Tuesday, May 31, 2016

PLANETS POSTAGE: US Postal Service Issues New Solar System, Pluto Stamps

Planets Postage: US Postal Service Issues New Solar System, Pluto Stamps:

Planets Postage: US Postal Service Issues New Solar System, Pluto Stamps
The United States Postal Service's new "Views of Our Planets" and "Pluto—Explored!" stamps are being issued May 31, 2016.

Credit: USPS via collectSPACE.com

You can now embark on a tour of our solar system — from the innermost planet Mercury to the dwarf planet Pluto — just by visiting your local United States Post Office.

The U.S. Postal Service (USPS) is issuing Tuesday (May 31) two sets of postage stamps depicting the eight planets that circle the Sun and the icy world that orbits out beyond them.

"The 'Views of Our Planets' and 'Pluto—Explored!' stamps begin their own journeys today — on letters and packages to millions of homes and businesses throughout America," David Williams, the Postal Service's chief operating officer and executive vice president, stated in a release. "We trust they'll find a home in your own collections, too." [Photos: Space Age Postage Stamps Through History]

A first-day-of-issue ceremony for the new stamps took place Tuesday morning as part of the World Stamp Show at the Jacob K Javits Convention Center in New York. Joining Williams to celebrate the new releases were NASA's chief scientist Ellen Stofan, NASA's director of planetary science Jim Green and Alan Stern, the principal investigator for the New Horizons mission to Pluto.

"The unveiling of these breathtaking new images of Pluto and our planets [is] an exciting day for NASA and for all who love space exploration," stated Green. "With the 2015 Pluto flyby, we've completed the initial reconnaissance of the solar system. We're grateful to the U.S. Postal Service for commemorating this historic achievement."

USPS "Views of Our Planets" stamps depict Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.
USPS "Views of Our Planets" stamps depict Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.

Credit: USPS

Planets, but not as you know them

Much has changed since the last time that the U.S. issued stamps depicting the planets.

Prior to Tuesday's release, the most recent set was issued in October 1991, when the Hubble Space Telescope was a year old in Earth orbit and had yet to have its flawed vision corrected. Probes had yet to begin circling Mercury, Jupiter or Saturn, and no mission had reached Pluto, which was still counted among the planets.

"The last time the [solar system stamps] were done, they were illustrated," Bill Gicker, art director for the USPS, told collectSPACE. "Looking through the more current images of the planets, I just thought, well, they are providing these amazing images, why do we not feature those on stamps? Why illustrate?"

The new "Views of Our Planets" set includes eight postage stamps, one each for Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. The "Forever"-denomination stamps feature images that were taken by NASA planetary missions and by the Hubble Space Telescope.

Not all of the planets' images, though, were captured in the visual spectrum, as the public is familiar seeing them.

"We tried to tell a story," said Gicker. "We want stamps to be educational, so in creating the sheet as we did, instead of just showing what everyone thinks they know of what a planet looks like — any one of our particular planets — we decided to focus on different views taken through scientific means to gain further understanding."

For example, the colorful image of Mercury, based on data from the MESSENGER probe, features a false color view that notes chemical, mineralogical and physical differences in the otherwise grey rocks on its surface. Similarly, Jupiter is shown as pictured by the Hubble Telescope in the near-infrared, making the usually red, orange and yellow-tinted gas giant appear to be pastel colored.

"That became the mission we had in creating the stamps, to show the different ways the planets are being looked at through various technologies," Gicker said.

Text on the reverse of the stamp panes detail the source of each image and what was learned by the way in which the planets were observed.

The title of the "Pluto—Explored!" stamps is a subtle nod to a 1991 USPS stamp that labeled Pluto "Not Yet Explored."
The title of the "Pluto—Explored!" stamps is a subtle nod to a 1991 USPS stamp that labeled Pluto "Not Yet Explored."

Credit: USPS

Including Pluto, without taking sides

Pluto, and the NASA mission that first encountered it, gets its own set of two stamps. The separate issue allowed the USPS to avoid entering the debate over whether Pluto is a planet or not.

"We, as the Postal Service, did not want to enter into the debate or take sides, but with the happenstance the way it was — with New Horizons arriving at Pluto, it gave us the perfect opportunity to be able to issue Pluto with the rest of the planets," said Gicker. "We were working very hard not to enter into the fray."

