Monday, July 21, 2014

Eight Essential Facts About NASA's Deep Space Network

Eight Essential Facts About NASA's Deep Space Network:

Artist's concept of eight facts about NASA's Deep Space Network.
Artist's concept of eight facts about NASA's Deep Space Network. Image credit: NASA/JPL
› Larger image


December 18, 2013

Get to know the Deep Space Network (DSN)-NASA's worldwide radio telescope array that communicates with spacecraft throughout the solar system.


As the World Turns: The DSN is Earth's only global spacecraft communication network

The Deep Space Network has three facilities - at Goldstone, Calif.; near Madrid, Spain; and Canberra, Australia, all with multiple parabolic dish antennas, including one dish each that is 230 feet (70 meters) across. Located about 120 degrees apart around Earth, the placement of the complexes provides round-the-clock coverage of the solar system. (A telescope needs a direct line of sight to "speak" with a spacecraft.)


One Small Step: The DSN showed us the first moonwalk

"That's one small step for man. One giant leap for mankind." The DSN received and relayed to the world the first TV images of astronaut Neil Armstrong setting foot on the surface of the moon in 1969.


Solar System Ambassador: DSN relays first close-up views of other planets

The historic network enabled the world to see the first-ever image of Mars, obtained by NASA's Mariner 4 spacecraft in 1965. Mariner 10 returned images of Mercury's surface in 1974. NASA's twin Voyager spacecraft were the first to fly by Jupiter, Saturn, Neptune and Uranus, capturing the first close-up images of these planets, plus some of their rings and moons. The DSN also relayed Voyager 1's portrait of Earth from 6 billion miles away, the iconic image Carl Sagan called "The Pale Blue Dot," as well as the spacecraft's entry into interstellar space.


Now Hear This: The DSN speaks with 33 spacecraft

During 1963, the DSN's first year of operation, it communicated with three spacecraft. In 2013, space is a much busier place. The DSN is currently communicating with 33 spacecraft across the solar system. The DSN sends commands to spacecraft and receives telemetry, engineering and scientific data.


Not Just NASA: The DSN relays data on behalf of international space agencies

While the DSN tracks, sends commands to and receives data from all NASA spacecraft beyond the moon, the network also supports spacecraft from the European Space Agency, Japanese Space Agency and Indian Space Agency.


There's Always Room for Science: The DSN is used for scientific observation

In addition to its crucial role in two-way spacecraft communication, DSN dishes make direct science observations. There's radar science, in which waves are bounced off objects such as passing asteroids to create radar images; radio science, where changes in the steady radio link between a spacecraft and the DSN reveal the internal structure of another world; radio astronomy, which looks at naturally occurring radio sources such as pulsars and quasars; and geodetic measurements, which reveal changes in the crust of Earth by tracking how long it takes a radio signal from a quasar or other astronomical source to reach different telescopes.


Houston, We've Had a Problem: Apollo 13 relied on the DSN in its hour of need.

The DSN was called on to support the nerve-wracking Apollo 13 mission after the rupture of an oxygen tank forced NASA to abort the planned lunar landing. During the critical re-entry of the capsule, it was essential that engineers on the ground maintain contact with the astronauts on board. The spacecraft's minimal power was needed for re-entry, with little left over for communications. The DSN was able to capture the "whispers from space," and helped bring home safely Jim Lovell, Jack Swigert and Fred Haise.


Animal Planet: Each DSN facility has a different critter companion

Each of the three DSN facilities around the globe has a different native species as an unofficial mascot. Goldstone in the California desert has burros; Madrid has bulls; and Canberra, Australia, has kangaroos.


More information about the Deep Space Network and its 50th anniversary celebration can be found at http://www.jpl.nasa.gov/dsn50 .

David Israel 818-354-4797

Jet Propulsion Laboratory, Pasadena, Calif.

david.israel@jpl.nasa.gov


2013-372

NASA's Asteroid Hunter Spacecraft Returns First Images after Reactivation

NASA's Asteroid Hunter Spacecraft Returns First Images after Reactivation:

NEOWISE's Next Light
NASA's NEOWISE spacecraft opened its "eyes" after more than two years of slumber to see the starry sky. Image credit: NASA/JPL-Caltech
› Full image and caption


December 19, 2013

Probe Will Assist Agency in Search for Candidates to Explore


NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), a spacecraft that made the most comprehensive survey to date of asteroids and comets, has returned its first set of test images in preparation for a renewed mission.


NEOWISE discovered more than 34,000 asteroids and characterized 158,000 throughout the solar system during its prime mission in 2010 and early 2011. It was reactivated in September following 31 months in hibernation, to assist NASA's efforts to identify the population of potentially hazardous near-Earth objects (NEOs). NEOWISE also can assist in characterizing previously detected asteroids that could be considered potential targets for future exploration missions.


"NEOWISE not only gives us a better understanding of the asteroids and comets we study directly, but it will help us refine our concepts and mission operation plans for future, space-based near-Earth object cataloging missions," said Amy Mainzer, principal investigator for NEOWISE at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The spacecraft is in excellent health, and the new images look just as good as they were before hibernation. Over the next weeks and months we will be gearing up our ground-based data processing and expect to get back into the asteroid hunting business, and acquire our first previously undiscovered space rock, in the next few months."


Some of the deep-space images taken by the spacecraft include a previously detected asteroid named (872) Holda. With a diameter of 26 miles (42 kilometers), this asteroid orbits the sun between Mars and Jupiter in a region astronomers call the asteroid belt. The images tell researchers the quality of the spacecraft's observations is the same as during its primary mission.


The spacecraft uses a 16-inch (40-centimeter) telescope and infrared cameras to seek out and discover unknown NEOs and characterize their size, albedo or reflectivity, and thermal properties. Asteroids reflect, but do not emit visible light, so data collected with optical telescopes using visible light can be deceiving.


Infrared sensors, similar to the cameras on NEOWISE, are a powerful tool for discovering, cataloging and understanding the asteroid population. Some of the objects about which NEOWISE will be collecting data could become candidates for the agency's announced asteroid initiative.


NASA's initiative will be the first mission to identify, capture and relocate an asteroid. It represents an unprecedented technological feat that will lead to new scientific discoveries and technological capabilities that will help protect our home planet. The asteroid initiative brings together the best of NASA's science, technology and human exploration efforts to achieve President Obama's goal of sending humans to an asteroid by 2025.


"It is important that we accumulate as much of this type of data as possible while the spacecraft remains a viable asset," said Lindley Johnson, NASA's NEOWISE program executive in Washington. "NEOWISE is an important element to enhance our ability to support the initiative."


NEOWISE began as WISE. The prime mission, which was launched in December 2009, was to scan the entire celestial sky in infrared light. WISE captured more than 2.7 million images in multiple infrared wavelengths and cataloged more than 747 million objects in space, ranging from galaxies faraway to asteroids and comets much closer to Earth. NASA turned off most of WISE's electronics when it completed its primary mission in February 2011.


Upon reactivation, the spacecraft was renamed NEOWISE, with the goal of discovering and characterizing asteroids and comets whose orbits approach within 28 million miles (45 million kilometers) from Earth's path around the sun.


