Tuesday, July 8, 2014

Ceres and Vesta Converge in the Sky on July 5: How to See It

Ceres and Vesta Converge in the Sky on July 5: How to See It:



Ceres and Vesta are converging in Virgo not far from Mars and Spica. On July 5, the duo will be just 10' apart and visible in the high power telescope field of view. Positions are shown every 5 days for 10 p.m. EDT and stars to magnitude +8.5. Created with Chris Marriott's SkyMap software

Ceres and Vesta are converging in Virgo not far from Mars and Spica. On July 5, the duo will be just 10′ apart and visible in the high power telescope field of view. Positions are shown every 5 days for 10 p.m. EDT and stars to magnitude +8.5. Created with Chris Marriott’s SkyMap software
I bet you’ve forgotten. I almost did. In April, we reported that Ceres and Vesta, the largest and brightest asteroids respectively, were speeding through Virgo in tandem. Since then both have faded, but the best is yet to come. Converging closer by the day, on July 5, the two will make rare close pass of each other when they’ll be separated by just 10 minutes of arc or the thickness of a fat crescent moon.

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. NASA will plunk Dawn into orbit around Ceres next February.  Credit: NASA
Both asteroids are still within range of ordinary 35mm and larger binoculars; Vesta is easy at magnitude +7 while Ceres still manages a respectable +8.3. From an outer suburban or rural site, you can watch them draw together in the coming two weeks as if on a collision course. They won’t crash anytime soon. We merely see the two bodies along the same line of sight. Vesta’s closer to Earth at 164 million miles (264 million km) and moves more quickly across the sky compared to Ceres, which orbits 51 million miles (82 million km) farther out.

Ceres and Vesta are happily near an easy naked eye star, Zeta Virginis, which forms an isosceles triangle right now with Mars and Spica. The map shows the sky around 10 p.m. local time facing southwest. Stellarium

Ceres and Vesta lie near an easy naked eye star, Zeta Virginis, which forms an isosceles triangle right now with Mars and Spica. The map shows the sky around 10 p.m. local time tonight facing southwest. Stellarium
Right now the two asteroids are little more than a moon diameter apart not far from the 3rd magnitude star Zeta Virginis. Happily, nearby Mars and Spica make excellent guides for finding Zeta. Once you’re there, use binoculars and the more detailed map to track down Ceres and Vesta.

Virgo will be busy Saturday night July 5, 2014 when the waxing moon is in close conjunction with Mars with Ceres and Vesta at their closest. Stellarium

Virgo will be busy Saturday night July 5, 2014 when the waxing moon passes about 1/2 degree from Mars as Ceres and Vesta squeeze closest.  Stellarium
In early July they’ll look like a wide double star in binoculars and easily fit in the same high power telescopic view. Vesta has always looked pale yellow to my eye. Will its color differ from Ceres? Sitting side by side it will be easier than ever to compare them. Vesta is a stony asteroid with a surface composed of solidified (and meteoroid-battered) lavas; Ceres is darker and covered with a mix of water ice and carbonaceous materials.

On the night of closest approach, it may be difficult to spot dimmer Ceres in binoculars. By coincidence, the 8-day-old moon will be very close to the planet Mars and brighten up the neighborhood. We’ll report more on that event in a future article.

With so much happening the evening of July 5, let’s hope for a good round of clear skies.

Tagged as:
asteroid,
ceres,
vesta

Nature & Man in One Astrophoto: Iridium Flare, Milky Way, Clouds and Light Pollution

Nature & Man in One Astrophoto: Iridium Flare, Milky Way, Clouds and Light Pollution:



An Iridium Flare flashes over western Maine in this beautiful night sky image from June 2014. Credit and copyright: Mike Taylor/Taylor Photography.

An Iridium Flare flashes over western Maine in this beautiful night sky image from June 2014. Credit and copyright: Mike Taylor/Taylor Photography.
Ever seen a flash in the night sky and wondered if you were seeing things? Iridium flares are often mistaken for meteors because of their notable bright flashes of light in the night sky but they are actually caused by a specific group of satellites that orbit our planet. The Iridium communication satellites are just in the right orbit that when sunlight reflects on their antennas, a flash — or flare — is visible down on Earth. There are currently about 66 Iridium satellites in orbit, so flares are a rather common occurrence.

This image from photographer Mike Taylor is one frame from a timelapse of the Milky Way and other features of the night sky in motion against a silhouetted foreground. “Photographed from western Maine, this shot includes quite a bit of light pollution and some fast moving cloud cover,” Mike told Universe Today via email. “Most of the light pollution in this image is coming from Farmington, Maine which is about 35 miles from this location.”



Mike added the footage from this timelapse will be featured in his upcoming short film “Shot In The Dark.”

