Friday, July 11, 2014

Flaming Space Junk Makes Jaws Drop in Australia

Flaming Space Junk Makes Jaws Drop in Australia:



Frame grab from a Youtube video of the brilliant meteor that flared over Australia overnight.

Frame grab from a Youtube video of the brilliant meteor that flared over Australia overnight.
“It first looked like a plane with fire coming out of the tail.” – Aaron O.

“I have never seen anything like it. Big, bright and moving gently across sky – slower than a plane, not falling at all but moving across.” – Shannon H.

“Viewed from cockpit of aircraft at 37,000′. Was visible for two or three minutes.” – Landy T.

Flaming plane? Incandescent visitor from the asteroid belt? The brilliant and s-l-o-w fireball that seared the sky over  southeastern Australia tonight was probably one of the most spectacular displays of re-entering space junk witnessed in recent years.

Ted Molzcan, citizen satellite tracker and frequent contributor to the amateur satellite watchers SeeSat-L sitenotes that the timing and appearance almost certainly point to the decay or de-orbiting of the Russian Soyuz 2-1B rocket booster that launched the meteorological satellite Meteor M2 on July 8.



Meteor over New South Wales. Look closely near the end and you’ll see it disintegrate into small pieces.

The magnificent man-made meteor, weighing some 4,400 pounds (2,000 kg), was seen from Melbourne to Sydney across the states of Victoria and New South Wales around 10 p.m. Hundreds of people were stopped in their tracks.  Most noticed how slowly the fireball traveled and how long it continue to burn on the way down.

Spacecraft that reenter from either orbital decay or controlled entry usually break up at altitudes between 45-52 miles (84-72 km) traveling around 17,500 mph (28,000 km/hour) . Compression and friction from the ever-thickening air cause the craft, or in this case, the rocket booster, to slow down and heat up to flaming incandescence just like a hunk of space rock arriving from the asteroid belt. In both cases, we see a brilliant meteor, however manmade debris.

Jan 21, 2001, a Delta 2 third stage, known as a PAM-D, reentered the atmosphere over the Middle East. The titanium motor casing, weighing about 70 kg, landed in Saudi Arabia about 240 km from the capital of Riyadh. Credit: NASA, Orbital Debris Program Office

A Delta 2 third stage, known as a PAM-D, reentered the atmosphere over the Middle East on Jan. 21, 2001. The titanium motor casing, weighing about 154 lbs. (70 kg), landed in Saudi Arabia about 150 miles from the capital of Riyadh. Credit: NASA, Orbital Debris Program Office
Occasional meteoroids break apart in the atmosphere and scatter meteorites just as pieces of occasional satellites, especially large, heavy craft, can survive the plunge and land intact –  if a tad toasted.  Whether anything remains of Russian rocket stage or where exactly it fell is still unknown. Here are a few more photos of successful space junk arrivals.

The only person to be hit by manmade space debris was Lottie Williams in 1997.  She was unharmed. Credit: Tulsa World

The only person to be hit by manmade space debris was Lottie Williams in 1997. She was unharmed. Credit: Tulsa World
Reportedly, only one person has been struck by satellite debris. In 1997 Lottie Williams of Tulsa, Oklahoma was hit on the shoulder while walking by a small, twisted piece of metal weighing as much as a crushed soda can. It was traced back to the tank of a Delta II rocket that launched a satellite in 1996. I suppose it’s only a matter of time before someone else gets hit, but the odds aren’t great. More likely, you’ll see what alarmed and delighted so many southeastern Australians Thursday night: a grand show of disintegration.

Tagged as:
Fireball,
Lottie Williams,
meteor,
Meteor M2,
meteoroid,
reentry,
rocket booster,
Soyuz 2-1B

How to Tell the Age of a Sun-like Star? Try ‘Gyrochronology’

How to Tell the Age of a Sun-like Star? Try ‘Gyrochronology’:



Credit: NASA/European Space Agency

Our active Sun. Image Credit: NASA / European Space Agency
There’s no doubt the term “Earth-like” is a bit of a misnomer. It requires only that a planet is both Earth-size (less than 1.25 times Earth’s girth and less than twice Earth’s mass) and circles its host star within the habitable zone.

But defining a “Sun-like” star may be just as difficult. A solar twin should have a temperature, mass, age, radius, metallicity, and spectral type similar to the Sun. Although measuring most of these factors isn’t easy, aging a star is extremely difficult, and astronomers tend to ignore it when concluding if a star is Sun-like or not.

This is less than ideal, given that our Sun and all stars change over time. Thankfully a new technique — gyrochronology — is allowing astronomers to measure stellar ages based only on spin.

“We have found stars with properties that are close enough to those of the Sun that we can call them ‘solar twins,’” said lead author Jose Dias do Nascimento from the Harvard-Smithsonian Center for Astrophysics (CfA) in a press release.

do Nascimento and colleagues measured the spin of 75 stars by looking for changes in brightness caused by dark star spots, rotating in and out of view. Although this difference is minute, clocking in at a few percent or less, NASA’s Kepler spacecraft excels at extracting such small changes in brightness.

On average, the sampled stars spin once every 19 days, compared to the 25-day rotation period of the Sun. This makes most of the stars slightly younger than the Sun, as younger stars spin faster than older ones.

The relationship between stellar spin and age was determined in previous research by Soren Meibom (CfA) and colleagues, who measured the rotation rates for stars in a one-billion-year-old cluster. Since the stars already had a known age, the team could measure their spin rates and calibrate the previous relationship.

Using this method, do Nascimento and colleagues found 22 true solar analogues within their data set of 75 stars.

“With solar twins we can study the past, present, and future of stars like our Sun,” said do Nascimento. “Consequently, we can predict how planetary systems like our solar system will be affected by the evolution of their central stars.”

The results were accepted for publication in The Astrophysical Journal Letters and are available online.