More information about NEOWISE is available online at:

http://www.nasa.gov/wise


For more information on the asteroid initiative, visit:

http://www.nasa.gov/asteroidinitiative


JPL manages the project for NASA's Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colo., built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov


Dwayne Brown 202-358-1726

NASA Headquarters, Washington

Dwayne.c.brown@nasa.gov


2013-373

NASA's Deep Space Network Celebrates 50 Years

NASA's Deep Space Network Celebrates 50 Years:

This aerial photo shows the NASA Deep Space Network complex outside of Canberra, Australia in 1997
This aerial photo shows the NASA Deep Space Network complex outside of Canberra, Australia in 1997. The Canberra complex officially opened in 1965. Because of celestial mechanics and trajectories, the best spacecraft tracking requires stations located in both the northern and southern hemispheres. Image credit: NASA/JPL-Caltech
› Larger view


December 24, 2013

The Deep Space Network first existed as just a few small antennas as part of the Deep Space Instrumentation Facility. That facility, originally operated by the U.S. Army in the 1950s, morphed into the Deep Space Network on Dec. 24, 1963, and quickly became the de facto network for missions into deep space.


During its first year of operation, the network communicated with three spacecraft - Mariner 2, IMP-A and Atlas Centaur 2. Today, it communicates with 33 via three antenna complexes in Goldstone, Calif.; near Madrid, Spain; and near Canberra, Australia, maintaining round-the-clock coverage of the solar system.


During the past 50 years, antennas of the Deep Space Network have communicated with most of the missions that have gone to the moon and far into deep space. The highlights include relaying the moment when astronaut Neil Armstrong stepped onto the surface of the moon in a "giant leap for mankind"; transmitting data from numerous encounters with the outer planets of our solar system; communicating images taken by rovers exploring Mars; and relaying the data confirming that NASA's Voyager 1 spacecraft had entered interstellar space.


Space agencies in Europe, Japan and Russia have also relied on the Deep Space Network when planning and communicating with their own missions over the decades. The Deep Space Network has been used recently by India's first interplanetary probe, the Mars Orbiter Mission.


JPL, a division of the California Institute of Technology in Pasadena, manages the Deep Space Network for NASA.


Full news release, video, slideshow and more at: http://www.jpl.nasa.gov/dsn50/ .

David Israel

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-4797

david.israel@jpl.nasa.gov


2013-378

First 2014 Asteroid Discovered

First 2014 Asteroid Discovered:

animated GIF of asteroid AA 2014
Figure 1 - This animated GIF shows Asteroid 2014 AA, discovered by the NASA-sponsored Catalina Sky Survey on Jan. 1, 2014, as it moved across the sky. Image credit: CSS/LPL/UA


January 02, 2014

Update: Jan. 3, 2014, 5 p.m. PST


Several sources confirm that the first discovered asteroid in 2014, designated 2014 AA, entered Earth's atmosphere late Jan. 1 (Jan. 2 Universal time) over the mid-Atlantic Ocean. The Catalina Sky Survey operating near Tucson, Ariz. discovered this very small asteroid -- 6 to 9 feet (2 to 3 meters) in size -- early on the morning of Jan. 1, and immediately followed up on it. (An animation of the discovery images is shown in Figure 1). The asteroid entered Earth's atmosphere about 21 hours later, and probably broke up.


The high-precision astrometry data and rapid follow-up observations provided by the Catalina Sky Survey team made it possible for orbit analysts from NASA's Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif., to determine possible Earth impact locations. Before that, and based upon the Catalina Sky Survey observations, Steve Chesley of JPL produced a plot of the possible impact locations for asteroid 2014 AA. (Chesley's graphic is shown in Figure 2, where the blue, nearly horizontal band represents the region of possible impacts).


The geolocation derived by Chesley allowed Peter Brown of the University of Western Ontario, and Petrus Jenniskens of the SETI Institute, Mountain View, Calif., to search the data from low-frequency infrasound observation sites of the Comprehensive Nuclear-Test-Ban Treaty Organization. They found weak signals from stations in Bolivia, Brazil and Bermuda that indicated that the likely impact location was indeed positioned within the predicted area. The location, marked with a red dot, is still somewhat uncertain due to observational factors, including atmospheric effects on the propagation of infrasound signals.


Infrasound stations record ultra-low-frequency sound waves to monitor the location of atmospheric explosions. These sites often pick up airbursts from small asteroid impacts, commonly called fireballs or bolides. There are about a billion near-Earth objects in the size range of 2014 AA, and impacts of comparably sized objects occur several times each year.


Uncertainties present in the infrasound technique and the very limited amount of optical tracking data before impact make it difficult to pinpoint the impact time and location. Even so, Chesley provides the following estimate:


Impact time: Jan. 1, 2014 at 11:02 p.m. EST (Jan. 2 4:02 UTC)
Impact location coordinates: 11.7 degrees north latitude, 319.7 degrees latitude.


This information is preliminary and has uncertainties of perhaps a few hundred kilometers, or miles, in location, and tens of minutes in time.


Prior to impact, the orbit of 2014 AA had a very low inclination (about 1 degree) with respect to the ecliptic plane and an orbit that ranged from 0.9 to 1.3 astronomical units from the sun, with an orbital period of about 1.2 years.



January 2, 2014


Early Wednesday morning (Jan. 1, 2014), while New Year's 2014 celebrations were still underway in the United States, the Catalina Sky Survey near Tucson, Ariz., collected a single track of observations with an immediate follow-up on what was possibly a very small asteroid -- 7 to 10 feet (2 to 3 meters) in size -- on a potential impact trajectory with Earth.


Designated 2014 AA, which would make it the first asteroid discovery of 2014, the track of observations on the object allowed only an uncertain orbit to be calculated. However, if this was a very small asteroid on an Earth-impacting trajectory, it most likely entered Earth's atmosphere sometime between 11 a.m. PST (2 p.m. EST) Wednesday and 6 a.m. PST (9 a.m. EST) Thursday.


Using the only available observations, three independent projections of the possible orbit by the independent orbit analyst Bill Gray, the Minor Planet Center in Cambridge, Mass., and Steve Chesley, of NASA's Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif., are in agreement that 2014 AA would hit Earth's atmosphere. According to Chesley, the potential impact locations are widely distributed because of the orbit uncertainty, falling along an arc extending from Central America to East Africa. The most likely impact location of the object was just off the coast of West Africa at about 6 p.m. PST (9 p.m. EST) Jan. 1.


It is unlikely asteroid 2014 AA would have survived atmospheric entry intact, as it was comparable in size to asteroid 2008 TC3, which was about 7 to 10 feet (2 to 3 meters) in size. 2008 TC3 completely broke up over northern Sudan in October 2008. Asteroid 2008 TC3 is the only other example of an object discovered just prior to hitting Earth. So far, there have been a few weak signals collected from infrasound stations in that region of the world that are being analyzed to see if they could be correlated to the atmospheric entry of 2014 AA.


NASA's Near-Earth Object Program at NASA Headquarters, Washington, manages and funds the search, study and monitoring of asteroids and comets whose orbits periodically bring them close to Earth. JPL manages the Near-Earth Object Program Office for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena.


More information about asteroids and near-Earth objects is available at: http://neo.jpl.nasa.gov/ , http://www.jpl.nasa.gov/asteroidwatch and via Twitter at http://www.twitter.com/asteroidwatch.