Like the "Views of Our Planets" stamps, one of the "Pluto—Explored!" stamps depicts the dwarf planet using data returned by the New Horizons spacecraft. A composite of four images from the Long Range Reconnaissance Imager (LORRI), combined with color data from the Ralph imaging instrument, the stamp shows the now-iconic, heart-shaped feature on Pluto's surface.

The second issue in the set features a NASA illustration of the New Horizons probe itself.

The set's title, "Pluto—Explored!" is meant as a subtle nod to the previous 1991 solar system stamps, which included a note that Pluto had yet to be visited. An example of the "Not Yet Explored" 29-cent stamp was carried aboard New Horizons to Pluto.

"We wanted to cause that little smile of acknowledgement, but this was a new set," Gicker explained. "We wanted to try it fully as a new set, with the title nod to the old stamp. We thought about reproducing the old stamp with the new title, but we thought with these images coming back, that was the most interesting thing, this time we're really seeing [Pluto] in any kind of detail."

"These new stamps recognize that Pluto has indeed been explored by the New Horizons spacecraft," said Stern in a statement, "and has been revealed to be a complex and fascinating world.”

See collectSPACE for instructions on how to request first-day-of-issue postmarks for the new “Views of Our Planets” and “Pluto—Explored!” USPS stamps.

ALIENS - Alien Minds Part II: Do Aliens Think Big Brains are Sexy Too?

Alien Minds Part II: Do Aliens Think Big Brains are Sexy Too?:

peahen and peacock

“Nothing in biology makes sense”, wrote the evolutionary biologist Theodosius Dobzhansky, “except in the light of evolution”. If we want to assess whether it is likely that technological civilizations have evolved on alien planets or moons, and what they might be like, the theory of evolution is our best guide. On May 18, 2016 the newly founded METI (Messaging to ExtraTerrestrial Intelligence) International hosted a workshop entitled 'The Intelligence of SETI: Cognition and Communication in Extraterrestrial Intelligence’. The workshop was held in San Juan, Puerto Rico on the first day of the National Space Society’s International Space Development Conference. It included nine talks by scientists and scholars in evolutionary biology, psychology, cognitive science, and linguistics.

In the first instalment of this series, we saw that intelligence, of various sorts, is widespread across the animal kingdom. Workshop presenter Anna Dornhaus, who studies collective decision-making in insects as an associate professor at the University of Arizona, showed that even insects, with their diminutive brains, exhibit a surprising cognitive sophistication. Intelligence, of various sorts, is a likely and probable evolutionary product.

Animals evolve the cognitive abilities that they need to meet the demands of their own particular environments and lifestyles. Sophisticated brains and cognition have evolved many times on Earth, in many separate evolutionary lineages. But, of the millions of evolutionary lineages that have arisen on Earth in the 600 million years since complex life appeared, only one, that which led to human beings, produced the peculiar combination of cognitive traits that led to a technological civilization. What this tells us is that technological civilization is not the inevitable product of a long term evolutionary trend, it is rather the quirky and contingent product of particular circumstances. But what might those circumstances have been, and just how special and improbable were they?

Workshop presenter Geoffrey Miller is an associate professor of psychology at the University of New Mexico. Miller thinks he has an answer to the question of what the special circumstances that produced human evolution were. Our protohuman ancestors inhabited the African savanna. But so do many other mammals that don’t need enormous brains to survive there. The evolutionary forces driving the production of our large brains, Miller surmises, can’t be due to the challenges of survival. He thinks instead that human evolution was guided by an intelligence. But Miller is no creationist, nor does he have the alien monolith from the 1960's science fiction classic 2001: A Space Odyssey in mind. Miller’s guiding intelligence is the intelligence that our ancestors themselves used when they selected their mates.

Miller’s theory harkens back to the ideas of the founder of modern evolutionary theory, the nineteenth century British naturalist Charles Darwin. Darwin proposed that evolution works through a process of natural selection. Animal offspring vary one from another, and are produced in too great of numbers for all of them to survive. Some starve, some are eaten by predators, others fall prey to the numerous other hazards of the natural world. A few survive to produce offspring, thereby passing on the traits that allowed them to survive. Down the generations, traits that aided survival become more elaborate and useful and traits that did not, vanished.