Tagged as:
gyrochronology,
Stellar Aging

Water Or Not? Fresh Martian Trenches Primarily Due To Carbon Dioxide Freezes, Study Says

Water Or Not? Fresh Martian Trenches Primarily Due To Carbon Dioxide Freezes, Study Says:



Mars Reconnaissance Orbiter

Artist Illustration of the Mars Reconnaissance Orbiter
Does liquid water currently flow on the surface of Mars? Fresh-looking trenches on the Red Planet have come under a lot of scrutiny, including a 2010 study concluding that 18 dune gullies were primarily formed by carbon dioxide freezing.

A new study looking at several more gullies comes to about the same conclusion. Researchers examined images of 356 sites, with each of these sites captured multiple times on camera. Of the 38 of these sites that showed changes since 2006, the researchers concluded site changes happened in the winter — when it’s too cold for any liquid water to flow.

“As recently as five years ago, I thought the gullies on Mars indicated activity of liquid water,” stated lead author Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona.

“We were able to get many more observations, and as we started to see more activity and pin down the timing of gully formation and change, we saw that the activity occurs in winter.”

Observations were made using NASA’s long-running Mars Reconnaissance Orbiter mission, which has been in orbit there since 2006. The researchers said that these lengthy missions are important for examining and confirming findings, because they can revisit data over time and change their conclusions, as needed, as more evidence comes in. Pictures were taken by the High Resolution Imaging Science Experiment (HiRISE) camera.

A 164-yard (150-meter) wide swath of Martian surface at 37.7 degrees south latitude, 192.9 degrees east longitude shows gullies changing between passes of the Mars Reconnaissance Orbiter. The earlier image, at left, was taken May 30, 2007. Near the arrows on the image on right, which was taken May 31, 2013, is a "rubbly flow" near the channel's mouth. Credit: NASA/JPL-Caltech/Univ. of Arizona

A 164-yard (150-meter) wide swath of Martian surface at 37.7 degrees south latitude, 192.9 degrees east longitude shows gullies changing between passes of the Mars Reconnaissance Orbiter. The earlier image, at left, was taken May 30, 2007. Near the arrows on the image on right, which was taken May 31, 2013, is a “rubbly flow” near the channel’s mouth. Credit: NASA/JPL-Caltech/Univ. of Arizona
The first images of gullies in 2000 sparked speculation that liquid water could be responsible for changing the surface today. It’s true that Mars has water frozen in its poles, and observations with several NASA rovers show strong evidence that water once flowed on the surface. But, these trenches are unlikely to show evidence that liquid water is flowing right now.

“Frozen carbon dioxide, commonly called dry ice, does not exist naturally on Earth, but is plentiful on Mars. It has been linked to active processes on Mars such as carbon dioxide gas geysers and lines on sand dunes plowed by blocks of dry ice,” NASA stated.

“One mechanism by which carbon-dioxide frost might drive gully flows is by gas that is sublimating from the frost providing lubrication for dry material to flow. Another may be slides due to the accumulating weight of seasonal frost buildup on steep slopes.”

The team added that smaller features could be the result of liquid water, such as this recent study using MRO. It’ll be interesting to see what other data is churned up as the fleet of orbiters continues making observations, and other scientists weigh in on the results.

The work will be published in the journal Icarus.

Source: Jet Propulsion Laboratory

Tagged as:
High Resolution Imaging Science Experiment (HiRISE),
mars reconnaissance orbiter

Found! Seven Dwarfs Surround The ‘Pinwheel Galaxy’ Field Of View

Found! Seven Dwarfs Surround The ‘Pinwheel Galaxy’ Field Of View:



This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of "grand design spirals," and its supergiant star-forming regions in unprecedented detail. Astronomers have searched galaxies like this in a hunt for the progenitors of Type Ia supernovae, but their search has turned up mostly empty-handed. Credit: NASA/ESA

This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of “grand design spirals”. Credit: NASA/ESA
Using a unique type of telescope that includes long-range lenses, astronomers at Yale University have found seven dwarf galaxies surrounding the well-known Pinwheel Galaxy, M101.

It’s unclear if the septuplets are actually orbiting the pinwheel, or just happen to be in the same field of view. But astronomers at Yale say that this shows the so-called Dragonfly Telephoto Array is working well, and they are planning follow-up observations to see what else they can find.

“The previously unseen galaxies may yield important insights into dark matter and galaxy evolution, while possibly signaling the discovery of a new class of objects in space,” Yale University stated in a release.

The galaxies escaped detection before because their light is so diffuse, but this is what the telescope is designed to pick up. The telescope is constructed of eight telephoto lenses (similar to what you would use to photograph a sporting event) that include “special coating” to stop any light from scattering inside. The telescope is called “Dragonfly” because like an insect, it has multiple eyes for looking at things.

Seven new dwarf galaxies shine in the field of view surrounding M101, the Pinwheel Galaxy. Credit: Yale University

Seven new dwarf galaxies shine in the field of view surrounding M101, the Pinwheel Galaxy. Credit: Yale University
Follow-up observations will come with the Hubble Space Telescope. If it turns out that these galaxies are not bound to M101, the results will be equally interesting to astronomers.

“There are predictions from galaxy formation theory about the need for a population of very diffuse, isolated galaxies in the universe,” stated Allison Merritt, a Yale graduate student who led the research.

“It may be that these seven galaxies are the tip of the iceberg, and there are thousands of them in the sky that we haven’t detected yet.”

The research was published in Astrophysical Journal Letters and is also available in preprint version on Arxiv.

Source: Yale University

The Dragonfly Telephoto Array, a unique Yale University telescope used to look for diffuse light in galaxies. Credit: Yale University

The Dragonfly Telephoto Array, a unique Yale University telescope used to look for diffuse light in galaxies. Credit: Yale University
Tagged as:
dragonfly telephoto array,
M101,
Pinwheel Galaxy

Contest: Get Your Video On The International Space Station

Contest: Get Your Video On The International Space Station:



A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA
If you’re starting your career, good with a video and love space, here’s your big chance to showcase your work in an exclusive screening location — the International Space Station! A new Lunar and Planetary Institute-led contest is inviting people to send in their videos to talk about how space helps out humanity. More details below the jump.