DC Agle 818-393-9011

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov



2014-001

Decade-Old Rover Adventure Continues on Mars and Earth

Decade-Old Rover Adventure Continues on Mars and Earth:

outcrop on the 'Murray Ridge' portion of the rim of Endeavour Crater
NASA's Mars Exploration Rover Opportunity observed this outcrop on the "Murray Ridge" portion of the rim of Endeavour Crater as the rover approached the 10th anniversary of its landing on Mars.
› Full image and caption


January 03, 2014

Eighth graders didn't have Facebook or Twitter to share news back then, in January 2004. Bekah Sosland, 14 at the time, learned about a NASA rover landing on Mars when the bouncing-ball video on the next morning's Channel One news in her Fredericksburg, Texas, classroom caught her eye.


"I wasn't particularly interested in space at the time," she recalled last week inside the spacecraft operations facility where she now works at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "I remember I was talking with friends, and out of the corner of my eye I noticed this thing bouncing and rolling on a red surface. I watched as it stopped and opened up, and it had this rover inside."


That animation portrayed how NASA landed the Mars rovers Spirit and Opportunity three weeks apart, using airbags to cushion the impact at the start of the missions, planned to last for three months. Spirit reached Mars on Jan. 4, 2004, Universal Time (Jan. 3, PST) and worked for six years. Opportunity landed on Jan. 25, UT (Jan. 24, PST) and is still exploring, with Sosland now on the team planning what it does each day.


"I watched that news and said, 'This is amazing: a rover on another planet!' Gears started turning in my head that day about engineering and space -- thinking about a career. It was definitely a milestone in my life and something I'll always remember."


On her path to that career, high-school teacher Brett Williams in Fredericksburg inspired her to build real rockets, and she completed a 2013 engineering degree from the University of Texas, Austin. But nobody in 2004 was predicting that either Spirit or Opportunity might still be roving Mars in summer 2013, which is when Sosland joined JPL.


"I certainly never thought I'd have an opportunity to work on Opportunity," she said. "That only became possible because this mission has been going so incredibly long. The reason Opportunity has worked so long is the people who built it and operate it. I'm loving that I can be a part of this team now."


Most of the engineers who operated Spirit and Opportunity during the three-month prime missions in 2004 have switched to other projects, including later Mars spacecraft. Sosland is among several on Opportunity's team today who were in school a decade ago.


Unlike her, Mike Seibert in late 2003 was eagerly tracking the run-up to the rover landings, while he was an engineering undergraduate at the University of Colorado. He had even ordered cardboard 3-D glasses in anticipation of images from stereo cameras on Spirit and Opportunity.


"I was living in my fraternity's house in Boulder that January. People thought I was weird, wearing 3-D glasses and looking at those pictures from Mars," said Seibert.


Less than two years later, he was working on the rover team at JPL. He has, since then, served as a mission manager and in other roles for both Spirit and Opportunity and participated in many key moments of the extended missions.


The dramatic landings and overland expeditions of Spirit and Opportunity have also inspired countless students who have not gained a chance to work on the rover team, but have participated in the adventure online by exploring images from the rovers or other activities.


What an adventure it's been. Though Spirit and Opportunity were built as nearly identical twins, and both succeeded in the main goal of finding evidence for ancient watery environments on Mars, their stories diverged early.


Spirit was sent to a crater where the basin's shape and apparent inflow channels seen from orbit suggested a lake once existed. Opportunity's landing area, almost exactly halfway around the planet, was selected mainly on the basis of a water-clue mineral detected from orbit, rather than landform shapes. Spirit's destination did not pan out initially. The crater may have held a lake, but if there are any lakebed sediments, they are thoroughly buried under later volcanic deposits. Opportunity, the luckier twin, landed a stone's throw from an exposure of layered rock that within weeks yielded compositional and textural evidence of a water-rich ancient environment.


Within the initial three-month missions and without expectation of surviving a full year, each rover set out cross-country toward other destinations: hills on the horizon for Spirit and craters exposing deeper layers for Opportunity. Spirit drove a total of 4.8 miles (7.7 kilometers), some of that with one of its six wheels not rotating. Loss of use of a second wheel while the rover was in a sand trap contributed to the 2010 end of that mission. Opportunity has driven 24 miles (38.7 kilometers) and is still going strong.


One key to Spirit and Opportunity working for years, instead of a few months, has been winds that occasionally remove some of the dust accumulating on solar panels that generate the rovers' electricity. Also, the ground crew became adept at managing each rover's power consumption and taking advantage of slopes for favorably tilting the rovers toward the sun during Martian winters.


"Ultimately, it's not only how long the rovers work or how far they drive that's most important, but how much exploration and scientific discovery these missions have accomplished," said JPL's John Callas, project manager for NASA's Mars Exploration Rover Project, who has worked on the Spirit and Opportunity missions for more than 13 years.


By driving to outcrops miles from their landing sites, both rovers reached evidence about multiple episodes of Martian history, "traveling across time as well as across Martian terrain," he said. Opportunity is currently exploring outcrops on the rim of Endeavour Crater, which is 14 miles (22 kilometers) in diameter.


"Opportunity is still in excellent health for a vehicle of its age," Callas said. "The biggest science may still be ahead of us, even after 10 years of exploration."


The science achievements have already provided major advances in understanding of Mars.


The rovers' principal investigator, Steve Squyres of Cornell University, Ithaca, N.Y., described some of the key findings, starting with what Spirit found after driving from the crater floor where it landed into hills to the east:


"In the Columbia Hills, we discovered compelling evidence of an ancient Mars that was a hot, wet, violent place, with volcanic explosions, hydrothermal activity, steam vents -- nothing like Mars today.


"At Opportunity's landing site, we found evidence of an early Mars that had acidic groundwater that sometimes reached the surface and evaporated away, leaving salts behind. It was an environment with liquid water, but very different from the environment that Spirit told us about.


"When Opportunity got to the rim of Endeavour Crater, we began a whole new mission. We found gypsum veins and a rich concentration of clay minerals. The clay minerals tell us about water chemistry that was neutral, instead of acidic -- more favorable for microbial life, if any ever began on Mars."


"Because of the rovers' longevity, we essentially got four different landing sites for the price of two."


The evidence the rovers glean from rocks at these sites may not be the only huge benefit of the adventures, though. Bekah Sosland and Mike Seibert may be examples of something even greater.


Squyres said, "I'm incredibly proud of the science we've done on this mission, but in the end, perhaps our most important legacy will turn out to be the young people who have seen what we've done and made career choices based on that. If an outcome of our mission is to help inspire a new generation of explorers to do even better than we did, that will be the greatest thing we could have accomplished."


The Mars Exploration Rover Project is one strong element in a robust program of NASA's ongoing and future Mars missions preparing for human missions there by the 2030s.


The Mars Odyssey and Mars Reconnaissance Orbiter missions have been studying the Red Planet since arriving there in 2001 and 2006, respectively. NASA's next-generation Mars rover, Curiosity, is examining an area that once offered conditions favorable for microbial life. NASA launched the Mars Atmosphere and Volatile Evolution, or MAVEN, mission two months ago, to begin orbiting in September 2014. The agency plans to launch a mission to Mars in 2016 called Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, to learn about the deep interior of Mars. A Curiosity-size rover planned for launch in 2020 has the task to check for evidence of past life on Mars.