But Darwin was troubled by a serious problem with his theory. He knew that many animals have prominent traits that don’t seem to contribute to their survival, and are even counterproductive to it. The bright colors of many insects, the colors, elaborate plumage, and songs of birds, the huge antlers of elk, were all prominent and costly traits that couldn’t be explained by his theory of natural selection. Peacocks, with their elaborate tail feathers were everywhere in English gardens, and came to torment him.

At last, Darwin found the solution. To produce offspring, an animal must do more than just survive, it must find a partner to mate with. All the traits which worried Darwin could be explained if they served to make their bearers sexier and more beautiful to prospective mates than other competing members of their own gender. If peahens like elaborate plumage, then in each generation, they will choose to mate with the males with the most elaborate tail feathers, and reject the rest. Through the competition for mates, peacock tails will become more and more elaborate down the generations. Darwin called his new theory sexual selection.

Many subsequent evolutionary biologists regarded sexual selection as of limited importance, and lumped it in with natural selection, which was said to favor traits conducive to survival and reproductive success. However, in recent decades evolutionary biologists have come to view sexual selection in a much more favorable light. Geoffrey Miller proposed that the human brain evolved through sexual selection. Human beings, he supposes, are sapiosexual; that is, they are sexually attracted by intelligence and its products. The preference for selecting intelligent mates produced greater intelligence, which in turn allowed our ancestors to become more discerning in selecting more intelligent mates, producing a kind of amplifying feedback loop, and an explosion of intelligence.

On this account, language, music, dancing, humor, art, literature, and perhaps even morality and ethics exist because those who were good at them were deemed sexier, or more trustworthy and reliable, and were thus more successful in securing mates than those who weren’t. The elaborate human brain is like the elaborate peacock’s tail. It exists for wooing mates and not for survival. There are some important ways in which protohumans were different from peafowl. Both males and females are choosy and both have large brains. Protohumans, unlike peafowl, probably formed monogamous pair bonds. Miller’s theory has complexities that space won’t permit us to explore here. To show that his theory can work, Miller needed to develop a computer model.

If Miller is right, then just how probable is the evolution of a technological civilization, and how likely is it that we will find them elsewhere in the galaxy? Miller thinks that if complex life exists on other planets or moons, it is likely to evolve reproduction through sex, just as has happened here on Earth. For complex organisms that depend on a large and complicated body of genetic information, most mutations will be neutral or harmful. In sexual reproduction half the genes of one’s offspring come from each parent. Without this mixing of genes from other individuals, asexual lineages are likely to falter and go extinct due to an accumulation of harmful mutations. Unless sexually reproducing creatures choose their mates purely at random, sexual selection is an inevitability. So, the basic conditions for runaway sexual selection to produce a brain suited to language and technology probably exists on other worlds with complex life.

One problem, though, that Anna Dornhaus pointed out, is that in sexual selection, the trait that gets exaggerated is essentially arbitrary. There are many bird species with elaborate plumage, but none exactly like the peacock. There are many species where brains and cognitive traits matter for mating success, like the singing ability of nightingales and many other birds, or gibbons, or whales. Male bower birds build complicated structures, called bowers, out of found items, like sticks and leaves and stones and shells, to attract a female. Chimpanzees engage in complex power struggles that involve negotiation, grooming, and fighting their way to the top.

But despite the selective success of cognition and braininess in many species, our specific human sort of intelligence, with language and technology, has happened only once on Earth, and therefore might be rare in the universe. If our ancestors had found big noses rather than big brains sexy, then we might now have enormous noses rather than enormous radio telescopes capable of signaling to other worlds.

Miller is more optimistic. “It’s a rare accident” he writes, in the sense that mate preferences only rarely turn ‘sapiosexual’, focused so heavily on conspicuous displays of general intelligence... On the other hand, I think it's likely that in any biosphere, sexual selection would eventually stumble into sapiosexual mate preferences, and then you'd get human-level intelligence and language of some sort. It might only arise in 1 out of every 100 million species though,...I suspect that in any biosphere with sexually reproducing complex organisms and a wide variety of species, you'd quite likely get at least one lineage stumbling into the sapiosexual niche within a billion years”.