“Through the international Humans in Space Art Challenge, we invite you to explore ‘How will humans use space science, and technology to benefit humanity?’ and to express your answer creatively in a video three minutes long or less,” reads the description of the challenge.

“Video artwork can be of any style, featuring original animation, sketches, music, live action drama, poetry, dance, Rube Goldberg machines, apps, etc. … Individuals or teams of participants should include one clear reference to the International Space Station in their videos and can use space station footage if desired.”

The contest is open to “college students and early career professionals”, according to the webpage. The due date for the challenge is Nov. 15, 2014. Full requirements and contact information for the contest organizers are available on this page.

New VLT Observations Clear Up Dusty Mystery

New VLT Observations Clear Up Dusty Mystery:



The dwarf galaxy UGC 5189A, site of the supernova SN 2010jl. Image Credit: ESO

The dwarf galaxy UGC 5189A, site of the supernova SN 2010jl. Image Credit: ESO
The Universe is overflowing with cosmic dust. Planets form in swirling clouds of dust around a young star; Dust lanes hide more-distant stars in the Milky Way above us; And molecular hydrogen forms on the dust grains in interstellar space.

Even the soot from a candle is very similar to cosmic carbon dust. Both consist of silicate and amorphous carbon grains, although the size grains in the soot are 10 or more times bigger than typical grain sizes in space.

But where does the cosmic dust come from?

A group of astronomers has been able to follow cosmic dust being created in the aftermath of a supernova explosion. The new research not only shows that dust grains form in these massive explosions, but that they can also survive the subsequent shockwaves.

Stars initially draw their energy by fusing hydrogen into helium deep within their cores. But eventually a star will run out of fuel. After slightly messy physics, the star’s contracted core will begin to fuse helium into carbon, while a shell above the core continues to fuse hydrogen into helium.

The pattern continues for medium to high mass stars, creating layers of different nuclear burning around the star’s core. So the cycle of star birth and death has steadily produced and dispersed more heavy elements throughout cosmic history, providing the substances necessary for cosmic dust.

“The problem has been that even though dust grains composed of heavy elements would form in supernovae, the supernova explosion is so violent that the grains of dust may not survive,” said coauthor Jens Hjorth, head of the Dark Cosmology Center at the Niels Bohr Institute in a press release. “But cosmic grains of significant size do exist, so the mystery has been how they are formed and have survived the subsequent shockwaves.”

The team led by Christa Gall used ESO’s Very Large Telescope at the Paranal Observatory in northern Chile to observe a supernova, dubbed SN2010jl, nine times in the months following the explosion, and for a tenth time 2.5 years after the explosion. They observed the supernova in both visible and near-infrared wavelengths.

SN2010jl was 10 times brighter than the average supernova, making the exploding star 40 times the mass of the Sun.

“By combining the data from the nine early sets of observations we were able to make the first direct measurements of how the dust around a supernova absorbs the different colours of light,” said lead author Christa Gall from Aarhus University. “This allowed us to find out more about the dust than had been possible before.”

The results indicate that dust formation starts soon after the explosion and continues over a long time period.

The dust initially forms in material that the star expelled into space even before it exploded. Then a second wave of dust formation occurs, involving ejected material from the supernova. Here the dust grains are massive — one thousandth of a millimeter in diameter — making them resilient to any following shockwaves.

“When the star explodes, the shockwave hits the dense gas cloud like a brick wall. It is all in gas form and incredibly hot, but when the eruption hits the ‘wall’ the gas gets compressed and cools down to about 2,000 degrees,” said Gall. “At this temperature and density elements can nucleate and form solid particles. We measured dust grains as large as around one micron (a thousandth of a millimeter), which is large for cosmic dust grains. They are so large that they can survive their onward journey out into the galaxy.”

If the dust production in SN2010jl continues to follow the observed trend, by 25 years after the supernova explosion, the total mass of dust will have half the mass of the Sun.

The results have been published in Nature and are available for download here. Niels Bohr Institute’s press release and ESO’s press release are also available.

Tagged as:
Dust formation,
Supernovae,
Very Large Telescope

Wednesday, July 9, 2014

Would the Real ‘SuperMoon’ Please Stand Up?

Would the Real ‘SuperMoon’ Please Stand Up?:



The perigee Full Moon of June 22nd, 2013. Credit: Russell Bateman (@RussellBateman1)

The perigee Full Moon of June 22nd, 2013. Credit: Russell Bateman (@RussellBateman1)
‘Tis the season once again, when rogue Full Moons nearing perigee seem roam the summer skies to the breathless exhortations of many an astronomical neophyte at will. We know… by now, you’d think that there’d be nothing new under the Sun (or in this case, the Moon) to write about the closest Full Moons of the year. But love ‘em or hate ‘em, tales of the “Supermoon” will soon be gracing ye ole internet again, with hyperbole that’s usually reserved for comets, meteor showers, and celeb debauchery, all promising the “biggest Full Moon EVER…” just like last year, and the year be for that, and the year before that…

How did this come to be?

What’s happening this summer: First, here’s the lowdown on what’s coming up. The closest Full Moon of 2014 occurs next month on August 10th at 18:11 Universal Time (UT) or 1:44 PM EDT. On that date, the Moon reaches perigee or its closest approach to the Earth at 356,896 kilometres distant at 17:44, less than an hour from Full. Of course, the Moon reaches perigee nearly as close once every anomalistic month (the time from perigee-to-perigee) of 27.55 days and passes Full phase once every synodic period (the period from like phase to phase) with a long term average of 29.53 days.

Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.

Moon rise on the evening of July 11th, 2014 as seen from latitude 30 degrees north. Credit: Stellarium.
And the August perigee of the Moon only beats out the January 1st, 2014 perigee out by a scant 25 kilometres for the title of the closest perigee of the year, although the Moon was at New phase on that date, with lots less fanfare and hoopla for that one. Perigee itself can vary from 356,400 to 370,400 kilometres distant.