Special products for the 10th anniversary of the twin rovers' landings, including a gallery of selected images, are at http://mars.nasa.gov/mer10/ .


JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover Project for NASA's Science Mission Directorate, Washington. For more information about the project's twin rovers, Spirit and Opportunity, visit http://www.nasa.gov/rovers and http://marsrovers.jpl.nasa.gov . You can follow the project on Twitter and on Facebook at: http://twitter.com/MarsRovers and http://www.facebook.com/mars.rovers .

Guy Webster 818-354-6278

Jet Propulsion Laboratory, Pasadena, Calif.

guy.webster@jpl.nasa.gov


2014-002

NASA and Smithsonian to Host 10-Year Anniversary Events for Mars Rovers

NASA and Smithsonian to Host 10-Year Anniversary Events for Mars Rovers:

View of Victoria Crater from Duck Bay
This image taken by the panoramic camera on the Mars Exploration Rover Opportunity shows the view of Victoria Crater from Duck Bay. Opportunity reached Victoria Crater on Sol 951 (September 27, 2006) after traversing 9.28 kilometers (5.77 miles) since her landing site at Eagle Crater.
› Full image and caption


January 06, 2014

NASA and the Smithsonian National Air and Space Museum (NASM) in Washington are sponsoring events to commemorate 10 years of roving across the Red Planet by the Mars Exploration Rovers (MER).

Anniversary activities will showcase the images and achievements of Spirit and Opportunity, both launched by NASA in the summer of 2003. Activities also will highlight how Mars robotic exploration and discovery will aid plans for a future human mission to Mars.

Spirit and Opportunity completed their three-month prime missions in April 2004 and went on to perform extended missions for years. The rovers made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Although Spirit ceased communicating with Earth in March 2010, the Opportunity rover continues its work on the Red Planet.

Anniversary events include:

On Tuesday, Jan. 7, starting at 7:30 a.m. PST (10:30 a.m. EST), NASA and the museum will facilitate two panel discussions on Mars robotic and human missions. Held in the museum's Moving Beyond Earth gallery, participants will discuss the MER program and its scientific successes. Participants also will provide updates on the agency's activities to advance a human mission to Mars in the 2030s.

Panel I: Moderator - Pamela Conrad, Curiosity rover scientist, NASA's Goddard Space Flight Center, Greenbelt, Md.

-- John Grant, supervisory geologist at the Center for Earth and Planetary Studies, NASM, and science operations working group chair for the MER mission

-- Steven Squyres, professor of astronomy, Cornell University, Ithaca, N.Y., and principal investigator for the Mars Exploration Rover mission

-- David Lavery, program executive, Solar System Exploration, NASA Headquarters

Panel II: Moderator - James Green, director, Planetary Science, NASA Headquarters

-- John Grunsfeld, astronaut and associate administrator, Science Mission Directorate, NASA Headquarters

-- Mary Voytek, director, Astrobiology, NASA Headquarters

-- John Connolly, acting Chief Exploration Scientist, NASA Headquarters

-- Alyssa Carson, NASA Passport Winner and student from Baton Rouge, La.

NASA Television and the agency's website will provide live coverage of the event. The discussion will also be Webcast live at http://www.livestream.com/mars .

The public can ask questions via Twitter using the hashtag #10YrsOnMars.

The museum is featuring a new exhibit, "Spirit & Opportunity: 10 Years Roving Across Mars," with more than 50 mosaic and panoramic photographs taken by the rovers. From a view of the sun setting over the rim of a crater, to a study of "abstract dunes," to a shot of rover tracks disappearing over the horizon, the images were chosen for their scientific and aesthetic content by MER mission team members.

On Thursday, Jan. 16 at 7 p.m. PST (10 p.m. EST), JPL will host a public celebration of a decade of the twin Mars Exploration rovers. The event will be held in the Beckman Auditorium on the California Institute of Technology campus, 1200 E. California Blvd., Pasadena.

The participants are:

-- Charles Elachi, director, JPL

-- Steve Squyres

-- John Callas, project manager, Mars Exploration Rover Project, JPL

-- Bill Nye, chief executive officer of the Planetary Society, Pasadena, Calif.

The event will be streamed live on the Web at http://ustream.tv/NASAJPL .

Friday, Jan. 17, 7 p.m. PST: JPL will host a public lecture delivered by John Callas, entitled "The Mars Exploration Rovers: A Decade of Exploration," at the Vosloh Forum on the campus of Pasadena City College, 1570 E. Colorado Blvd., Pasadena.

Thursday, Jan. 23, 11 a.m. PST (2 p.m. EST), JPL will host a media briefing on the Opportunity rover's decade of exploration.  NASA Television and the agency's website will provide live coverage of the event. Reporters and the public can ask questions from NASA centers and via Twitter using the hashtag #10YrsOnMars.

Participants will include:

-- John Callas

-- Steve Squyres

-- Ray Arvidson, Mars Exploration Rovers deputy principal investigator, Washington University in St. Louis, Mo.

The discussion will also be webcast live at http://ustream.tv/NASAJPL . For NASA TV streaming video, downlink and scheduling information, visit http://www.nasa.gov/nasatv .

JPL manages the Spirit and Opportunity rovers for NASA's Science Mission Directorate in Washington. For more information on the rovers and the Mars Exploration Program, visit http://www.nasa.gov/mars .

JPL is managed for NASA by Caltech.

Guy Webster 818-354-6278

Jet Propulsion Laboratory, Pasadena, Calif.

guy.webster@jpl.nasa.gov


Dwayne Brown 202-358-1726

NASA Headquarters, Washington

dwayne.c.brown@nasa.gov


Alison Mitchell 202-633-2376

Smithsonian's National Air and Space Museum

mitchellac@si.edu


2014-004

Stormy Stars? NASA's Spitzer Probes Weather on Brown Dwarfs

Stormy Stars? NASA's Spitzer Probes Weather on Brown Dwarfs:

This Just In: Storms Expected on Brown Dwarfs
This artist's concept shows what the weather might look like on cool star-like bodies known as brown dwarfs. These giant balls of gas start out life like stars, but lack the mass to sustain nuclear fusion at their cores, and instead, fade and cool with time. Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University
› Full image and caption


January 07, 2014

Swirling, stormy clouds may be ever-present on cool celestial orbs called brown dwarfs. New observations from NASA's Spitzer Space Telescope suggest that most brown dwarfs are roiling with one or more planet-size storms akin to Jupiter's "Great Red Spot."

"As the brown dwarfs spin on their axis, the alternation of what we think are cloud-free and cloudy regions produces a periodic brightness variation that we can observe," said Stanimir Metchev of Western University, Ontario, Canada. "These are signs of patchiness in the cloud cover."

Metchev is principal investigator of the brown dwarf research. The results were presented at a news conference today at the 223rd annual meeting of the American Astronomical Society in Washington by Metchev's colleague, Aren Heinze, of Stony Brook University, New York. 

Brown dwarfs form as stars do, but lack the mass to fuse atoms continually and blossom into full-fledged stars. They are, in some ways, the massive kin to Jupiter.