He also provided this info about Iridium flares:

Iridium satellites are in near-polar orbits at an altitude of 485 miles. Their orbital period is approximately 100 minutes with a velocity of 16,800 miles per hour. The uniqueness of Iridium flares is that the spacecraft emits ‘flashes’ of very bright reflected light that sweep in narrow focused paths across the surface of the Earth. An Iridium communication satellite’s Main Mission Antenna is a silver-coated Teflon antenna array that mimics near-perfect mirrors and are angled at 40-degrees away from the axis of the body of the satellites. This can provide a specular reflection of the Sun’s disk, periodically causing a dazzling glint of reflected sunlight. At the Earth’s surface, the specular reflection is probably less than 50 miles wide, so each flare can only be viewed from a fairly small area. The flare duration can last from anywhere between 5 to 20 seconds and can easily be seen by the naked eye.
If you want to try and see an Iridum flare for yourself, check out Heavens Above for your location.

For this image Mike used:

Nikon D600 & 14-24 @ 14mm

f/2.8 – 30 secs – ISO 3200 – WB Kelvin 3570

06/23/14 – 11:07PM

Processed via Lightroom 5 & Photoshop CS5

Check out more of Mike’s work at his website: Taylor Photography. He also leads workshops on night sky photography.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Tagged as:
Astrophotos,
Iridium Flare,
milky way

Why is Everything Spherical?

Why is Everything Spherical?:





Have you ever noticed that everything in space is a sphere? The Sun, the Earth, the Moon and the other planets and their moons… all spheres. Except for the stuff which isn’t spheres. What’s going on?



Have you noticed that a good portion of things in space are shaped like a sphere? Stars, planets, and moons are all spherical.

Why? It all comes down to gravity. All the atoms in an object pull towards a common center of gravity, and they’re resisted outwards by whatever force is holding them apart. The final result could be a sphere… but not always, as we’re about to learn.

Consider a glass of water. If you could see the individual molecules jostling around, you’d see them trying to fit in as snugly as they can, tension making the top of the water smooth and even.

Artist's impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

Artist’s impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA
Imagine a planet made entirely of water. If there were no winds, it would be perfectly smooth. The water molecules on the north pole are pulling towards the molecules on the south pole. The ones on the left are pulling towards the right. With all points pulling towards the center of the mass you would get a perfect sphere.

Gravity and surface tension pull it in, and molecular forces are pushing it outward. If you could hold this massive water droplet in an environment where it would remain undisturbed, eventually the water would reach a perfect balance. This is known as “hydrostatic equilibrium”.

Stars, planets and moons can be made of gas, ice or rock. Get enough mass in one area, and it’s going to pull all that stuff into a roughly spherical shape. Less massive objects, such as asteroids, comets, and smaller moons have less gravity, so they may not pull into perfect spheres.

UT Jupiter Oval BA Chris Go

Jupiter Credit: Christopher Go
As you know, most of the celestial bodies we’ve mentioned rotate on an axis, and guess what, those ones aren’t actually spheres either. The rapid rotation flattens out the middle, and makes them wider across the equator than from pole to pole. Earth is perfect example of this, and we call its shape an oblate spheroid.

Jupiter is even more flattened because it spins more rapidly. A day on Jupiter is a short 9.9 hours long. Which leaves it a distorted imperfect sphere at 71,500 km across the equator and just 66,900 from pole to pole.

Stars are similar. Our Sun rotates slowly, so it’s almost a perfect sphere, but there are stars out there that spin very, very quickly. VFTS 102, a giant star in the Tarantula nebula is spinning 100 times faster than the Sun. Any faster and it would tear itself apart from centripetal forces.

This oblate spheroid shape helps indicate why there are lots of flattened disks out there. This rapid spinning, where centripetal forces overcome gravitational attraction that creates this shape. You can see it in black hole accretion disks, solar systems, and galaxies.

Objects tend to form into spheres. If they’re massive enough, they’ll overcome the forces preventing it. But… if they’re spinning rapidly enough, they’ll flatten out all the way into disks.

Podcast (audio): Download (Duration: 3:56 — 3.6MB)


Podcast (video): Download (88.2MB)


Tagged as:
Earth,
galaxies,
Jupiter,
solar systems,
spheres,
stars,
sun

Has the Cosmology Standard Model become a Rube Goldberg Device?

Has the Cosmology Standard Model become a Rube Goldberg Device?:



Artists illustration of the expansion of the Universe (Credit: NASA, Goddard Space Flight Center)

Artists illustration of the expansion of the Universe (Credit: NASA, Goddard Space Flight Center)
This week at the Royal Astronomical Society’s National Astronomy Meeting in the UK, physicists are challenging the evidence for the recent BICEP2 results regarding the inflation period of the Universe, announced just 90 days ago. New research is laying doubt upon the inclusion of inflation theory in the Standard Cosmological Model for understanding the forces of nature, the nature of elementary particles and the present state of the known Universe.

Back on March 17, 2014, it seemed the World was offered a glimpse of an ultimate order from eons ago … actually from the beginning of time. BICEP2, the single purpose machine at the South Pole delivered an image that after analysis, and subtraction of estimated background signal from the Milky Way, lead its researchers to conclude that they had found the earliest remnant from the birth of the Universe, a signature in ancient light that supported the theory of Inflation.