But there’s more. If you consider a “Supermoon” as a Full Moon falling within 24 hours of perigee, (folks like to play fast and loose with the informal definitions when the Supermoon rolls around, as you’ll see) then we actually have a trio of Supermoons on tap for 2014, with one this week on July 12th and September 9th as well.

What, then, is this lunacy?

Well, as many an informative and helpful commenter from previous years has mentioned, the term Supermoon was actually coined by an astrologer. Yes, I know… the same precession-denialists that gave us such eyebrow raising terms as “occultation,” “trine” and the like. Don’t get us started. The term “Supermoon” is a more modern pop culture creation that first appeared in a 1979 astrology publication, and the name stuck. A more accurate astronomical term for a “Supermoon” is a perigee-syzygy Full Moon or Proxigean Moon, but those just don’t seem to be able to “fill the seats” when it comes to internet hype.

One of the more arcane aspects set forth by the 1979 definition of a Supermoon is its curiously indistinct description as a “Full Moon which occurs with the Moon at or near (within 90% of) its closest approach to Earth in a given orbit.” This is a strange demarcation, as it’s pretty vague as to the span of distance (perigee varies, due to the drag of the Sun on the Moon’s orbit in what’s known as the precession of the line of apsides) and time. The Moon and all celestial bodies move faster near perigee than apogee as per Kepler’s 2nd Law of planetary motion.

We very much prefer to think of a Proxigean Moon as defined by a “Full Moon within 24 hours of perigee”. There. Simple. Done.

And let’s not forget, Full phase is but an instant in time when the Moon passes an ecliptic longitude of 180 degrees opposite from the Sun. The Moon actually never reaches 100% illumination due to its 5.1 degree tilt to the ecliptic, as when it does fall exactly opposite to the Sun it also passes into the Earth’s shadow for a total lunar eclipse.

-Check out this animation of the changing size of the Moon and its tilt — known as libration and nutation, respectively — as seen from our Earthly perspective over the span of one lunation.

The truth is, the Moon does vary from 356,400 to 406,700 kilometres in its wonderfully complicated orbit about our fair world, and a discerning eye can tell the difference in its size from one lunation to the next. This means the apparent size of the Moon can vary from 29.3’ to 34.1’ — a difference of almost 5’ — from perigee to apogee. And that’s not taking into account the rising “Moon illusion,” which is actually a variation of an optical effect known as the Ponzo Illusion. And besides, the Moon is actually more distant when its on the local horizon than overhead, to the tune of about one Earth radius.

Like its bizarro cousin the “minimoon” and the Blue Moon (not the beer), the Supermoon will probably now forever be part of the informal astronomical lexicon. And just like recent years before 2014, astronomers will soon receive gushing platitudes during next month’s Full Moon from friends/relatives/random people on Twitter about how this was “the biggest Full Moon ever!!!”

Credit Stephen Rahn

The perigee Full Moon of May 5th, 2012. Credit: Stephen Rahn (@StephenRahn13)
Does the summer trio of Full Moons look bigger to you than any other time of year? It will be tough to tell the difference visually over the next three Full Moons. Perhaps a capture of the July, August and September Full Moons might just tease out the very slight difference between the three.

And for those preferring not to buy in to the annual Supermoon hype, the names for the July, August and September Full Moons are the Buck, Sturgeon and Corn Moon, respectively. And of course, the September Full Moon near the Equinox is also popularly known as the Harvest Moon.

And in case you’re wondering, or just looking to mark your calendar for the next annual “largest Full Moon(s) of all time,” here’s our nifty table of Supermoons through 2020, as reckoned by our handy definition of a Full Moon falling within 24 hours of perigee.

So what do you say? Let ‘em come for the hype, and stay for the science. Let’s take back the Supermoon.

Tagged as:
july full moon,
perigee moon,
perigee-syzygy moon,
proxigean moon,
Supermoon,
supermoon 2014

Astrophoto: Capturing Pluto with a Spoon

Astrophoto: Capturing Pluto with a Spoon:



The Sagittarius Spoon with dwarf planet Pluto (14.1 Mag) crossing the star fields of Sagittarius.  The arrow points to the location of Pluto. Image taken from Dexter, Iowa on June 29, 2014 around 3:50 am local time. Credit and copyright: John Chumack.

The Sagittarius Spoon with dwarf planet Pluto (14.1 Mag) crossing the star fields of Sagittarius.
The arrow points to the location of Pluto. Image taken from Dexter, Iowa on June 29, 2014 around 3:50 am local time. Credit and copyright: John Chumack.
Last week, we encouraged those of you with a decent sized backyard telescope (and a little patience) to try and spot tiny dwarf planet Pluto.

One of our favorite astrophotographers, John Chumack, did just that using the “Sagittarius Spoon” to zero-in on Pluto’s location.

“Most astronomers are familiar with the Great Tea Pot of Sagittarius, but just above the Teapot’s Handle is the Sagittarius Spoon!” John said via email. His annotated image, above, shows the spoon and the arrow point to Pluto.

See a non-annotated version, below, and try to also spot some very familiar deep sky objects in this field of view:



A non-annotated version of the Sagittarius Spoon and Pluto on 06-29-2014 from Dexter, Iowa. Credit and copyright: John Chumack.

A non-annotated version of the Sagittarius Spoon and Pluto on 06-29-2014 from Dexter, Iowa. Credit and copyright: John Chumack.
Can you see:

Globular Clusters M22, M28, NGC-6717

Open Star Clusters M25, M18

Emission Nebulae M17 The Swan or Omega Nebula & M16 The Eagle Nebula

M24 The Sagittarius Star Cloud, (also awesome in binoculars, John says)

John used a modified Canon 40D DSLR & 50mm lens @F5.6, ISO 1600 for a Single 4 minute exposure while tracking on a CG-4 Mount. And friends from Dexter, Iowa provided the view!