Scientists think that the cloudy regions on brown dwarfs take the form of torrential storms, accompanied by winds and, possibly, lightning more violent than that at Jupiter or any other planet in our solar system. However, the brown dwarfs studied so far are too hot for water rain; instead, astronomers believe the rain in these storms, like the clouds themselves, is made of hot sand, molten iron or salts. 

In a Spitzer program named "Weather on Other Worlds," astronomers used the infrared space telescope to watch 44 brown dwarfs as they rotated on their axis for up to 20 hours. Previous results had suggested that some brown dwarfs have turbulent weather, so the scientists had expected to see a small fraction vary in brightness over time. However, to their surprise, half of the brown dwarfs showed the variations. When you take into account that half of the objects would be oriented in such a way that their storms would be either hidden or always in view and unchanging, the results indicate that most, if not all, brown dwarfs are racked by storms.

"We needed Spitzer to do this," said Metchev. "Spitzer is in space, above the thermal glow of the Earth's atmosphere, and it has the sensitivity required to see variations in the brown dwarfs' brightness."

The results led to another surprise as well. Some of the brown dwarfs rotated much more slowly than any previously measured, a finding that could not have been possible without Spitzer's long, uninterrupted observations from space. Astronomers had thought that brown dwarfs sped up to very fast rotations when they formed and contracted, and that this rotation didn't wind down with age.

"We don't yet know why these particular brown dwarfs spin so slowly, but several interesting possibilities exist," said Heinze.  "A brown dwarf that rotates slowly may have formed in an unusual way -- or it may even have been slowed down by the gravity of a yet-undiscovered planet in a close orbit around it."

The work may lead to a better understanding of not just brown dwarfs but their "little brothers": the gas-giant planets. Researchers say that studying the weather on brown dwarfs will open new windows onto weather on planets outside our solar system, which are harder to study under the glare of their stars. Brown dwarfs are weather laboratories for planets, and, according to the new results, those laboratories are everywhere.

Other researchers on the team include: Daniel Apai and Davin Flateau of the University of Arizona, Tucson; Mark Marley of NASA Ames Research Center, Moffett Field; Jacqueline Radigan of the Space Telescope Science Institute, Baltimore, Md.; Etienne Artigau of Universite de Montreal, Canada; Adam Burgasser of University of California San Diego; Peter Plavchan of NASA's Exoplanet Science Institute at the California Institute of Technology, Pasadena; and Bertrand Goldman of Max-Planck Institute for Astronomy, Germany.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.For more information about Spitzer, visit http://spitzer.caltech.edu and http://www.nasa.gov/spitzer .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

2014-005

Recently Reactivated NASA Spacecraft Spots Its First New Asteroid

Recently Reactivated NASA Spacecraft Spots Its First New Asteroid:

NEOWISE's New Find
The six red dots in this composite picture indicate the location of the first new near-Earth asteroid seen by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) since the spacecraft came out of hibernation in December 2013. The asteroid, called 2013 YP139, is the first of hundreds of space-rock discoveries expected during its renewed mission. The inset shows a zoomed-in view of one of the detections of 2013 YP139. Image credit: NASA/JPL-Caltech
› Full image and caption


January 07, 2014

NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft has spotted a never-before-seen asteroid -- its first such discovery since coming out of hibernation last year.

NEOWISE originally was called the Wide-field Infrared Survey Explorer (WISE), which had made the most comprehensive survey to date of asteroids and comets. The spacecraft was shut down in 2011 after its primary mission was completed. But in September 2013, it was reactivated, renamed and given a new mission, which is to assist NASA's efforts to identify the population of potentially hazardous near-Earth objects (NEOs). NEOWISE also can assist in characterizing previously detected asteroids that could be considered potential targets for future exploration missions.

NEOWISE's first discovery of its renewed mission came on Dec. 29 -- a near-Earth asteroid designated 2013 YP139. The mission's sophisticated software picked out the moving object against a background of stationary stars. As NEOWISE circled Earth scanning the sky, it observed the asteroid several times over half a day before the object moved beyond its view. Researchers at the University of Arizona used the Spacewatch telescope at the Kitt Peak National Observatory southwest of Tucson to confirm the discovery. Peter Birtwhistle, an amateur astronomer at the Great Shefford Observatory in West Berkshire, England, also contributed follow-up observations. NASA expects 2013 YP139 will be the first of hundreds of asteroid discoveries for NEOWISE.

"We are delighted to get back to finding and characterizing asteroids and comets, especially those that come into Earth's neighborhood," said Amy Mainzer, the mission's principal investigator from NASA's Jet Propulsion Laboratory in Pasadena, Calif. "With our infrared sensors that detect heat, we can learn about their sizes and reflectiveness."

2013 YP139 is about 27 million miles (43 million kilometers) from Earth. Based on its infrared brightness, scientists estimate it to be roughly 0.4 miles (650 meters) in diameter and extremely dark, like a piece of coal. The asteroid circles the sun in an elliptical orbit tilted to the plane of our solar system and is classified as potentially hazardous. It is possible for its orbit to bring it as close as 300,000 miles from Earth, a little more than the distance to the moon. However, it will not come that close within the next century.

WISE discovered more than 34,000 asteroids and characterized 158,000 throughout the solar system during its prime mission in 2010 and early 2011. Its reactivation in September followed 31 months in hibernation.

NEOWISE will continue to detect asteroids and comets. The observations will be automatically sent to the clearinghouse for solar system bodies, the Minor Planet Center in Cambridge, Mass., for comparison against the known catalog of solar system objects and to determine orbit if the object is not known. A community of professional and amateur astronomers will provide follow-up observations, establishing firm orbits for the previously unseen objects.

Infrared sensors, similar to the cameras on NEOWISE, are a powerful tool for discovering, cataloging and understanding the asteroid population. Some of the objects about which NEOWISE will be collecting data could become candidates for NASA's announced asteroid initiative, which will be the first mission to identify, capture and relocate an asteroid for astronauts to explore. The initiative represents an unprecedented technological feat that will lead to new scientific discoveries and technological capabilities that will help protect our home planet and achieve the goal of sending humans to an asteroid by 2025.

JPL manages the project for NASA's Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colo., built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

An image of asteroid 2013 YP139, taken by NEOWISE, is available at http://go.nasa.gov/1cNF9T7 .

More information about NEOWISE is available online at http://www.nasa.gov/wise .

DC Agle/Guy Webster 818-393-9011/354-6278

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov / guy.webster@jpl.nasa.gov


Dwayne Brown 202-358-1726

NASA Headquarters, Washington

dwayne.c.brown@nasa.gov

2013-006

NASA's Hubble and Spitzer Team up to Probe Faraway Galaxies

NASA's Hubble and Spitzer Team up to Probe Faraway Galaxies:

Hubble Frontier Field Abell 2744
This long-exposure image from NASA's Hubble Space Telescope of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. It shows some of the faintest and youngest galaxies ever detected in space. Image credit: NASA/ESA/STScI
› Full image and caption


January 07, 2014

NASA's Hubble and Spitzer Space Telescopes are providing a new perspective on the remote universe, including new views of young and distant galaxies bursting with stars. Scientists described the findings Tuesday in a news conference sponsored by the American Astronomical Society.

The discoveries include four unusually bright galaxies as they appeared 13 billion years ago and the deepest image ever obtained of a galaxy cluster.