A planet or moon is currently deemed potentially habitable if it orbits its parent star within the right distance range for liquid water to exist on its surface. This distance range is called the habitable zone. Since stars evolve with time, the duration of habitability is limited. Such matters can be explored through climate modeling, informed by what we know of the climates of Earth and other worlds within our solar system, and about the evolution of stars.

Current thinking is that Earth’s total duration of habitability is 6.3 to 7.8 billion years, and that our world may remain habitable for another 1.75 billion years. Since complex life has already existed on Earth for 600 million years, this seems a generous amount of time for complex life on a similar planet to stumble upon Miller’s sapiosexual niche. Stars of smaller mass than the sun are stable on longer timescales, some perhaps capable of sustaining worlds with liquid water for a hundred billion years. If Miller’s estimates are reasonable, then there may be worlds enough and time for an abundance of sapiosexual alien civilizations in our galaxy.

A central message of the METI Institute workshop is that, animals evolve whatever sort of intelligence is necessary for them to survive and reproduce under the circumstances in which they find themselves. Human-style intelligence, with language and technology, is a peculiar quirk of particular and improbable evolutionary circumstances. But we don’t know just how improbable. Given the vastness of time and number of worlds potentially available for the roll of the evolutionary dice, alien civilizations might be reasonably abundant, or they might be once-in-a-billion galaxies rare. We just don’t know. Better knowledge of the evolution of life and intelligence here on Earth might allow us to improve our estimates.

If alien civilizations do exist, what can life on Earth tell us about what their minds and senses are likely to be like? Are they, like us, visually oriented creatures, or might they rely on other senses? Can we expect that their minds might be similar enough to ours to make meaningful communication possible? These intriguing questions will be the subject of the third and final installment of this series.

For further reading:

Hooper, P. L. (2008) Mutual mate choice can drive costly signalling even under perfect monogamy. Adaptive Behavior, 16: p. 53-70.

Marris, E. (2013) Earth's days are numbered. Nature News.

Miller, G. F. (2000) The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature. Random House, New York.

Miller, G. F. (2007) Sexual selection for moral virtues, The Quarterly Review of Biology, 82(2): p. 97-125.

Patton, P. E. (2016) Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve? Universe Today.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Rushby, A. J., Claire, M. W., Osborn, H., Watson, A. J. (2013) Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology, 13(9), p. 833-849.

Yirka, B. (2016) Yeast study offers evidence of the superiority of sexual reproduction versus cloning in speed of adaptation. Phys.org.

The post Alien Minds Part II: Do Aliens Think Big Brains are Sexy Too? appeared first on Universe Today.

Monday, May 30, 2016

UFOS WILL APPEAR ? - Mars At Closest Point To Earth in 11 Years Today

Mars At Closest Point To Earth in 11 Years Today:

Mars in all its red-hued glory. Image: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute)

If you have a telescope, (What?! You don't have one?) you're in for a visual treat tonight. Mars will be at its closest point to Earth in 11 years today. This event is worth checking out, whether with a telescope, astronomy binoculars, or online.

While today is when Mars is at its closest, you actually have a couple weeks to check this out, as the distance between Mars and Earth gradually becomes greater and greater. Today, Mars is 76 million kilometers (47.2 million miles) away, but up until June 12th it will still be no further than 77 million kilometers (48 million miles) away.

The furthest Mars can be from Earth is 401 million kilometers (249 million miles), when the two planets are on the opposite side of the Sun from each other.


For most of us with backyard 'scopes, it's difficult to make out much detail. You can see Mars, and at the most you can make out a polar cap. But it's still fascinating knowing you're looking at another planet, one that was totally unknowable for most humans who preceded us. A planet that we have rovers on, and that we have several craft in orbit around.

If you don't have a scope, have no fear. There will be a flood of great astro-photos of Mars in the next few days. There are also options for live streaming feeds from powerful Earth-based telescopes.

The last time Mars was this close to Earth was 2005. A couple years before, the distance shrank to 55.7 million km (34.6 million miles.) That was the closest Mars and Earth have been in several thousand years. In 2018, the two planets will be nearly that close again.