See David Dickinson’s great tips on how to spot Pluto for yourself here.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Tagged as:
Astrophotos,
John Chumack,
Pluto,
Sagittarius

Watch Out Japan! Super Typhoon Neoguri is ENORMOUS – As Seen from ISS

Watch Out Japan! Super Typhoon Neoguri is ENORMOUS – As Seen from ISS:



“Went right above Supertyphoon Neoguri. It is ENORMOUS. Watch out, Japan!”  Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst

“Went right above Supertyphoon Neoguri. It is ENORMOUS. Watch out, Japan!” Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst
“Supertyphoon Neoguri is ENORMOUS” says Alexander Gerst, ESA’s German astronaut currently serving aboard the International Space Station (ISS) as he observes the monster storm swirling below on our Home Planet.

“Watch Out Japan!” added Gerst while he and his crewmates working aboard the ISS send back breathtaking imagery of the gigantic super typhoon heading towards Japan.

Neoguri is currently lashing the Japanese island of Okinawa with powerful damaging winds of over 125 mph and heavy downpours of flooding rain.

The Joint Typhoon Warning Center or JTWC reports that Neoguri is creating large and dangerous swells with wave heights to 37 feet (11.2 meters).

CNN reports today, July 8, that over 600,000 people have been told to evacuate and over 100,000 already have no power. Gusts have reached 212 kph (132 mph),

“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst

“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst
The storm is so big it could not even be captured in a single image taken today using the astronauts fisheye lens on the ISS.

“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this,” reports Gerst today, July 8.

And the worst may be yet to come as Neoguri is forecast to make landfall on Kyushu, the southernmost island of the Japanese mainland and home to more than 13 million people after 0000 UTC on July 10 (8 p.m. EDT on July 9).

Super Typhoon Neoguri formed in the western Pacific Ocean south-southeast of Guam on July 3, 2014, according to NASA.

ISS above Supertyphoon Neoguri. Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst

ISS above Supertyphoon Neoguri. Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst
By July 5 it had maximum sustained winds near 110 knots (127 mph).

The NASA and Japan Aerospace Exploration Agency’s Tropical Rainfall Measuring Mission or TRMM satellite passed over the typhoon on Monday, July 7. It was classified as a category four typhoon on the Saffir-Simpson hurricane scale with sustained winds estimates at 135 knots (155 mph), says NASA.

The eerie looking eye is 65 kilometers (40 miles) in diameter. See photo.

“Scary. The sunlight is far from reaching down the abyss of Neoguri's 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst

“Scary. The sunlight is far from reaching down the abyss of Neoguri’s 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst
It has since decreased slightly in intensity to a category three typhoon.

According to the Japanese Meteorological Agency Neoguri is currently located at 28°55′ (N) and E125°50′ (E).

At 5:02 PM EDT today, July 8, NASA just reported that the ISS flew directly over Neoguri and may have been visible in the new live HDEV cameras residing on the stations truss.

“Neoguri has been literally cut in half. Unreal.”  Taken from the ISS on 8 July 2014. Credit: NASA/Reid Wiseman

“Neoguri has been literally cut in half. Unreal.” Taken from the ISS on 8 July 2014. Credit: NASA/Reid Wiseman
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Path of Supertyphoon Neoguri. Credit: Japanese Meteorological Agency

Path of Supertyphoon Neoguri. Credit: Japanese Meteorological Agency

Tagged as:
International Space Station (ISS),
ISS,
japan,
JMA,
NASA,
Natural Disasters,
natural disasters as seen from space,
Okinawa,
super typhoon,
Super Typhoon Neoguri,
weather

Join the Live Discussion: The Hunt for Other Worlds Heats Up

Join the Live Discussion: The Hunt for Other Worlds Heats Up:



Artist’s impression of a massive asteroid belt in orbit around a star. Credit: NASA-JPL / Caltech / T. Pyle (SSC)

Artist’s impression of a massive asteroid belt in orbit around a star. Credit: NASA-JPL / Caltech / T. Pyle (SSC)


As readers of Universe Today know, exoplanets are one of the hottest topics in astronomy today. In just the past six months, astronomers have announced the discovery of more than 700 planets orbiting other stars, bringing the total to more than 1700. These discoveries include the first Earth-size planet found in what’s called the habitable zone of a star, where liquid water could exist; the oldest known planet that could support life; and the first rocky “mega-Earth,” a planet that’s much like Earth except that it’s 17 times more massive.


On July 9, at 19:00 UTC (3 pm EDT, 12:00 pm PDT), three exoplanet hunters will come together discuss the discovery boom, consider the next steps in the hunt for habitable worlds, and debate whether we’re likely to find alien life in the next decade.

You can watch live below:



The panel includes MIT’s Zachory Berta-Thompson, Stanford’s Bruce Macintosh and Université de Montréal’s Marie-Eve Naud) will come together discuss the recent discovery boom, consider the next steps in the hunt for habitable worlds, and ponder the odds of finding life on another planet. The discussion will be moderated by journalist Kellen Tuttle.

To submit questions ahead of time or during the webcast, send an email to info@kavlifoundation.org or post on Twitter with hashtag #KavliLive. You can find additional information about the webcast and the Kavli Foundation here.

Between the great combination of scientists and the exciting topic, this should be an especially good one.

About the Participants (left to right)

ZACHORY BERTA-THOMPSON – Dr. Berta-Thompson is the Torres Fellow for Exoplanetary Research at the MIT Kavli Institute for Astrophysics and Space Research. He hunts for exoplanets as a member of the MEarth Project, a survey to find small planets orbiting the closest, smallest stars.

BRUCE MACINTOSH – Dr. Macintosh is the principal investigator for the Gemini Planet Imager, which searches for planets from the Gemini South telescope. GPI recently snapped its first image, thereby producing the best-ever direct photo of a planet outside our solar system. Dr. Macintosh is also a Professor of Physics at Stanford University and a member of the Kavli Institute for Particle Astrophysics and Cosmology.

MARIE-EVE NAUD – Ms. Naud is the University of Montreal PhD student who led analysis that recently uncovered a previously unknown giant planet using infrared light. The planet, known as GU Pisces b, is one of the most unusual exoplanets found to-date, with a mass 10 times greater than Jupiter’s and orbiting its star at 2,000 times the distance between Earth and our sun.