The ultra-bright, young galaxies, discovered using data from Hubble and Spitzer, are bursting with star-formation activity, which accounts for their brilliance. The brightest one is forming stars approximately 50 times faster than our Milky Way galaxy does today. These fledgling galaxies are only one-twentieth the size of the Milky Way, but they probably contain about 1 billion stars crammed together.

Although Hubble has previously identified galaxies at this early epoch, astronomers were surprised to find objects that are about 10 to 20 times more luminous than anything seen previously.

"These just stuck out like a sore thumb because they are far brighter than we anticipated," explained Garth Illingworth of the University of California at Santa Cruz. "There are strange things happening regardless of what these sources are. We're suddenly seeing luminous, massive galaxies quickly build up at such an early time. This was quite unexpected."

The galaxies were first detected with Hubble. Its sharp images are crucial to finding such distant galaxies and enabled the astronomers to measure their star-formation rates and sizes. Using Spitzer, the astronomers were able to estimate the stellar masses by measuring the total stellar luminosity of the galaxies.

"This is the first time scientists were able to measure an object's mass at such a huge distance," said Pascal Oesch of Yale University in New Haven, Conn. "It's a fabulous demonstration of the synergy between Hubble and Spitzer."

The result bodes well for NASA's James Webb Space Telescope, currently in development. Scientists anticipate using Webb to look even further back in time to find young, growing galaxies as they existed only a few hundred million years after the universe began in the big bang.

An unprecedented long-distance view of the universe comes from an ambitious collaborative project with Hubble called The Frontier Fields. It is the longest and deepest exposure obtained to date of a cluster of galaxies, and shows some of the faintest and youngest galaxies ever detected. The image contains several hundred galaxies as they looked 3.5 billion years ago.

Appearing in the foreground of the image is Abell 2744, a massive galaxy cluster located in the constellation Sculptor. The immense gravity in Abell 2744 is being used as a lens to warp space and brighten and magnify images of more distant background galaxies. The more distant galaxies appear as they did longer than 12 billion years ago, not long after the big bang.

The Hubble exposure reveals almost 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster. Their images not only appear brighter, but also smeared, stretched and duplicated across the field. Because of the gravitational lensing phenomenon, the background galaxies are magnified to appear as much as 10 to 20 times larger than they would normally appear. Furthermore, the faintest of these highly magnified objects is 10 to 20 times fainter than any galaxy observed previously. Without the boost from gravitational lensing, the many background galaxies would be invisible.

The Hubble exposure will be combined with images from Spitzer and NASA's Chandra X-ray Observatory to provide new insight into the origin and evolution of galaxies and their accompanying black holes.

For images and more information about the ultra-bright young galaxies, visit: http://hubblesite.org/news/2014/05 . To see more images and information about The Frontier Fields campaign, visit: http://hubblesite.org/news/2014/01 .

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit http://spitzer.caltech.edu and http://www.nasa.gov/spitzer .

Whitney Clavin 818-648-9734

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


Ann Jenkins / Ray Villard 410-338-4488 / 410-338-4514

Space Telescope Science Institute, Baltimore

jenkins@stsci.edu / villard@stsci.edu

2014-007

Powerful Planet Finder Turns Its Eye to the Sky

Powerful Planet Finder Turns Its Eye to the Sky:

Gemini Planet Imager¹s First Light Image of Beta Pictoris b
This image taken by the Gemini Planet Imager (GPI) shows a planet orbiting the star Beta Pictoris. In addition to the image, the GPI obtains spectral information from every pixel element in the field of view, allowing scientists to study the planet in great detail. Image credit: Gemini/Christian Marois, NRC Canada.

› Full image and caption


January 07, 2014

After nearly a decade of development, construction and testing, the world's most advanced instrument for directly imaging and analyzing planets around other stars is pointing skyward and collecting light from distant worlds.

The instrument, called the Gemini Planet Imager (GPI), was designed, built, and optimized for imaging giant planets next to bright stars, in addition to studying dusty disks around young stars. It is the most advanced instrument of its kind to be deployed on one of the world's biggest telescopes - the 26-foot (8-meter) Gemini South telescope in Chile.

Imaging a planet next to a star is a tricky task. The planet is much fainter than its star, and also appears very close. These challenges make the act of separating the planet's light from the glare of the star difficult. NASA's Jet Propulsion Laboratory in Pasadena, Calif., contributed to the project by designing and building an ultra-precise infrared sensor to measure small distortions in starlight that might mask a planet.

"Our tasks were two-fold," said Kent Wallace, JPL's subsystem technical lead for the project. "First, keep the star centered on the instrument so that its glare is blocked as much as possible. Second, ensure the instrument itself is stable during the very long exposures required to image faint companions."

GPI detects infrared, or heat, radiation from young Jupiter-like planets in wide orbits around other stars. Those are equivalent to the giant planets in our own solar system not long after their formation. Every planet GPI sees can be studied in detail, revealing components of their atmospheres.

Although GPI was designed to look at distant planets, it can also observe objects in our solar system. Test images of Jupiter's moon Europa, for example, can allow scientists to map changes in the satellite's surface composition. The images were released today at the 223rd meeting of the American Astronomical Society in Washington.

Read the full news release from Gemini Observatory at http://www.gemini.edu/node/12113 .

Whitney Clavin 818-354-4673

Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

2014-008

Sunday, July 20, 2014

Dead Star and Distant Black Holes Dazzle in X-Rays

Dead Star and Distant Black Holes Dazzle in X-Rays:

High-Energy X-ray View of  'Hand of God'
Can you see the shape of a hand in this new X-ray image? The hand might look like an X-ray from the doctor's office, but it is actually a cloud of material ejected from a star that exploded. NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has imaged the structure in high-energy X-rays for the first time, shown in blue. Lower-energy X-ray light previously detected by NASA's Chandra X-ray Observatory is shown in green and red. Image credit: NASA/JPL-Caltech/McGill
› Full image and caption


January 09, 2014

Two new views from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, showcase the telescope's talent for spying objects near and far. One image shows the energized remains of a dead star, a structure nicknamed the "Hand of God" after its resemblance to a hand. Another image shows distant black holes buried in blankets of dust.

"NuSTAR's unique viewpoint, in seeing the highest-energy X-rays, is showing us well-studied objects and regions in a whole new light," said Fiona Harrison, the mission's principal investigator at the California Institute of Technology in Pasadena, Calif.

NuSTAR launched into space June 13, 2012, on a mission to explore the high-energy X-ray universe. It is observing black holes, dead and exploded stars and other extreme objects in our own Milky Way galaxy and beyond.

The new "Hand of God" image shows a nebula 17,000 light-years away, powered by a dead, spinning star called PSR B1509-58, or B1509 for short. The dead star, called a pulsar, is the leftover core of a star that exploded in a supernova. The pulsar is only about 19 kilometers (12 miles) in diameter but packs a big punch: it is spinning around nearly seven times every second, spewing particles into material that was upheaved during the star's violent death. These particles are interacting with magnetic fields around the ejected material, causing it to glow with X-rays. The result is a cloud that, in previous images, looked like an open hand.

One of the big mysteries of this object, called a pulsar wind nebula, is whether the pulsar's particles are interacting with the material in a specific way to make it appear as a hand, or if the material is in fact shaped like a hand.