 BICEP2 Telescope at twilight at the South Pole, Antartica (Credit: Steffen Richter, Harvard University)

BICEP2 Telescope at twilight at the South Pole, Antarctica (Credit: Steffen Richter, Harvard University)
Thirty years ago, the Inflation theory was conceived by physicists Alan Guth and Andei Linde. Guth, Linde and others realized that a sudden expansion of the Universe at only 1/1000000000000000000000000000000000th of a second after the Big Bang could solve some puzzling mysteries of the Cosmos. Inflation could explain the uniformity of the cosmic background radiation. While images such as from the COBE satellite show a blotchy distribution of radiation, in actuality, these images accentuate extremely small variations in the background radiation, remnants from the Big Bang, variations on the order of 1/100,000th of the background level.

Note that the time of the Universe’s proposed Inflationary period immediately after the Big Bang would today permit light to travel only 1/1000000000000000th of the diameter of the Hydrogen atom. The Universe during this first moment of expansion was encapsulated in a volume far smaller than the a single atom.



Emotions ran very high when the BICEP2 team announced their findings on March 17 of this year. The inflation event that the background radiation data supported is described as a supercooling of the Cosmos however, there were physicists that simply remained cool and remained contrarians to the theory. Noted British Physicist Sir Roger Primrose was one who remained underwhelmed and stated that the incredible circular polarization of light that remained in the processed data from BICEP2 could be explained by the interaction of dust, light and magnetic fields in our own neighborhood, the Milky Way.

Illustration of the ESA Planck Telescope in Earth orbit (Credit: ESA)

Illustration of the ESA Planck Telescope in Earth orbit (Credit: ESA)
Now, new observations from another detector, one on the Planck Satellite orbiting the Earth, is revealing that the contribution of background radiation from local sources, the dust in the Milky Way, is appearing to have been under-estimated by the BICEP2 team. All the evidence is not yet laid out but the researchers are now showing reservations. At the same time, it does not dismiss the Inflation Theory. It means that more observations are needed and probably with greater sensitivity.

So why ask the question, are physicists constructing a Rube Goldberg device?

Our present understanding of the Universe stands upon what is called “the Standard Model” of Cosmology. At the Royal Astronomical Society meeting this week, the discussions underfoot could be revealing a Standard Model possibly in a state of collapse or simply needing new gadgets and mechanisms to remain the best theory of everything.

Also this week, new data further supports the discovery of the Higg’s Boson by the Large Hadron Collider in 2012, the elementary particle whose existence explains the mass of fundamental particles in nature and that supports the existence of the Higgs Field vital to robustness of the Standard Model. However, the Higgs related data is also revealing that if the inflationary period of the Universe did take place, then if taken with the Standard Model, one can conclude that the Universe should have collapsed upon itself and our very existence today would not be possible.

A Rube Goldberg Toothpaste dispenser as also the state of the Standard Model (Credit: R.Goldberg)

A Rube Goldberg Toothpaste dispenser as also the state of the Standard Model (Credit: R.Goldberg)
Dr. Brian Green, a researcher in the field of Super String Theory and M-Theory and others such as Dr. Stephen Hawking, are quick to state that the Standard Model is an intermediary step towards a Grand Unified Theory of everything, the Universe. The contortion of the Standard Model, into a sort of Rube Goldberg device can be explained by the undaunting accumulation of more acute and diverse observations at cosmic and quantum scales.

Discussions at the Royal Astronomical Society meeting are laying more doubts upon the inflation theory which just 90 days ago appeared so well supported by BICEP2 – data derived by truly remarkable cutting edge electronics developed by NASA and researchers at the California Institute of Technology. The trials and tribulations of these great theories to explain everything harken back to the period just prior to Einstein’s Miracle Year, 1905. Fragmented theories explaining separately the forces of nature were present but also the accumulation of observational data had reached a flash point.

Today, observations from BICEP2, NASA and ESA great space observatories, sensitive instruments buried miles underground and carefully contrived quantum experiments in laboratories are making the Standard Model more stressed in explaining everything, the same model so well supported by the Higg’s Boson discovery just two years ago. Cosmologists concede that we may never have a complete, proven theory of everything, one that is elegant; however, the challenges upon the Standard Model and inflation will surely embolden younger theorists to double the efforts in other theoretical work.

For further reading:

RAS NAM press release: Should the Higgs Boson Have Caused our Universe To Collapse?

We’ve Discovered Inflation!: Now What?

Cosmologists Cast Doubt on Inflation Evidence

Are the BICEP2 Results Invalid? Probably Not

Tagged as:
BICEP2,
Cosmology,
inflation,
standard model

Support a Good Cause To Win a Trip To Space

Support a Good Cause To Win a Trip To Space:



XCOR Aerospace's Lynx suborbital vehicle is designed to fly to 328,000 feet (Credit: XCOR)

XCOR Aerospace’s Lynx Mark II suborbital vehicle is designed to fly to 328,000 feet (Credit: XCOR)
Well, technically not space*, but suborbital, and that’d still be way cool! And what’s even cooler is that you can enter to win a trip on an XCOR Lynx Mark II suborbital flight while helping to support a good cause of your choice, courtesy of The Urgency Network’s “Ticket to Rise” campaign. Check out the dramatic spaceflight-packed promotional video and find out how to enter below:



The Urgency Network is an online platform whereby participants can win experience-based prizes by participating in campaigns that are designed to aid and support good causes, many of which assist specific communities in need, awareness groups, and conservation efforts. You earn “entries” for prize drawings by purchasing gift packages from the participating foundations or by donating time, social media presence, or money directly. It’s a way for organizations that might not have (or be able to afford) a large PR department to get funded and gain widespread exposure. Learn more about The Urgency Network here.