KELEN TUTTLE (moderator) – Ms. Tuttle is a freelance journalist with more than a decade of experience in science communications. Most recently, she served as Editor-in-Chief of Symmetry, a magazine dedicated to the science and culture of particle physics. Her fields of expertise also include astrophysics, biology and chemistry.

Tagged as:
exoplanets,
Extrasolar Planets,
Kavli foundation

Missing Light Crisis: The Universe Seems a Little Too Dark

Missing Light Crisis: The Universe Seems a Little Too Dark:



The Milky Way as seen from Devil's Tower, Wyoming. Image Credit: Wally Pacholka

The Milky Way as seen from Devil’s Tower, Wyoming. Image Credit: Wally Pacholka
There are few moments more breathtaking than standing beneath a brilliant starry sky. Thousands of small specks of light mark only the beginning of the vast cosmic arena, with its unimaginable vistas of time and space. The Milky Way, wrapping above in a cosmic sheet of colors and patterns, also hints that there’s more than meets the eye.

Most of us long for these dark nights, far away from the city lights. But a new study suggests the Universe is a little too dark.

The vast reaches of empty space are bridged by filaments of hydrogen and helium. But there’s a disconnect between how bright the large-scale structure of the Universe is expected to be and how bright it actually is.

In a recent study, a team of astronomers led by Juna Kollmeier from the Carnegie Institute for Science found the light from known populations of stars and quasars is not nearly enough to explain observations of intergalactic hydrogen.

In a brightly lit Universe, intergalactic hydrogen will be easily destroyed by energetic photon, meaning images of the large-scale structure will actually appear dimmer. Whereas in a dim Universe, there are fewer photons to destroy the intergalactic hydrogen and images will appear brighter.

Hubble Space Telescope observations of the large-scale structure show a brightly lit Universe. But supercomputer simulations using only the known sources of ultraviolet light produces a dimly lit Universe. The difference is a stunning 400 percent.

Computer simulations of intergalactic hydrogen in a "dimly lit" universe (left) and a "brightly lit" universe (right) that has five times more of the energetic photons that destroy neutral hydrogen atoms. Hubble Space Telescope observations of hydrogen absorption match the picture on the right, but using only the known astronomical sources of ultraviolet light produces the much thicker structures on the left, and a severe mismatch with the observations. Image is credited to Ben Oppenheimer and Juna Kollmeier.

Computer simulations of intergalactic hydrogen in a “dimly lit” universe (left) and a “brightly lit” universe (right) that has five times more of the energetic photons that destroy neutral hydrogen atoms. Image Credit: Ben Oppenheimer / Juna Kollmeier.
Observations indicate that the ionizing photons from hot, young stars are almost always absorbed by gas in the host galaxy, so they never escape to affect intergalactic hydrogen. The necessary culprit could be the known number of quasars, which is far lower than needed to produce the required light.

“Either our accounting of the light from galaxies and quasars is very far off, or there’s some other major source of ionizing photons that we’ve never recognized,” said Kollmeier in a press release. “We are calling this missing light the photon underproduction crisis. But it’s the astronomers who are in crisis — somehow or other, the universe is getting along just fine.”

Strangely, this mismatch only appears in the nearby, relatively well-studied cosmos. In the early Universe, everything adds up.

“The simulations fit the data beautifully in the early universe, and they fit the local data beautifully if we’re allowed to assume that this extra light is really there,” said coauthor Ben Oppenheimer from the University of Colorado. “It’s possible the simulations do not reflect reality, which by itself would be a surprise, because intergalactic hydrogen is the component of the Universe that we think we understand the best.”

So astronomers are attempting to shed light on the missing light.

“The most exciting possibility is that the missing photons are coming from some exotic new source, not galaxies or quasars at all,” said coauthor Neal Katz from the University of Massachusetts at Amherst.

The team is exploring these new sources with vigor. It’s possible that there could be an undiscovered population of quasars in the nearby Universe. Or more exotically, the photons could be created from annihilating dark matter.

“The great thing about a 400 percent discrepancy is that you know something is really wrong,” said coauthor David Weinberg from Ohio State University. “We still don’t know for sure what it is, but at least one thing we thought we knew about the present day universe isn’t true.”

The results were published in The Astrophysical Journal Letters and are available online.

Tagged as:
Dark Matter,
Large-Scale Structure

The Waters Of Mars: New Map Shows Something Unexpected

The Waters Of Mars: New Map Shows Something Unexpected:



A portion of a 2014 Mars map showing the area east of Hellas basin, at midsoutherly latitudes. Credit: USGS

A portion of a 2014 Mars map showing the area east of Hellas basin, at midsoutherly latitudes. Credit: USGS
Where did the water on Mars come from, and where did it go? This plot (sort of) formed the basis of one of the best Doctor Who episodes of the modern era, but in all seriousness, it is also driving scientists to examine the Red Planet over and over again.

This means revisiting older information with newer data to see if everything still matches up. From time to time, it doesn’t. The latest example came when scientists at the U.S. Geological Survey created a map of the canyon systems of Waikato Vallis and Reull Vallis, which are in the midsoutherly latitudes of Mars.

They previously believed the canyons were connected, but updating the data from an understanding based on 1980s Viking data revealed a different story.

“These canyons are believed to have formed when underground water was released from plains materials to the surface, causing the ground to collapse. The water could have been stored within the plains in localized aquifers or as ice, which could have melted due to the heat from nearby volcanoes,” the U.S. Geological Survey stated.

Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems

Part of the floor of Reull Vallis, a valley east of Hellas Basin on Mars. Picture taken by Mars Global Surveyor. Credit: NASA/JPL/Malin Space Science Systems
But the newer data — looking at information from the Mars Reconnaissance Orbiter, Mars Odyssey, Mars Global Surveyor — revealed the canyons are quite separate, demarcated by a zone called Eridania Planitia in between.