"We don't know if the hand shape is an optical illusion," said Hongjun An of McGill University, Montreal, Canada. "With NuSTAR, the hand looks more like a fist, which is giving us some clues."

The second image from NuSTAR shows active, supermassive black holes between three and 10 billion light-years away in a well-studied patch of sky called the COSMOS field (for Cosmic Evolution Survey). Each dot is a voracious black hole at the heart of a galaxy, actively feeding off a surrounding disk of material. NASA's Chandra X-ray Observatory and other telescopes have identified many of the black holes in this field, but some are so heavily obscured in gas and dust that NuSTAR's higher-energy X-ray observations are needed to characterize and understand them. Astronomers hope to use NuSTAR to provide new demographics on the numbers, types and distances to black holes that populate our universe.

"This is a hot topic in astronomy," said Francesca Civano of Yale University, New Haven, Conn. "We want to understand how black holes grew in the past and the degree to which they are obscured." The ongoing research will help explain how black holes and galaxies grow and interact with each other.

NuSTAR is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA's Jet Propulsion Laboratory, also in Pasadena, for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, N.Y.; NASA's Goddard Space Flight Center, Greenbelt, Md.; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, Calif.; ATK Aerospace Systems, Goleta, Calif., and with support from the Italian Space Agency (ASI) Science Data Center, Rome, Italy.

NuSTAR's mission operations center is at UC Berkeley, with ASI providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

For more information, visit http://www.nasa.gov/nustar and http://www.nustar.caltech.edu/ .

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

2014-010

Rosetta: To Chase a Comet

Rosetta: To Chase a Comet:

An artist's view of Rosetta, the European Space Agency's cometary probe with NASA contributions.
An artist's view of Rosetta, the European Space Agency's cometary probe with NASA contributions. Image credit: ESA
› Full image and caption


January 17, 2014

Update: January 21


The Rosetta spacecraft "woke up" after a record 957 days of hibernation. The first communication from the spacecraft arrived at the European Space Operations Center in Darmstadt, Germany, at 7:18 p.m. local time (1:18 p.m. EST / 10:18 a.m. PST). The signal was received by ground stations at the Goldstone, Calif., and Canberra, Australia, complexes of NASA's Deep Space Network.

Rosetta, heading toward comet 67P/Churyumov-Gerasimenko, is an international mission spearheaded by the European Space Agency with support and instruments provided by NASA.


----------------------------------------------------------------------------------------------------------


Comets are among the most beautiful and least understood nomads of the night sky. To date, half a dozen of these most heavenly of heavenly bodies have been visited by spacecraft in an attempt to unlock their secrets. All these missions have had one thing in common: the high-speed flyby. Like two ships passing in the night (or one ship and one icy dirtball), they screamed past each other at hyper velocity -- providing valuable insight, but fleeting glimpses, into the life of a comet. That is, until Rosetta.

NASA is participating in the European Space Agency's Rosetta mission, whose goal is to observe one such space-bound icy dirt ball from up close -- for months on end. The spacecraft, festooned with 25 instruments between its lander and orbiter (including three from NASA), is programmed to "wake up" from hibernation on Jan. 20. After a check-out period, it will monitor comet 67P/Churyumov-Gerasimenko as it makes its nosedive into, and then climb out of, the inner solar system. Over 16 months, during which old 67P is expected to transform from a small, frozen world into a roiling mass of ice and dust, complete with surface eruptions, mini-earthquakes, basketball-sized, fluffy ice particles and spewing jets of carbon dioxide and cyanide.

"We are going to be in the cometary catbird seat on this one," said Claudia Alexander, project scientist for U.S. Rosetta from NASA's Jet Propulsion Laboratory in Pasadena, Calif. "To have an extended presence in the neighborhood of a comet as it goes through so many changes should change our perspective on what it is to be a comet."

Since work began on Rosetta back in 1993, scientists and engineers from all over Europe and the United States have been combining their talents to build an orbiter and a lander for this unique expedition. NASA's contribution includes three of the orbiter's instruments (an ultraviolet spectrometer called Alice; the Microwave Instrument for Rosetta Orbiter; and the Ion and Electron Sensor. NASA is also providing part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument. NASA is also providing U.S. science investigators for selected non-U.S. instruments and is involved to a greater or lesser degree in seven of the mission's 25 instruments. NASA's Deep Space Network provides support for ESA's Ground Station Network for spacecraft tracking and navigation.

"All the instruments aboard Rosetta and the Philae lander are designed to work synergistically," said Sam Gulkis of JPL, the principal investigator for the Microwave Instrument for Rosetta Orbiter. "They will all work together to create the most complete picture of a comet to date, telling us how the comet works, what it is made of, and what it can tell us about the origins of the solar system."

The three NASA-supplied instruments are part of the orbiter's scientific payload. Rosetta's Microwave Instrument for Rosetta Orbiter specializes in the thermal properties. The instrument combines a spectrometer and radiometer, so it can sense temperature and identify chemicals located on or near the comet's surface, and even in the dust and ices jetting out from it. The instrument will also see the gaseous activity through the dusty cloud of material. Rosetta scientists will use it to determine how different materials in the comet change from ice to gas, and to observe how much it changes in temperature as it approaches the sun.

Like the Microwave for Rosetta Orbiter, the Alice instrument contains a spectrometer. But Alice looks at the ultraviolet portion of the spectrum. Alice will analyze gases in the coma and tail and measure the comet's production rates of water and carbon monoxide and dioxide. It will provide information on the surface composition of the nucleus, and make a potentially key measurement of argon, which will be a big clue about what the temperature was in the primordial solar system when the comet's nucleus originally formed (more than 4.6 billion years ago).

The Rosetta orbiter's Ion and Electron Sensor is part of a suite of five instruments to characterize the plasma environment of the comet -- in particular, its coma, which develops when the comet approaches the sun. The sun's outer atmosphere, the solar wind, interacts with the gas flowing out from the comet, and the instrument will measure the charged particles it comes in contact with as the orbiter approaches the comet's nucleus.

All three instruments are slated to begin science collection by early summer. Along with the pure science they will provide, their data are expected to help Rosetta project management determine where to attempt to land their Philae lander on the comet in November.

"It feels good to be part of a team that is on the cusp of making some space exploration history," said Art Chmielewski, NASA's project manager for US Rosetta, based at JPL. "There are so many exciting elements and big milestones coming up in this mission that it feels like I should buy a ticket and a big box of popcorn. Rosetta is going to be a remarkable ride."

Rosetta is a mission of the European Space Agency, Paris, with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by the German Aerospace Center, the Max Planck Institute for Solar System Research, the French National Space Agency and the Italian Space Agency. JPL manages the U.S. contribution of the Rosetta mission for NASA's Science Mission Directorate in Washington. The Microwave Instrument for the Rosetta Orbiter was built at JPL and JPL is home to its principal investigator, Samuel Gulkis. The Southwest Research Institute, San Antonio, developed the Rosetta orbiter's Ion and Electron Sensor (IES) and is home to its principal investigator, James Burch. The Southwest Research Institute, Boulder, Colo., developed the Alice instrument and is home to its principal investigator, Alan Stern.

More information about Rosetta is available online at: http://www.esa.int/rosetta and http://rosetta.jpl.nasa.gov .

