by human activities. By periodically measuring gravity regionally, GRACE tells scientists how much water storage changes over time. Image credit: NASA/UC Irvine/NCAR
› Larger image

February 12, 2013

PASADENA, Calif. - A new study using data from a pair of gravity-measuring NASA satellites finds that large parts of the arid Middle East region lost freshwater reserves rapidly during the past decade.


Scientists at the University of California, Irvine; NASA's Goddard Space Flight Center in Greenbelt, Md.; and the National Center for Atmospheric Research in Boulder, Colo., found during a seven-year period beginning in 2003 that parts of Turkey, Syria, Iraq and Iran along the Tigris and Euphrates river basins lost 117 million acre feet (144 cubic kilometers) of total stored freshwater. That is almost the amount of water in the Dead Sea. The researchers attribute about 60 percent of the loss to pumping of groundwater from underground reservoirs.


The findings, to be published Friday, Feb. 15, in the journal Water Resources Research, are the result of one of the first comprehensive hydrological assessments of the entire Tigris-Euphrates-Western Iran region. Because obtaining ground-based data in the area is difficult, satellite data, such as those from NASA's twin Gravity Recovery and Climate Experiment (GRACE) satellites, are essential. GRACE is providing a global picture of water storage trends and is invaluable when hydrologic observations are not routinely collected or shared beyond political boundaries.


"GRACE data show an alarming rate of decrease in total water storage in the Tigris and Euphrates river basins, which currently have the second fastest rate of groundwater storage loss on Earth, after India," said Jay Famiglietti, principal investigator of the study and a hydrologist and professor at UC Irvine. "The rate was especially striking after the 2007 drought. Meanwhile, demand for freshwater continues to rise, and the region does not coordinate its water management because of different interpretations of international laws."


Famiglietti said GRACE is like having a giant scale in the sky. Within a given region, rising or falling water reserves alter Earth's mass, influencing how strong the local gravitational attraction is. By periodically measuring gravity regionally, GRACE tells us how much each region's water storage changes over time.


"GRACE really is the only way we can estimate groundwater storage changes from space right now," Famiglietti said.


The team calculated about one-fifth of the observed water losses resulted from soil drying up and snowpack shrinking, partly in response to the 2007 drought. Loss of surface water from lakes and reservoirs accounted for about another fifth of the losses. The majority of the water lost -- approximately 73 million acre feet (90 cubic kilometers) -- was due to reductions in groundwater.


"That's enough water to meet the needs of tens of millions to more than a hundred million people in the region each year, depending on regional water use standards and availability," said Famiglietti.


Famiglietti said when a drought reduces an available surface water supply, irrigators and other water users turn to groundwater supplies. For example, the Iraqi government drilled about 1,000 wells in response to the 2007 drought, a number that does not include the numerous private wells landowners also very likely drilled.


"Water management is a complex issue in the Middle East -- an area that already is dealing with limited water resources and competing stakeholders," said Kate Voss, lead author of the study and a water policy fellow with the University of California's Center for Hydrological Modeling in Irvine, which Famiglietti directs.


"The Middle East just does not have that much water to begin with, and it's a part of the world that will be experiencing less rainfall with climate change," said Famiglietti. "Those dry areas are getting dryer. The Middle East and the world's other arid regions need to manage available water resources as best they can."


Study co-author Matt Rodell of Goddard added it is important to remember groundwater is being extracted unsustainably in parts of the United States, as well.


"Groundwater is like your savings account," Rodell said. "It's okay to draw it down when you need it, but if it's not replenished, eventually it will be gone."


GRACE is a joint mission with the German Aerospace Center and the German Research Center for Geosciences, in partnership with the University of Texas at Austin. For more about GRACE, visit: http://www.nasa.gov/grace and http://www.csr.utexas.edu/grace . The California Institute of Technology in Pasadena manages JPL for NASA

Alan Buis 818-354-0474

Jet Propulsion Laboratory, Pasadena, Calif.

Alan.buis@jpl.nasa.gov


Steve Cole 202-358-0918

NASA Headquarters, Washington

Stephen.e.cole@nasa.gov


Janet Wilson 949-824-3969

University of California, Irvine

janethw@uci.edu


2013-054

JPL to Lead U.S. Science Team for Dark Energy Mission

JPL to Lead U.S. Science Team for Dark Energy Mission:

This artist's concept shows the Euclid spacecraft.
This artist's concept shows the Euclid spacecraft. The telescope will launch to an orbit around the sun-Earth Lagrange point L2. The Lagrange point is a location where the gravitational pull of two large masses, the sun and Earth in this case, precisely equals the force required for a small object, such as the Euclid spacecraft, to maintain a relatively stationary position behind Earth as seen from the sun. Image credit: ESA/C. Carreau
› Full image and caption

February 12, 2013

PASADENA, Calif. -- The European Space Agency (ESA) has selected three NASA-nominated science teams to participate in their planned Euclid mission, including one team led by NASA's Jet Propulsion Laboratory in Pasadena, Calif.