“Careful estimates of the ages of the canyons and the plains reveal a sequence of events starting with the water released from Waikato Vallis, which would have been stored for a time in the plains as a shallow lake. As Reull Vallis was forming separately, the canyon breached a crater rim that was holding back the water in the lake; the lake drained gradually, which can be seen by many smaller channels incised on the floor of Reull Vallis.”

The map was co-produced by Scott Mest and David Crown, who are both of the Planetary Science Institute. You can view the entire map and related materials here.

Source: Planetary Science Institute

Tagged as:
Reull Vallis,
united states geological survey,
Waikato Vallis,
Water on Mars

Supermassive Black Hole Blasting Molecular Hydrogen Solves Outstanding Mystery

Supermassive Black Hole Blasting Molecular Hydrogen Solves Outstanding Mystery:



An artist's conception of a supermassive black hole's jets. Image Credit: NASA / Dana Berry / SkyWorks Digital

An artist’s conception of a supermassive black hole’s jets. Image Credit: NASA / Dana Berry / SkyWorks Digital
The supermassive black holes in the cores of most massive galaxies wreak havoc on their immediate surroundings. During their most active phases — when they ignite as luminous quasars — they launch extremely powerful and high-velocity outflows of gas.

These outflows can sweep up and heat material, playing a pivotal role in the formation and evolution of massive galaxies. Not only have astronomers observed them across the visible Universe, they also play a key ingredient in theoretical models.

But the physical nature of the outflows themselves has been a longstanding mystery. What physical mechanism causes gas to reach such high speeds, and in some cases be expelled from the galaxy?

A new study provides the first direct evidence that these outflows are accelerated by energetic jets produced by the supermassive black hole.

Using the Very Large Telescope in Chile, a team of astronomers led by Clive Tadhunter from Sheffield University, observed the nearby active galaxy IC 5063. At locations in the galaxy where its jets are impacting regions of dense gas, the gas is moving at extraordinary speeds of over 600,000 miles per hour.

“Much of the gas in the outflows is in the form of molecular hydrogen, which is fragile in the sense that it is destroyed at relatively low energies,” said Tadhunter in a press release. “I find it extraordinary that the molecular gas can survive being accelerated by jets of highly energetic particles moving at close to the speed of light.

As the jets travel through the galactic matter, they disrupt the surrounding gas and generate shock waves. These shock waves not only accelerate the gas, but also heat it. The team estimates the shock waves heat the gas to temperatures high enough to ionize the gas and dissociate the molecules. Molecular hydrogen is only formed in the significantly cooler post-shock gas.

“We suspected that the molecules must have been able to reform after the gas had been completely upset by the interaction with a fast plasma jet,” said Raffaella Morganti from the Kapteyn Institute Groningen University. “Our direct observations of the phenomenon have confirmed that this extreme situation can indeed occur. Now we need to work at describing the exact physics of the interaction.”

In interstellar space, molecular hydrogen forms on the surface of dust grains. But in this scenario, the dust is likely to have been destroyed in the intense shock waves. While it is possible for molecular hydrogen to form without the aid of dust grains (as seen in the early Universe) the exact mechanism in this case is still unknown.

The research helps answer a longstanding question — providing the first direct evidence that jets accelerate the molecular outflows seen in active galaxies — and asks new ones.

The results were published in Nature and are available online.

Tagged as:
Black Hole Jets,
quasars,
supermassive black holes

Something In Big Dipper ‘Blob’ Is Sending Out Cosmic Rays, Study Says

Something In Big Dipper ‘Blob’ Is Sending Out Cosmic Rays, Study Says:



A map of cosmic ray concentrations in the northern sky, showing a "hotspot" (red) in the location of the Big Dipper. Credit:  K. Kawata, University of Tokyo Institute for Cosmic Ray Research

A map of cosmic ray concentrations in the northern sky, showing a “hotspot” (red) in the location of the Big Dipper. Credit: K. Kawata, University of Tokyo Institute for Cosmic Ray Research
Behind the Big Dipper is something pumping out a lot of extremely high-energy cosmic rays, a new study says. And as astronomers try to learn more about the nature of these emanations — maybe black holes, maybe supernovas — newer work hints that it could be related to how the universe is structured.

It appears that the particles come from spots in the cosmos where matter is densely packed, such as in “superclusters” of galaxies, the researchers stated, adding this is promising progress for tracking down the source of the cosmic rays.

“This puts us closer to finding out the sources – but no cigar yet,” stated University of Utah physicist Gordon Thomson, co-principal investigator for the Telescope Array that performed the observations. “All we see is a blob in the sky, and inside this blob there is all sorts of stuff – various types of objects – that could be the source,” he added. “Now we know where to look.”

The study examined the highest-energy cosmic rays that are about 57 billion billion electron volts (5.7 times 10 to the 19th power), picking that type because it is the least affected by magnetic field lines in space. As cosmic rays interact with the magnetic field lines, it changes their direction and thus makes it harder for researchers to figure out where they came from.

Astrophoto: Ursa Major and Big Dipper Among the Red Clouds by Rajat Sahu

Ursa Major and Big Dipper Among the Red Clouds. Credit: Rajat Sahu
Scientists used a set of 500 detectors called the Telescope Array, which is densely packed in a 3/4 mile (1.2 kilometer) square grid in the desert area of Millard County, Utah. The array recorded 72 cosmic rays between May 11, 2008 and May 4, 2013, with 19 of those coming from the “hotspot” — a circle 40 degrees in diameter taking up 6% of the sky. (Researchers are hoping for funding for an expansion to probe this area in more detail.)

It’s possible the hotspot could be a fluke, but not very possible, the researchers added: there’s a 1.4 in 10,000 chance. And they’re keeping themselves open to many types of sources: “Besides active galactic nuclei and gamma ray emitters, possible sources include noisy radio galaxies, shock waves from colliding galaxies and even some exotic hypothetical sources such as the decay of so-called ‘cosmic strings’ or of massive particles left over from the big bang that formed the universe 13.8 billion years ago,” the researchers stated.