This event is often called "opposition", but it's actually more correctly called "closest approach." Opposition occurs a couple weeks before closest approach, when Mars is directly opposite the Sun.

But whether you call it opposition, or closest approach, the event itself is significant for more than just looking at it. Missions to Mars are planned when the two planets are close to each other. This reduces mission times drastically.

Mars Express, the mission being conducted by the European Space Agency (ESA) was launched in 2003, when the two planets were as close to each other as they've been in thousands of years. All missions to Mars can't be so lucky, but they all strive to take advantage of the orbital cycles of the two planets, by nailing launch dates that work in our favour.

As for finding Mars in the night sky, it's not that difficult. If you have clear skies where you are, Mars will appear as a bright, fire-yellow star.

"Just look southeast after the end of twilight, and you can't miss it," says Alan MacRobert, a senior editor of Sky & Telescope magazine, in a statement. "Mars looks almost scary now, compared to how it normally looks in the sky."

Although Mars is the closest thing in the sky to Earth right now, other than the Moon, it isn't the brightest thing in the night sky. That honour is reserved for Jupiter, even though it's ten times further away. Jupiter is twenty times larger in diameter than Mars, so it reflects much more sunlight and appears much brighter. (Obviously, everything in the night sky pales in comparison to the Moon.)

The reason for such a variation in distances between the planets lies in their elliptical orbits around the Sun. There's a great video showing how their orbits change the distance between the two planets, here.

If you don't have a telescope, you can still check Mars out. Go to slooh.com to check out live feeds from a proper telescope.

The post Mars At Closest Point To Earth in 11 Years Today appeared first on Universe Today.

Sunday, May 29, 2016

NASA IMAGES - IC 5067 in the Pelican Nebula

IC 5067 in the Pelican Nebula:

Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.

2016 May 26

See Explanation. Clicking on the picture will download the highest resolution version available.

IC 5067 in the Pelican Nebula

Image Credit & Copyright: Data - Subaru Telescope (NAOJ), R. Colombari, Processing - Roberto Colombari

Explanation: The prominent ridge of emission featured in this sharp, colorful skyscape is cataloged as IC 5067. Part of a larger emission nebula with a distinctive shape, popularly called The Pelican Nebula, the ridge spans about 10 light-years following the curve of the cosmic pelican's head and neck. This false-color view also translates the pervasive glow of narrow emission lines from atoms in the nebula to a color palette made popular in Hubble Space Telescope images of star forming regions. Fantastic, dark shapes inhabiting the 1/2 degree wide field are clouds of cool gas and dust sculpted by the winds and radiation from hot, massive stars. Close-ups of some of the sculpted clouds show clear signs of newly forming stars. The Pelican Nebula, itself cataloged as IC 5070, is about 2,000 light-years away. To find it, look northeast of bright star Deneb in the high flying constellation Cygnus.

Tomorrow's picture: Great Carina

< | Archive | Submissions | Search | Calendar | RSS | Education | About APOD | Discuss | >

Authors & editors: Robert Nemiroff (MTU) & Jerry Bonnell (UMCP)
NASA Official: Phillip Newman Specific rights apply.
NASA Web Privacy Policy and Important Notices
A service of: ASD at NASA / GSFC
& Michigan Tech. U.

BIG BANG - Next Time You’re Late To Work, Blame Dark Energy!

Next Time You’re Late To Work, Blame Dark Energy!:

Illustration of the Big Bang Theory

Ever since Lemaitre and Hubble's first proposed it in the 1920s, scientists and astronomers have been aware that the Universe is expanding. And from these observations, cosmological theories like the Big Bang Theory and the "Arrow of Time" emerged. Whereas the former addresses the origins and evolution of our Universe, the latter argues that the flow of time in one-direction and is linked to the expansion of space.

For many years, scientists have been trying to ascertain why this is. Why does time flow forwards, but not backwards? According to new study produced by a research team from the Yerevan Institute of Physics and Yerevan State University in Armenia, the influence of dark energy may be the reason for the forward-flow of time, which may make one-directional time a permanent feature of our universe.