NASA is a partner in the Euclid mission, a space telescope designed to probe the mysteries of dark energy and dark matter. Euclid is currently scheduled to launch in 2020.


JPL will provide 16 advanced infrared detectors and four spare detectors for one of two instruments planned for the mission. In addition, JPL will contribute to science planning and data analysis with the help of its 43-member science team, the largest of the three U.S. teams. This team, led by JPL scientist Jason Rhodes, is composed of 29 scientists recently nominated by NASA, and 14 U.S. scientists who are already part of Euclid.


The other two U.S. science teams are led by Ranga-Ram Chary of the Infrared Processing and Analysis Center at the California Institute of Technology, Pasadena; and Alexander Kashlinsky of NASA's Goddard Space Flight Center, Greenbelt, Md.; with three and seven members, respectively.


Rhodes also was appointed by NASA to be a member of ESA's principal 12-member Euclid Science Team and the U.S. representative for the Euclid Consortium's governing body. The Euclid Consortium is an international body of 1,000 members, including the U.S. science team members, and will build the instruments and analyze the science data jointly.


"Understanding the hidden contents of the universe and the nature of the dark energy will require the collaboration of astronomers and engineers around the world," said Rhodes.


Euclid will observe up to two billion galaxies occupying more than one-third of the sky with the goal of better understanding the contents of our universe. Everyday matter that we see around us, for example in tables and chairs, people and even stars, makes up only a few percent of everything in our cosmos. If you could fill a bucket with the mass and energy contents of our universe, this everyday matter would fill only a small fraction. A larger amount, about 24 percent, would consist of dark matter, an invisible substance that does not reflect or emit any light, but exerts a gravitational tug on other matter.


The majority of our universal bucket, about 73 percent, is thought to be filled with dark energy, something even more mysterious than dark matter. Whereas dark matter pulls through its gravity, dark energy is thought to be a repulsive force pushing matter apart. Scientists think dark energy may be responsible for stretching our universe apart at ever-increasing speeds, an observation that earned the Nobel Prize in 2011.


Euclid scientists will use two methods to make the most precise measurements yet of our "dark" universe. The first method, called weak lensing, involves analyzing the shapes of billions of galaxies across more than half the age of the universe. When dark matter lies in front of galaxies, it can't be seen, but its gravity distorts the light from the galaxies behind it. More dark matter will lead to slightly larger distortions. By measuring these minute distortions, scientists can understand the amount and distribution of the dark matter between these galaxies and us.


Changes in these dark matter structures over time are governed by interplay between the attractive force of gravity and the repulsive dark energy. Thus, studying galaxy shapes reveals information about both dark matter and dark energy.


The second method, called galaxy clustering or baryon acoustic oscillations, will serve as an independent measurement of dark energy. Early in the universe, galaxies were imprinted with a standard distance between them. This distance -- referred to as a standard ruler -- expands as the universe itself expands. By making precise measurements of the distances between tens of millions of galaxies, the scientists will be able to chart this expansion and learn more about the dark energy driving it. Observations of how the galaxies are clustered will also further probe dark matter.


The JPL-led U.S. science team will employ both of these methods and work together with the rest of the Euclid scientists to shine light on the darkest riddles of our cosmos. Of the 43 team members, six are based at JPL. They are: Olivier Dore, Peter Eisenhardt, Alina Kiessling, Leonidas Moustakas, Jason Rhodes and Daniel Stern. Two additional team members, Peter Capak and Harry Teplitz, are based at the Infrared Processing and Analysis Center.


Mike Seiffert is the U.S. project scientist for Euclid at JPL, and Ulf Israelsson is the U.S. project manager at JPL.


Euclid is a European Space Agency mission with science instruments and data analysis provided by the Euclid consortium with important participation from NASA. NASA's Euclid Project Office is based at JPL. JPL will contribute the infrared flight detectors for one of Euclid's two science instruments. NASA Goddard will assist with infrared detector characterization and will perform detailed testing on flight detectors prior to delivery. Three U.S. science teams, led by JPL, Goddard and the Infrared Processing and Analysis Center at Caltech, will contribute to science planning and data analysis. Caltech manages JPL for NASA.