Cosmic rays were first discovered in 1912 and are believed to be hydrogen nuclei or the centers of nuclei from heavier elements like iron or oxygen. The highest-energy ones in the study may come from protons alone, but that’s not clear yet.

The paper is available in preprint version on Arxiv, and has been accepted for publication in Astrophysical Journal Letters.

Source: University of Utah

Tagged as:
Big Dipper,
cosmic rays,
telescope array,
Ursa Major

‘Vulnerable’ Earth-Like Planets Could Survive With Friction: Study

‘Vulnerable’ Earth-Like Planets Could Survive With Friction: Study:



Flexible planets: NASA is studying how planets in eccentric orbits flex due to tidal forces. At left is a planet with a thick ice shell, and at right a terrestrial-type planet. Credit: NASA's Goddard Space Flight Center

Flexible planets: NASA is studying how planets in eccentric orbits flex due to tidal forces. At left is a planet with a thick ice shell, and at right a terrestrial-type planet. Credit: NASA’s Goddard Space Flight Center
If you’re a potentially habitable world orbiting in a zone where liquid water can exist — and then a rude gas giant planet happens to disturb your orbit — that could make it difficult or impossible for life to survive.

But even in the newly eccentric state, a new study based on simulations shows that the orbit can be made more circular again quite quickly, taking only a few hundred thousand years to accomplish. The key is the tidal forces the parent star exerts on the planet as it moves in its orbit, flexing the interior and slowing the planet down to a circular orbit.

“We found some unexpected good news for planets in vulnerable orbits,” stated Wade Henning, a University of Maryland scientist who led the work and who is working at NASA’s Goddard Space Flight Center in Maryland. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.

The transition period wouldn’t be pretty, since NASA states the planets “would be driven close to the point of melting” or have a “nearly melted layer” on them. The interior could also host magma oceans, depending on how intense the friction is. But a softer planet flexes more easily, allowing it to generate heat, bleed that energy off into space and gradually settle into a circular orbit. When tidal heating ceases, then life could possibly take hold.

This artists' rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit:  Keck Observatory

This artists’ rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit: Keck Observatory
Another possibility is the eccentric orbit itself may be enough to keep life happy, at least for a while. If the planet is colder and stiffer, and orbiting far from its star, it’s possible the tidal flexing would serve as an energy source for life to survive.

Think of a situation like Europa near Jupiter, where some scientists believe the moon could have a subsurface ocean heated by interactions with the gas giant.

The model covers planets that are between the size of Earth and 2.5 times larger, and future studies will aim to see how layers in the planet change over time.

Source: NASA

Tagged as:
Europa,
super earth,
tidal heating

NameExoWorlds, an IAU Worldwide Contest to Name Alien Planets, Continues Controversy

NameExoWorlds, an IAU Worldwide Contest to Name Alien Planets, Continues Controversy:



This artist's impression of an exoplanet currently represents a distant world with an alien name, some long grocery list of numbers. But now, the IAU is giving you the chance to rename it with a little jazz. Image Credit: IAU/M. Kornmesser/N. Risinger (skysurvey.org)

This artist’s impression of an exoplanet currently represents a distant world with an alien name. But now, the IAU is giving you the chance to rename it with a little jazz. Image Credit: IAU / M. Kornmesser / N. Risinger (skysurvey.org)
The International Astronomical Union has unveiled a worldwide contest, NameExoWorlds, which gives the public a role in naming planets and their host stars beyond the solar system.

It’s the latest chapter in a years-long controversy over how celestial objects, including exoplanets, are classified and named.

Although the IAU has presided over the long process of naming astronomical objects for nearly a century, until last year they didn’t feel the need to include exoplanets on this long list.

As late as March 2013, the IAU’s official word on naming exoplanets was: “The IAU sees no need and has no plan to assign names to these objects at the present stage of our knowledge.” Since there was seemingly going to be so many exoplanets, the IAU saw it too difficult to name them all.

Other organizations, however, such as the SETI institute and the space company Uwingu leapt at the opportunity to engage the public in providing names for exoplanets. Their endeavors been widely popular with the general public, but generated discussion about how official the names would be.

The IAU issued a later statement in April 2014 (which Universe Today covered with vigor) and claimed that these two campaigns had no bearing on the official naming process. By August 2014, the IAU had introduced new rules for naming exoplanets, drastically changing their stance and surprising many.

Now in partnership with Zooniverse, a citizen-science organization, the IAU has drawn up a list of 305 well-characterized exoplanets in 206 solar systems. Starting in September, astronomy organizations can register for the opportunity to select planets for naming.

In October, the IAU plans to ask the registered organizations to vote for the 20 to 30 worlds on the list that they want to name. The exact number will depend on the number of registered groups. In December, those groups can propose names for the worlds that get the most votes. Groups can only propose names in accordance with the following set of rules. A name must be:

—   16 characters or less in length

—   Preferably one word

—   Pronounceable (in some language)

—   Non-offensive

—   Not too similar to an existing name of an astronomical object

Starting in March 2015, the list of proposed names will be put up to an Internet vote. The winners will be validated by the IAU, and announced during a ceremony at the IAU General Assembly in Honolulu in August 2015.

The popular name for a given exoplanet won’t replace the scientific name. But it will carry the IAU seal of approval.

Astronomer Alan Stern, principal investigator of the New Horizons mission to Pluto and CEO of Uwingu told Universe Today’s Senior Editor, Nancy Atkinson, that he was not surprised by the IAU’s new statement. “To my eye though, it’s just more IAU elitism, they can’t seem to get out of their elitist rut thinking they own the Universe.”

“Uwingu’s model is in our view far superior — people can directly name planets around other stars, with no one having to approve the choices,” Stern continued. “With 100 billion plus planets in the galaxy, why bother with committees of elites telling people what they do and don’t approve of?”

If nothing else, the controversy has sparked multiple venues to name exoplanets and more importantly learn about these alien worlds.

Tagged as:
exoplanets,
IAU,
Uwingu