Today, theories like the Arrow of Time and the expansion of the universe are considered fundamental facts about the Universe. Between measuring time with atomic clocks, observing the red shift of galaxies, and created detailed 3D maps that show the evolution of our Universe over the course of billions of years, one can see how time and the expansion of space are joined at the hip.

The question of why this is the case though is one that has continued to frustrate physicists. Certain fundamental forces, like gravity, are not governed by time. In fact, one could argue without difficulty that Newton's Laws of Motion and quantum mechanics work the same forwards or backwards. But when it comes to things on the grand scale like the behavior of planets, stars, and entire galaxies, everything seems to come down to the Second Law of Thermodynamics.

This law, which states that the total chaos (aka. entropy) of an isolated system always increases over time, the direction in which time moves is crucial and non-negotiable, has come to be accepted as the basis for the Arrow of Time. In the past, some have ventured that if the Universe began to contract, time itself would begin to flow backwards. However, since the 1990s and the observation that the Universe has been expanding at an accelerating rate, scientists have come to doubt that this.

If, in fact, the Universe is being driven to greater rates of expansion - the predominant explanation is that "Dark Energy" is what is driving it - then the flow of time will never cease being one way. Taking this logic a step further, two Armenian researchers - Armen E. Allahverdyan of the Center for Cosmology and Astrophysics at the Yerevan Institute of Physics and Vahagn G. Gurzadyan of Yerevan State University - argue that dark energy is the reason why time always moves forward.

In their paper, titled "Time Arrow is Influenced by the Dark Energy", they argue that dark energy accelerating the expansion of the universe supports the asymmetrical nature of time. Often referred to as the "cosmological constant" - referring to Einstein's original theory about a force which held back gravity to achieve a static universe - dark energy is now seen as a "positive" constant, pushing the Universe forward, rather than holding it back.

To test their theory, Allahverdyan and Gurzadyan used a large scale scenario involving gravity and mass - a planet with increasing mass orbiting a star. What they found was that if dark energy had a value of 0 (which is what physicists thought before the 1990s), or if gravity were responsible for pulling space together, the planet would simply orbit the star without any indication as to whether it was moving forwards or backwards in time.

But assuming that the value of dark energy is a positive (as all the evidence we've seen suggests) then the planet would eventually be thrown clear of the star. Running this scenario forward, the planet is expelled because of its increasing mass; whereas when it is run backwards, the planet closes in on the star and is captured by it's gravity.

In other words, the presence of dark energy in this scenario was the difference between having an "arrow of time" and not having one. Without dark energy, there is no time, and hence no way to tell the difference between past, present and future, or whether things are running in a forward direction or backwards.

But of course, Allahverdyan and Gurzadyan were also sure to note in their study that this is a limited test and doesn't answer all of the burning questions. "We also note that the mechanism cannot (and should not) explain all occurrences of the thermodynamic arrow," they said. "However, note that even when the dark energy (cosmological constant) does not dominate the mean density (early universe or today’s laboratory scale), it still exists."


Limited or not, this research is representative of some exciting new steps that astrophysicists have been taking of late. This involves not only questioning the origins of dark energy and the expansion force it creates, but also questioning its implication in basic physics. In so doing, researchers may finally be able to answer the age-old question about why time exists, and whether or not it can be manipulated (i.e. time travel!)

Further Reading: Physical Review E

The post Next Time You’re Late To Work, Blame Dark Energy! appeared first on Universe Today.

COLD STARS ? Can Stars Be Cold ?

Can Stars Be Cold?:

If you’ve heard me say “oot and aboot”, you know I’m a Canadian. And we Canadians are accustomed to a little cold. Okay, a LOT of cold. It’s not so bad here on the West Coast, but folks from Winnepeg can endure temperatures colder than the surface of Mars.  Seriously, who lives like that?

And on one of those cold days, even on a clear sunny day, the Sun is pointless and worthless. As the bone chilling cold numbs your fingers and toes, it’s as if the Sun itself has gone cold, sapping away all the joy and happiness in the world. And don’t get me started about the rain. Clearly, I need to take more tropical vacations.

But we know the Sun isn’t cold at all, it’s just that the atmosphere around you feels cold. The surface of the Sun is always the same balmy 5,500 degrees Celsius. Just to give you perspective, that’s hot enough to melt iron, nickel. Even carbon melts at 2500 C. So, no question, the Sun is hot.