DC Agle/Jia-Rui Cook 818-393-9011/818-354-0850

Jet Propulsion Laboratory, Pasadena, Calif.

agle@jpl.nasa.gov / jccook@jpl.nasa.gov

Dwayne Brown 202-358-1726

Headquarters, Washington

dwayne.c.brown@nasa.gov


Markus Bauer 31-71-565-6799

European Space Agency, Noordwijk, The Netherland

markus.bauer@esa.int


2014-015

NASA Set for a Big Year in Earth Science

NASA Set for a Big Year in Earth Science:

Artist's rendering of NASA's Orbiting Carbon Observatory (OCO)-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by JPL
Artist's rendering of NASA's Orbiting Carbon Observatory (OCO)-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by JPL. Image credit: NASA-JPL/Caltech
› Full image and caption


January 22, 2014

For the first time in more than a decade, five NASA Earth science missions will be launched into space in the same year, opening new and improved remote eyes to monitor our changing planet.


The five launches, including two to the International Space Station (ISS), are part of an active year for NASA Earth science researchers, who also will conduct airborne campaigns to the poles and hurricanes, develop advanced sensor technologies, and use satellite data and analytical tools to improve natural hazard and climate change preparedness.


NASA satellites, aircraft and research help scientists and policymakers find answers to critical challenges facing our planet, including climate change, sea level rise, decreasing availability of fresh water and extreme weather events.


"As NASA prepares for future missions to an asteroid and Mars, we're focused on Earth right now," said NASA Administrator Charles Bolden. "With five new missions set to launch in 2014, this really is shaping up to be the year of the Earth, and this focus on our home planet will make a significant difference in people's lives around the world."


The first NASA Earth science mission of 2014 is the Global Precipitation Measurement (GPM) Core Observatory, a joint satellite project with the Japan Aerospace Exploration Agency (JAXA). The mission inaugurates an unprecedented international satellite constellation that will produce the first nearly global observations of rainfall and snowfall. This new information will help answer questions about our planet's life-sustaining water cycle, and improve water resource management and weather forecasting.


The GPM Core Observatory is scheduled to launch on Feb. 27 from JAXA's Tanegashima Space Center on a Japanese H-IIA rocket. The spacecraft was built at NASA's Goddard Space Flight Center, Greenbelt, Md.


In July, NASA will launch a mission to advance our understanding of carbon dioxide's role in climate change. The Orbiting Carbon Observatory (OCO)-2, a replacement for a mission lost after a launch vehicle failure in 2009, will make precise, global measurements of carbon dioxide, the greenhouse gas that is the largest human-generated contributor to global warming. OCO-2 observations will be used to improve understanding of the natural and human-induced sources of carbon dioxide and how these emissions cycle through Earth's oceans, land and atmosphere.


OCO-2, managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., will launch from Vandenberg Air Force Base, Calif., on a Delta II rocket.


With the November launch of NASA's Soil Moisture Active Passive (SMAP) mission, NASA will track Earth's water into one of its last hiding places: the soil. SMAP will map Earth's soil moisture and provide precise indications of the soil's freeze-thaw state, to improve understanding of the cycling of water, energy and carbon. High-resolution global maps of soil moisture produced from SMAP data will inform water resource management decisions on water availability around our planet. SMAP data also will aid in predictions of plant growth and agricultural productivity, weather and climate forecasts, and monitoring floods and droughts.


SMAP, a JPL-managed mission, will launch from Vandenberg onboard a Delta II rocket.


"On our home planet Earth, water is an essential requirement for life and for most human activities. We must understand the details of how water moves within and between the atmosphere, the oceans and the land if we are to predict changes to our climate and the availability of water resources," said Michael Freilich, director of NASA's Earth Science Division in Washington. "Coupled with data from other ongoing NASA missions that measure sea-surface salinity and that detect changes in underground aquifer levels, with GPM and SMAP we will have unprecedented measurements of our planet's vital water cycle."


Two Earth science missions will be sent to the International Space Station this year to measure ocean winds, clouds and aerosols, marking NASA's first use of the orbiting laboratory as a 24/7 Earth-observing platform. The new instruments are the first of a series that will observe Earth routinely from the orbiting laboratory.


The space station has served as a unique platform advancing scientific research and technological discovery for more than 13 years. Its mid-inclination orbit allows for observations at all local times over nearly 85 percent of Earth's surface. NASA plans to launch five Earth-observing instruments to the ISS through 2017. These missions are developed and operated jointly by the International Space Station Program and the Earth Science Division.


ISS-RapidScat, managed by JPL and scheduled to launch to the station June 6, will extend the data record of ocean winds around the globe. These data are a key factor in climate research, weather and marine forecasting, and tracking of storms and hurricanes. Using inherited, repurposed hardware, ISS-RapidScat will provide high-value science at a fraction of the typical cost of developing a free-flying satellite. ISS-Rapidscat will fly to the station aboard a SpaceX Falcon 9 rocket and Dragon cargo spacecraft from Cape Canaveral Air Force Station, Fla., on a commercial resupply flight for the ISS.


The new Cloud-Aerosol Transport System (CATS) is a technology demonstration mission using three-wavelength lasers to extend satellite observations of small particles in the atmosphere from volcanoes, air pollution, dust and smoke. These aerosol particles pose human health risks at ground level and influence global climate through their impact on cloud cover and solar radiation in Earth's atmosphere. CATS is scheduled to launch Sept. 12 on another SpaceX ISS commercial resupply flight from Cape Canaveral Air Force Station.


"With these two instruments launching to the space station, ISS will come into its own as an important platform for studying the Earth system and global change," said Julie Robinson, space station chief scientist at NASA's Johnson Space Center in Houston. "This is just the beginning of the space station becoming a part of the global Earth-observing network."


NASA also uses a wide array of research aircraft equipped with sophisticated sensors to advance Earth science research. This year, NASA is sponsoring 12 flight campaigns that will study the polar ice sheets, urban air pollution, hurricanes, ecosystem health and more over the United States, Central and South America, Antarctica and the Arctic Circle.


Putting satellite data to work meeting local and regional needs around the world is another part of NASA's Earth science mission. In 2014, projects sponsored by the NASA Applied Sciences Program will tackle ecosystem issues in the Gulf of Mexico, water scarcity in the U.S. Southwest, and flood management in the Mekong River delta.


NASA continues to push the boundaries of current technologies to find new ways to see our complex planet in more detail and with greater accuracy. This year, NASA's Earth Science Technology Office will test new sensors to improve measurements of water levels in lakes and reservoirs, carbon dioxide, terrestrial ecosystems, and natural hazards such as earthquakes and tsunamis.


NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.


For more information about NASA's Earth science activities in 2014, visit: http://www.nasa.gov/earthrightnow .


For information on the latest NASA Earth science findings, visit: http://www.nasa.gov/earth .

Alan Buis 818-354-0474

Jet Propulsion Laboratory, Pasadena, Calif.

alan.buis@jpl.nasa.gov


Steve Cole 202-358-0918

NASA Headquarters, Washington

stephen.e.cole@nasa.gov


Susan Anderson 281-483-8630

Johnson Space Center, Houston

susan.h.anderson@nasa.gov


Rani Gran 301-286-2483

Goddard Space Flight Center, Greenbelt, Md.

rani.c.gran@nasa.gov


2014-019