In the Ticket to Rise campaign, the grand prize is beyond stratospheric — literally! One lucky winner will experience a ride aboard an XCOR Lynx Mark II suborbital craft, a single-stage space vehicle that takes off from a runway to ultimately coast briefly at a maximum altitude of 328,000 feet (about 100 km), experiencing 4 minutes of microgravity before re-entry and a runway landing. It’s a supersonic 30-minute flight to the very edge of space!

(*Actually, 100 km is right at the von Karman line, so riding the Lynx Mark II past that could qualify you as an astronaut. Just sayin’.)

How a Lynx Mark II flight works (Source: XCOR)

How a Lynx Mark II flight works (Source: XCOR)
Screen Shot 2014-06-26 at 12.53.52 PM



Add to that you’d be helping any one of dozens of good causes (you can choose from different ones by clicking the “Select a Different NonProfit” text link on the donation page) and it’s a win-win for everyone. And even if you don’t get a seat aboard a spaceship (many will enter, few will win) you can still get some pretty awesome promo offers from the organizations as bulk-entry packages.



The deadline to enter the campaign is 11:59:59 p.m. EDT August 11, 2014. Drawing will be held on August 12. The Lynx flight is dependent on meeting all requirements and passing physical exams and tests by XCOR Aerospace, and although the date is expected to be in the fall of 2015, this is rocket science and things change. Read the official contest rules for all details, fine print, etc.

Tagged as:
donate,
Lynx,
spaceflight,
support,
Ticket to Rise,
Urgency Network,
win a trip to space,
XCOR

What are Those Colorful, Crazy Clouds in the Sky??

What are Those Colorful, Crazy Clouds in the Sky??:



Ethereal and stunning sundog-like forms in the clouds called circumhorizontal arcs over Oxford, England on June 25, 2014. Credit and copyright: Nathanial Burton-Bradford.

Ethereal and stunning sundog-like forms in the clouds called circumhorizontal arcs over Oxford, England on June 25, 2014. Credit and copyright: Nathanial Burton-Bradford.
My Twitter feed exploded on June 25 with reports of colorful, crazy-looking clouds, sundogs, Sun halos and more. The above image from Nathanial Burton-Bradford is just an example of the type of atmospheric effect called a circumhorizontal arc. These are sometimes referred to as “fire rainbows” but of course are not rainbows at all, and have nothing to do with fire.

This is an optical phenomenon from sunlight hitting ice crystals in high cirrus clouds. It is actually a rather rare occurance, but it it happens most often during the daytime in summer when the Sun is high in the sky. This creates a rainbow-type effect directly in the clouds.

See more examples below.



Wispy clouds and a circumhorizontal arc over Italy. Credit and copyright: Elisabetta Bonora.

Wispy clouds and a circumhorizontal arc over Italy. Credit and copyright: Elisabetta Bonora.
Circumhorizontal Arc over the UK on June 25, 2014. Credit and copyright: Sculptor Lil on Flickr.

Circumhorizontal Arc over the UK on June 25, 2014. Credit and copyright: Sculptor Lil on Flickr.
You can find out more about circumhorizontal arcs from this article from Amusing Planet.

Tagged as:
atmospheric effects,
Circumhorizontal Arc,
clouds

NASA Deems Flying Saucer Test A Success Despite Failed Parachute

NASA Deems Flying Saucer Test A Success Despite Failed Parachute:



A recovery vessel lifts the Low-Density Supersonic Decelerator aboard after its June 28, 2014 test over the U.S. Navy's Pacific Missile Range. Credit: NASA/JPL-Caltech

A recovery vessel lifts the Low-Density Supersonic Decelerator aboard after its June 28, 2014 test over the U.S. Navy’s Pacific Missile Range. Credit: NASA/JPL-Caltech
Although the parachute didn’t pop out during a flight test this weekend of NASA’s flying-saucer shaped prototype spacecraft for future Mars exploration, the agency says the so-called Low-Density Supersonic Decelerator performed to expectations.

In an update released yesterday (June 30), one day after the craft made a hard landing in the Pacific, the agency noted that every goal on the flight had been met. The nature of the parachute failure is being investigated; the parachute was a year ahead of schedule in its development, according to NASA.

“The test vehicle worked beautifully, and we met all of our flight objectives,” stated Mark Adler, project manager for LDSD at NASA’s Jet Propulsion Laboratory in California. “We have recovered all the vehicle hardware and data recorders and will be able to apply all of the lessons learned from this information to our future flights.”

The flight test (which had been delayed for some time due to weather) saw LDSD soar into the sky on a high-altitude balloon launch that took it up to 120,000 feet (36,576 meters). As planned, the test vehicle was severed from the balloon to see how well it would perform during a simulated descent to the Martian surface.