More information is online at http://www.nasa.gov/euclid and http://sci.esa.int/euclid .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


J.D. Harrington 202-358-5241

NASA Headquarters, Washington

j.d.harrington@nasa.gov


2013-055

NASA to Chronicle Close Earth Flyby of Asteroid

NASA to Chronicle Close Earth Flyby of Asteroid:

Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013.
Diagram depicting the passage of asteroid 2012 DA14 through the Earth-moon system on Feb. 15, 2013. Image credit: NASA/JPL-Caltech
› Larger image

February 13, 2013

PASADENA, Calif. -- NASA Television will provide commentary starting at 11 a.m. PST (2 p.m. EST) on Friday, Feb. 15, during the close, but safe, flyby of a small near-Earth asteroid named 2012 DA14. NASA places a high priority on tracking asteroids and protecting our home planet from them. This flyby will provide a unique opportunity for researchers to study a near-Earth object up close.


The half-hour broadcast from NASA's Jet Propulsion Laboratory in Pasadena, Calif., will incorporate real-time animation to show the location of the asteroid in relation to Earth, along with live or near real-time views of the asteroid from observatories in Australia, weather permitting.


At the time of its closest approach to Earth at approximately 11:25 a.m. PST (2:25 p.m. EST / 19:25 UTC), the asteroid will be about 17,150 miles (27,600 kilometers) above Earth's surface.


The commentary will be available via NASA TV and streamed live online at:


http://www.nasa.gov/ntv


and


http://www.ustream.tv/nasajpl2


In addition to the commentary, near real-time imagery of the asteroid's flyby before and after closest approach, made available to NASA by astronomers in Australia and Europe, weather permitting, will be streamed beginning at about 9 a.m. PST (noon EST) and continuing through the afternoon at the following website:


http://www.ustream.tv/nasajpl2


A Ustream feed of the flyby from a telescope at NASA's Marshall Space Flight Center in Huntsville, Ala., will be streamed for three hours starting at 6 p.m. PST (8 p.m. CST / 9 p.m. EST). To view the feed and ask researchers questions about the flyby via Twitter, visit:


http://www.ustream.tv/channel/nasa-msfc


The NASA Near Earth Objects (NEO) Program at the agency's headquarters in Washington manages and funds the search, study and monitoring of NEOs, or asteroids and comets, whose orbits periodically bring them close to the Earth. NASA's study of NEOs provides important clues to understanding the origin of our solar system. The objects also are a repository of natural resources and could become waystations for future exploration. In collaboration with other external organizations, one of the program's key goals is to search and hopefully mitigate potential NEO impacts on Earth. JPL conducts the NEO program's technical and scientific activities.


For more information, including graphics and animations showing the flyby of 2012 DA14, visit:


www.nasa.gov/asteroidflyby


For more information about asteroids and near-Earth objects, visit:


http://www.jpl.nasa.gov/asteroidwatch

D.C. Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov


Steve Cole 202-358-0918

NASA Headquarters, Washington

stephen.e.cole@nasa.gov


2013-059

Additional Details on the Large Feb. 15 Fireball over Russia

Additional Details on the Large Feb. 15 Fireball over Russia:

A meteor seen flying over Russia on Feb. 15 at 3:20: 26 UTC impacted Chelyabinsk.
A meteor seen flying over Russia on Feb. 15 at 3:20: 26 UTC impacted Chelyabinsk. Preliminary information is that this object was unrelated to asteroid 2012 DA14, which made a safe pass by Earth today. Image credit: Google Earth, NASA/JPL-Caltech

› Larger image

February 15, 2013

Preliminary information indicates that a meteor in Chelyabinsk, Russia, is not related to asteroid 2012 DA14, which is flying by Earth safely today.


The Russia meteor is the largest reported since 1908, when a meteor hit Tunguska, Siberia. The meteor entered the atmosphere at about 40,000 mph (18 kilometers per second). The impact time was 7:20:26 p.m. PST, or 10:20:26 p.m. EST on Feb. 14 (3:20:26 UTC on Feb. 15), and the energy released by the impact was in the hundreds of kilotons.


Based on the duration of the event, it was a very shallow entry. It was larger than the meteor over Indonesia on Oct. 8, 2009. Measurements are still coming in, and a more precise measure of the energy may be available later. The size of the object before hitting the atmosphere was about 49 feet (15 meters) and had a mass of about 7,000 tons.


The meteor, which was about one-third the diameter of asteroid 2012 DA14, was brighter than the sun. Its trail was visible for about 30 seconds, so it was a grazing impact through the atmosphere.