The Low-Density Supersonic Decelerator (LDSD) soars into the sky during a test flight June 28, 2014 (invisible at top of contrail) while its carrier balloon floats in the frame. Credit:  NASA/JPL-Caltech

The Low-Density Supersonic Decelerator (LDSD) soars into the sky during a test flight June 28, 2014 (invisible at top of contrail) while its carrier balloon floats in the frame. Credit: NASA/JPL-Caltech
With Martian spacecraft getting heavier, NASA is testing out new technologies to control spacecraft during the landing that would safely be able to navigate the Red Planet’s thin atmosphere. This test was supposed to see the LDSD leave the balloon while spinning sideways (somewhat like a football) and zoom to four times the speed of sound.

Next, it was supposed to deploy a Supersonic Inflatable Aerodynamic Decelerator to slow down to 2.5 Mach (speed of sound) and then pop the parachute. The SIAD did inflate as planned, but not the parachute.

“All indications are that the SIAD deployed flawlessly, and because of that, we got the opportunity to test the second technology, the enormous supersonic parachute, which is almost a year ahead of schedule,” stated Ian Clark, principal investigator for LDSD at JPL.

This was the first of three planned test flights for LDSD, and the next one is expected to go up in 2015. In an unrelated test, NASA successfully deployed parachutes for its Orion spacecraft prototype for humans in a complex manuever last week.

Source: NASA Jet Propulsion Laboratory

Tagged as:
low density supersonic decelerator

Rosetta’s Comet Already Sweating The Small Stuff, Far From The Sun

Rosetta’s Comet Already Sweating The Small Stuff, Far From The Sun:



Artist's conception of Rosetta's target, 67P/Churyumov–Gerasimenko, which is losing two 5-ounce (150 millileter cups) of water every second while still 362 million miles (583 million kilometers) from the sun. The water vapor output will increase as the comet gets closer; these measurements were made on June 6, 2014. Credit: ESA

Artist’s conception of Rosetta’s target, 67P/Churyumov–Gerasimenko, which is losing two 5-ounce (150 milliliter cups) of water every second while still 362 million miles (583 million kilometers) from the sun. The water vapor output will increase as the comet gets closer; these measurements were made on June 6, 2014. Credit: ESA
Feeling thirsty? If you could somehow capture the water vapor from Rosetta’s comet, you would have the equivalent of two water glasses every second. That’s more than scientists expected given that Comet 67P/Churyumov–Gerasimenko is still screaming into the inner solar system at more than double the distance from Mars to the Sun.

“We always knew we would see water vapor outgassing from the comet, but we were surprised at how early we detected it,” stated Sam Gulkis, the instrument’s principal investigator at NASA’s Jet Propulsion Laboratory in California.

“At this rate, the comet would fill an Olympic-size swimming pool in about 100 days. But, as it gets closer to the Sun, the gas production rate will increase significantly. With Rosetta, we have an amazing vantage point to observe these changes up close and learn more about exactly why they happen.”

Comets are sometimes called “dirty snowballs” because they are collection of debris and ices. From their origin points in the outer solar system, occasionally one will be pushed towards the Sun.

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

Artist’s impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.
As it gets closer, the ices bleed off and the comet develops an envelope of gases that eventually, with the Sun’s help, will turn into a tail. Some of the major “volatiles” include water, carbon monoxide, methanol and ammonia.

The observations were made on June 6 by an instrument called the Microwave Instrument for Rosetta Orbiter (MIRO), taken when the spacecraft was about 218,000 miles (350,000 km) away from its target. MIRO is trying to figure out the relative ratios of the ingredients of the coma, and will keep following along with the comet as it makes its closest approach to the sun in August 2015.

Rosetta, meanwhile, will get up close to Comet 67P/Churyumov–Gerasimenko by August and if all goes well, subsequently deploy a lander called Philae to check out the surface of the comet.

Source: European Space Agency

Tagged as:
67P/Churyumov-Gerasimenko

Saturn’s Sailor: 20 Cassini Pictures Marking A Decade At The Ringed Planet

Saturn’s Sailor: 20 Cassini Pictures Marking A Decade At The Ringed Planet:



Saturn's northern storm marches through the planet's atmosphere in the top right of this false-color mosaic from NASA's Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute

Saturn’s northern storm marches through the planet’s atmosphere in the top right of this false-color mosaic from NASA’s Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute
We’re spoiled, don’t you know? It was 10 years ago today that the Cassini spacecraft entered Saturn’s system, and it has been busily beaming back pictures of the ringed planet and its (many) moons ever since. We’ve learned more about seasons on Titan, investigated plumes on Enceladus, and examined phenomena such as auroras on Saturn.

Embedded in this story are 20 of our favourite pictures from Universe Today’s archive of Cassini discoveries, which you can check out below the jump.

It’s only a fraction of the more than 332,000 images received from the spacecraft, which is in excellent health and has seen its mission extended three times past its original 2008 expiry date. Additionally, more than 3,000 scientific papers have been generated. More cool stats in this NASA infographic.

And by the way, we’re not the only ones assembling memorable images to mark the anniversary. Check out NASA’s favourite Cassini pictures of the past decade, or our friend Phil Plait’s Bad Astronomy list. Also, here is NASA’s opinion of the top 10 discoveries at the ringed planet.

While thinking about Cassini, also don’t forget Huygens, the lander that descended to the surface of Titan in 2005. More on that in this past Universe Today anniversary story.

The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”

The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”
In this unique mosaic image combining high-resolution data from the imaging science subsystem and composite infrared spectrometer aboard NASA's Cassini spacecraft, pockets of heat appear along one of the mysterious fractures in the south polar region of Saturn's moon Enceladus. Image credit: NASA/JPL/GSFC/SWRI/SSI

In this unique mosaic image combining high-resolution data from the imaging science subsystem and composite infrared spectrometer aboard NASA’s Cassini spacecraft, pockets of heat appear along one of the mysterious fractures in the south polar region of Saturn’s moon Enceladus. Image credit: NASA/JPL/GSFC/SWRI/SSI
Saturn, imaged by Cassini on approach. Credit: CICLOPS

Saturn, imaged by Cassini on approach. Credit: CICLOPS
Titan and Dione as seen by Cassini. Credit: NASA/JPL/Space Science Institute

Titan and Dione as seen by Cassini. Credit: NASA/JPL/Space Science Institute
Which Planets Have Rings?

This image taken by the Cassini orbiter on Oct. 15, 2007, shows Saturn’s A and F rings, the small moon Epimetheus and smog-enshrouded Titan, the planet’s largest moon. The image is colorized to approximate the scene as it might appear to human eyes. (Credit: NASA/JPL/Space Science Institute)
Cassini imaging scientists used views like this one to help them identify the source locations for individual jets spurting ice particles, water vapor and trace organic compounds from the surface of Saturn's moon Enceladus. Credit: NASA

Cassini imaging scientists used views like this one to help them identify the source locations for individual jets spurting ice particles, water vapor and trace organic compounds from the surface of Saturn’s moon Enceladus. Credit: NASA
Raw image from Cassini on May 18.  Credit: NASA/JPL/SSI

Raw image from Cassini on May 18. Credit: NASA/JPL/SSI
Hemispheric color differences on Saturn's moon Rhea are apparent in this false-color view from NASA's Cassini spacecraft. This image shows the side of the moon that always faces the planet. Image Credit: NASA/JPL/SSI

Hemispheric color differences on Saturn’s moon Rhea are apparent in this false-color view from NASA’s Cassini spacecraft. This image shows the side of the moon that always faces the planet. Image Credit: NASA/JPL/SSI
Three of Saturn's moons bunch together in this image by Cassini.  Credit: NASA/JPL/Space Science Institute.  Click for larger image.

Three of Saturn’s moons bunch together in this image by Cassini. Credit: NASA/JPL/Space Science Institute. Click for larger image.
This mosaic of Titan was created from the first flyby of the moon by Cassini in 2004. Credit: NASA/JPL/SS

This mosaic of Titan was created from the first flyby of the moon by Cassini in 2004. Credit: NASA/JPL/SS
Phoebe

Phoebe imaged by the Cassini spacecraft. Image Credit: NASA
Cassini VIMS image of specular reflections in one of Titan's lakes from a flyby on July 24, 2012 (NASA/JPL-Caltech/SSI/Jason W. Barnes et al.)

Cassini VIMS image of specular reflections in one of Titan’s lakes from a flyby on July 24, 2012 (NASA/JPL-Caltech/SSI/Jason W. Barnes et al.)
A crescent Dione was seen by Cassini on January 29, 2011 from approximately 767,922 kilometers away. Credit: NASA/JPL/SSI

A crescent Dione was seen by Cassini on January 29, 2011 from approximately 767,922 kilometers away. Credit: NASA/JPL/SSI
Rhea, as seen by Cassini. Credit: NASA

Rhea, as seen by Cassini. Credit: NASA
Cassini captured this startling image of Saturn's moon Hyperion. Photo Credit: NASA/JPL

Cassini captured this startling image of Saturn’s moon Hyperion. Photo Credit: NASA/JPL
ets of water ice particles spew from Saturn's moon Enceladus in this image obtained by NASA's Cassini spacecraft on Aug. 13, 2010. Image credit: NASA/JPL/SSI

ets of water ice particles spew from Saturn’s moon Enceladus in this image obtained by NASA’s Cassini spacecraft on Aug. 13, 2010. Image credit: NASA/JPL/SSI
This false-color composite image shows Saturn’s rings and southern hemisphere. The composite image was made from 65 individual observations by Cassini’s visual and infrared mapping spectrometer in the near-infrared portion of the light spectrum on Nov. 1, 2008.  Credit: NASA/JPL/University of Arizona

This false-color composite image shows Saturn’s rings and southern hemisphere. The composite image was made from 65 individual observations by Cassini’s visual and infrared mapping spectrometer in the near-infrared portion of the light spectrum on Nov. 1, 2008. Credit: NASA/JPL/University of Arizona
This mosaic of images from NASA's Cassini spacecraft shows three fan-like structures in Saturn's tenuous F ring. Such "fans" suggest the existence of additional objects in the F ring. Image credit: NASA/JPL/SSI