It is important to note that this estimate is preliminary, and may be revised as more data is obtained.

http://www.nasa.gov/topics/solarsystem/features/asteroidflyby.html

NASA Releases Radar Movie of Asteroid 2012 DA14

NASA Releases Radar Movie of Asteroid 2012 DA14:

Radar image of asteroid 2012 DA14
This collage of 72 individual radar-generated images of asteroid 2012
DA14 was created using data from NASA's 230-foot (70-meter) Deep Space
Network antenna at Goldstone, Calif.
Image credit: NASA/JPL-Caltech

› Full image and caption

February 19, 2013

An initial sequence of radar images of asteroid 2012 DA14 was obtained on the night of Feb. 15/16, 2013, by NASA scientists using the 230-foot (70-meter) Deep Space Network antenna at Goldstone, Calif. Each of the 72 frames required 320 seconds of data collection by the Goldstone radar.


The observations were made as the asteroid was moving away from Earth. The asteroid's distance from the radar dish increased from 74,000 miles (120,000 kilometers) to 195,000 miles (314,000 kilometers). The resolution is 13 feet (four meters) per pixel. The images span close to eight hours and clearly show an elongated object undergoing roughly one full rotation. The images suggest that the asteroid has a long axis of about 130 feet (40 meters). The radar observations were led by scientists Lance Benner and Marina Brozovic of NASA's Jet Propulsion Laboratory, Pasadena, Calif. Additional Goldstone radar observations are scheduled on February 18, 19 and 20.


Radar is a powerful technique for studying an asteroid's size, shape, rotation state, surface features and surface roughness, and for improving calculations of its orbit. Radar measurements of asteroid distances and velocities often enable computation of asteroid orbits much further into the future than if radar observations weren't available.


NASA detects, tracks and characterizes asteroids and comets passing close to Earth using both ground- and space-based telescopes. The Near-Earth Object Observations Program, commonly called "Spaceguard," discovers these objects, characterizes a subset of them, and plots their orbits to determine if any could be potentially hazardous to our planet.


JPL manages the Near-Earth Object Program Office for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena.


More information about asteroids and near-Earth objects is at: http://www.jpl.nasa.gov/asteroidwatch . More information about asteroid radar research is at: http://echo.jpl.nasa.gov/ . More information about the Deep Space Network is at: http://deepspace.jpl.nasa.gov/dsn .

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov


Dwayne Brown 202-358-1726

NASA Headquarters, Washington

dwayne.c.brown@nasa.gov


2013-063

Cassini Sheds Light on Cosmic Particle Accelerators

Cassini Sheds Light on Cosmic Particle Accelerators:

Cassini at Saturn's bow shock
This artist's impression by the European Space Agency shows NASA's Cassini spacecraft exploring the magnetic environment of Saturn. Image credit: ESA
› Full image and caption

February 19, 2013

During a chance encounter with what appears to be an unusually strong blast of solar wind at Saturn, NASA's Cassini spacecraft detected particles being accelerated to ultra-high energies. This is similar to the acceleration that takes place around distant supernovas.


Since we can't travel out to the far-off stellar explosions right now, the shockwave that forms from the flow of solar wind around Saturn's magnetic field provides a rare laboratory for scientists with the Cassini mission -- a partnership involving NASA, the European Space Agency and the Italian Space Agency -- to observe this phenomenon up-close. The findings, published this week in the journal Nature Physics, confirm that certain kinds of shocks can become considerably more effective electron accelerators than previously thought.


Shock waves are commonplace in the universe, for example in the aftermath of a stellar explosion as debris accelerate outward in a supernova remnant, or when the flow of particles from the sun - the solar wind - impinges on the magnetic field of a planet to form a bow shock. Under certain magnetic field orientations and depending on the strength of the shock, particles can be accelerated to close to the speed of light at these boundaries. These may be the dominant source of cosmic rays, high-energy particles that pervade our galaxy.


Scientists are particularly interested in "quasi-parallel" shocks, where the magnetic field and the "forward"-facing direction of the shock are almost aligned, as may be found in supernova remnants. The new study, led by Adam Masters of the Institute of Space and Astronautical Science, Sagamihara, Japan, describes the first detection of significant acceleration of electrons in a quasi-parallel shock at Saturn, coinciding with what may be the strongest shock ever encountered at the ringed planet.


"Cassini has essentially given us the capability of studying the nature of a supernova shock in situ in our own solar system, bridging the gap to distant high-energy astrophysical phenomena that are usually only studied remotely," said Masters.


The Cassini-Huygens mission is a cooperative project of NASA, ESA and ASI, the Italian space agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington.

Jia-Rui C. Cook 818-354-0850

Jet Propulsion Laboratory, Pasadena, Calif.

jccook@jpl.nasa.gov


Markus Bauer 011-31-71-565-6799

European Space Agency, Noordwijk, the Netherlands

markus.bauer@esa.int


2013-064