This mosaic of images from NASA’s Cassini spacecraft shows three fan-like structures in Saturn’s tenuous F ring. Such “fans” suggest the existence of additional objects in the F ring. Image credit: NASA/JPL/SSI
Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus on Oct. 5, 2008.  Image credit: NASA/JPL/Space Science Institute

Cassini came within 25 kilometers (15.6 miles) of the surface of Enceladus on Oct. 5, 2008. Image credit: NASA/JPL/Space Science Institute

How to See Pluto at Opposition as New Horizons Crosses the One Year Out Mark

How to See Pluto at Opposition as New Horizons Crosses the One Year Out Mark:



Pluto passing near the star cluster M25 in late 2013. Credit: Dave Walker.

Pluto passing near the star cluster M25 in late 2013. Credit: Dave Walker.
Are you ready for 2015? On July 14th, 2015 — just a little over a year from now — NASA’s New Horizons spacecraft with perform its historic flyby of Pluto and its retinue of moons. Flying just 10,000 kilometres from the surface of Pluto — just 2.5% the distance from Earth to the Moon on closest approach — New Horizons is expected to revolutionize our understanding of these distant worlds.

And whether you see Pluto as a much maligned planetary member of the solar system, an archetypal Plutoid, or the “King of the Kuiper Belt,” you can spy this denizen of the outer solar system using a decent sized backyard telescope and a little patience.

New Horizon in the clean room having its plutonium-fueled MMRTG installed. (Credit: NASA).

New Horizons in the clean room having its plutonium-fueled MMRTG installed. (Credit: NASA).
Pluto reaches opposition for 2014 later this week on Friday, July 4th at 3:00 Universal Time (UT), or 11:00 PM EDT on July 3rd. This means that Pluto will rise to the east as the Sun sits opposite to it in the west at sunset and transits the local meridian high to the south at local midnight. This is typically the point of closest approach to Earth for any outer solar system object and the time it is brightest.

Dusk July 4th Credit

The location of Pluto at dusk on July 4th, the night of opposition. Credit: Stellarium.
But even under the best of circumstances, finding Pluto isn’t easy. Pluto never shows a resolvable disk in even the largest backyard telescope, and instead, always appears like a tiny star-like point. When opposition occurs near perihelion — as it last did in 1989 — Pluto can reach a maximum “brilliancy” of magnitude +13.6. However, Pluto has an extremely elliptical orbit ranging from 30 to 49 Astronomical Units (A.U.s) from the Sun. In 2014, Pluto has dropped below +14th magnitude at opposition as it heads back out towards aphelion one century from now in 2114.

Pluto from July-Dec

The path of Pluto from July to December 2014. Created using Starry Night Education Software.
Another factor that makes finding Pluto challenging this decade is the fact that it’s crossing through the star-rich plane of the galaxy in the direction of the constellation Sagittarius until 2023. A good finder chart and accurate pointing is essential to identifying Pluto as it moves 1’ 30” a day against the starry background from one night to the next.

In fact, scouring this star-cluttered field is just one of the challenges faced by the New Horizons team as they hunt for a potential target for the spacecraft post-Pluto encounter. But this has also meant that Pluto has crossed some pretty photogenic regions of the sky, traversing dark Bok globules and skirting near star clusters.

Pluto (marked) imaged by Jim Hendrickson on the morning of June 29th.

Pluto (marked) imaged by Jim Hendrickson @SkyscraperJim on the morning of June 29th.
You can use this fact to your advantage, as nearby bright stars make great “guideposts” to aid in your Pluto-quest. Pluto passes less than 30” from the +7th magnitude pair BB Sagittarii on July 7th and 8th and less than 3’ from the +5.2 magnitude star 25 Sagittarii on July 21st… this could also make for an interesting animation sequence.

Though Pluto has been reliably spotted in telescopes as small as 6” in diameter, you’ll most likely need a scope 10” or larger to spot it. We’ve managed to catch Pluto from the Flandrau observatory situated in downtown Tucson using its venerable 14” reflector.

June 28th-August 8th (inverted)

The path of Pluto June 28th-August 8th. (click here for an inverted white background view). Created using Starry Night Education Software.
Pluto was discovered by Clyde Tombaugh from the Lowell Observatory in 1930 while it was crossing the constellation Gemini. It’s sobering to think that it has only worked its way over to Sagittarius in the intervening 84 years. It was also relatively high in the northern hemisphere sky and headed towards perihelion decades later during discovery. 2014 finds Pluto at a southern declination of around -20 degrees, favoring the southern hemisphere. Had circumstances been reversed, or Pluto had been near aphelion, it could have easily escaped detection in the 20th century.

We’re also fortunate that Pluto is currently relatively close to the ecliptic plane, crossing it on October 24th, 2018. Its orbit is inclined 17 degrees relative to the ecliptic and had it been high above or below the plane of the solar system, sending a spacecraft to it in 2015 might have been out of the question due to fuel constraints.

The current location of New Horizons. (Credit: NASA/JPL).

The current location of New Horizons. (Credit: NASA/JPL).
And speaking of spacecraft, New Horizons now sits less than one degree from Pluto as seen from our Earthly vantage point. And although you won’t be able to spy this Earthly ambassador with a telescope, you can wave in its general direction on July 11th and 12th, using the nearby waxing gibbous Moon as a guide:

The Moon, Pluto and New Horizons as seen on July 11th. (Created Using Starry Night Education Software).

The Moon, Pluto and New Horizons as seen on July 11th. (Created Using Starry Night Education Software).
All eyes will be on Pluto and New Horizons in the coming year, as it heads towards a date with destiny… and we’ll bet that the “is Pluto a planet?” debate will rear its head once more as we get a good look at these far-flung worlds.

And hey, if nothing else, us science writers will at last have some decent pics of Pluto to illustrate articles with, as opposed to the same half-dozen blurry images and artist’s renditions…

Tagged as:
pluto 2014,
pluto 2015,
pluto discovery,
pluto new horizons,
pluto opposition,
pluto planet,
pluto plutoid

Trekking Mars – Curiosity Roves Outside Landing Ellipse!

Trekking Mars – Curiosity Roves Outside Landing Ellipse!:



Curiosity treks across Martian dunes and drives outside landing ellipse here, in this photo mosaic view captured on Sol 672, June 27, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Curiosity treks across Martian dunes and drives outside landing ellipse here, in this photo mosaic view captured on Sol 672, June 27, 2014. Distant eroded rim of Gale Crater seen in background. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
Trekking Mars – NASA’s intrepid robot Curiosity is roving rapidly across the sandy ripples of the Red Planet in her quest to reach mysterious Mount Sharp and just drove outside her landing ellipse!

The six wheeled rover marked a major milestone on Sol 672, June 27, 2014, by driving outside her targeted landing ellipse for the first time since touchdown nearly two years ago on August 5, 2012.

“On yestersol’s drive [June 27], I left my landing ellipse—the 20×25 km area I targeted for landing,” Curiosity tweeted across interplanetary space.

See our new Sol 672 photo mosaic above showing Curiosity’s glorious view marking this major achievement just days ago.

Since switching paths to smoother, sandier terrain with less sharp edged rocks, Curiosity continues rolling across the floor of her Gale Crater landing site.

“After traversing 82 meters the rover stopped because it determined that it was slipping too much,” wrote mission scientist Ken Herkenhoff in an update.

“Coincidentally, the rover stopped right on the landing ellipse, a major mission milestone!”

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater.  Note rover wheel tracks at left.  She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer.   Credit:   NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com
“The vehicle was designed to be able to traverse far enough to drive out of the region defined by the uncertainty in the landing location, and has now achieved that laudable goal.”

The SUV sized rover automatically stopped when it encountered soft sand and sensed that it wasn’t making enough progress. It’s been programmed with this built in safety check to avoid being trapped in a quagmire.

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter
Tagged as:
Curiosity,
Curiosity Rover,
Gale crater,
Mars,
Mars Science Laboratory (MSL),
Mount Sharp,
MSL,
NASA

Astronauts Say Happy Canada Day!

Astronauts Say Happy Canada Day!:



A view of the St. Lawrence Seaway and Canada under the clouds seen from the International Space Station by ESA astronaut Alexander Gerst. Credit: ESA/NASA.

A view of the St. Lawrence Seaway and Canada under the clouds seen from the International Space Station by ESA astronaut Alexander Gerst. Credit: ESA/NASA.
On 1 July, Canadians celebrate Canada Day, which honors the day the nation was officially born when the Constitution Act united three colonies into a single country. Astronauts both past and present send their greetings today: ESA astronaut Alexander Gerst took this image, above, from the International Space Station and sent the message from space: “Canada is beautiful! Happy Canada Day!”

Below, NASA astronaut Reid Wiseman took a beautiful image showing storms swirling near Winnipeg, Manitoba.

And then, there’s a very special new video featuring former Canadian astronaut Chris Hadfield and his brother Dave singing an original song by Dave titled, “In Canada.” It’s pretty great, and it gives you an inside look at the Hadfield family (they do family rocket launches!) and what it’s like to live in Canada. If you think Chris has a great singing voice, you’ll love Dave’s voice (they sound almost exactly the same!) and when they harmonize, it’s golden because they blend perfectly as only sibling voices can.



Storm begins to swirl near Winnipeg, Canada, as seen from the International Space Station on June 29, 2014. Image taken by astronaut Reid Wiseman. Credit: NASA.

Storm begins to swirl near Winnipeg, Canada, as seen from the International Space Station on June 29, 2014. Image taken by astronaut Reid Wiseman. Credit: NASA.


Find out more about the song and Dave’s various endeavor’s at his website.

We send special Canada Day greetings to the Canadians at Universe Today, our publisher Fraser Cain and lead writer Elizabeth Howell.

Tagged as:
alexander gerst,
Canada,
Canada Day,
Chris Hadfield,
reid wiseman