The Sun – It’s pretty hot. Credit: NASA/SDO.
And you know that the Sun is hot because it’s bright. There are actually photons streaming from the Sun at various wavelengths, from radio, infrared, through the visible spectrum, and into the ultraviolet. There are even X-ray photons blasting off the Sun.

If the Sun was cooler, it would look redder, just like a cooler red dwarf star, and if the Sun was hotter, it would appear more blue. But could you have a star that’s cooler, or even downright cold?

The answer is yes, you just have to be willing to expand your definition of what a star is.

Under the normal definition, a star is a collection of hydrogen, helium and other elements that came together by mutual gravity. The intense gravitational pressure of all that mass raised temperatures at the core of the star to the point that hydrogen could be fused into helium. This reaction releases more energy than it takes, which causes the Sun to emit energy.

The coolest possible red dwarf star, one with only 7.5% the mass of the Sun, will still have a temperature of about 2,300 C, a little less than the melting point of carbon.

But if a star doesn’t have enough mass to ignite fusion, it becomes a brown dwarf. It’s heated by the mechanical action of all that mass compressing inward, but it’s cooler. Average brown dwarfs will be about 1,700 C, which actually, is still really hot. Like, molten rock hot.

This artist’s conception illustrates the brown dwarf named 2MASSJ22282889-431026. Credit: NASA/JPL-Caltech
Brown dwarfs can actually get a lot cooler, a new class of these “stars” were discovered by the WISE Space Observatory that start at 300 degrees, and go all the way down to about 27 degrees, or room temperature. This means there are stars out there that you could touch.

Except you couldn’t, because they’d still have more than a dozen times the mass of Jupiter, and would tear your arm off with their intense gravity. And anyway, they don’t a solid surface. No, you can’t actually touch them.

That’s about as cold as stars get, today, in the Universe.

But if you’re willing to be very very patient, then it’s a different story. Our own Sun will eventually run out of fuel, die and become a white dwarf. It’ll start out hot, but over the eons, it’ll cool down, eventually becoming the same temperature as the background level of the Universe – just a few degrees above absolute zero. Astronomers call these black dwarfs.

We’re talking a long long time, though, in fact, in the 13.8 billion years that the Universe has been around, no white dwarfs have had enough time to cool down significantly. In fact, it would take about a quadrillion years to get within a few degrees of the cosmic microwave background radiation temperature.

The post Can Stars Be Cold? appeared first on Universe Today.

EARTH PLANET - 10 Interesting Facts About Earth

10 Interesting Facts About Earth:

This view of Earth comes from NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite.

Planet Earth. That shiny blue marble that has fascinated humanity since they first began to walk across its surface. And why shouldn't it fascinate us? In addition to being our home and the place where life as we know it originated, it remains the only planet we know of where life thrives. And over the course of the past few centuries, we have learned much about Earth, which has only deepened our fascination with it.

But how much does the average person really know about the planet Earth? You've lived on Planet Earth all of your life, but how much do you really know about the ground underneath your feet? You probably have lots of interesting facts rattling around in your brain, but here are 10 more interesting facts about Earth that you may, or may not know.

1. Plate Tectonics Keep the Planet Comfortable:

Earth is the only planet in the Solar System with plate tectonics. Basically, the outer crust of the Earth is broken up into regions known as tectonic plates. These are floating on top of the magma interior of the Earth and can move against one another. When two plates collide, one plate will subduct (go underneath another), and where they pull apart, they will allow fresh crust to form.

This process is very important, and for a number of reasons. Not only does it lead to tectonic resurfacing and geological activity (i.e. earthquakes, volcanic eruptions, mountain-building, and oceanic trench formation), it is also intrinsic to the carbon cycle. When microscopic plants in the ocean die, they fall to the bottom of the ocean.

Over long periods of time, the remnants of this life, rich in carbon, are carried back into the interior of the Earth and recycled. This pulls carbon out of the atmosphere, which makes sure we don't suffer a runaway greenhouse effect, which is what happened on Venus. Without the action of plate tectonics, there would be no way to recycle this carbon, and the Earth would become an overheated, hellish place.

2. Earth is Almost a Sphere:

Many people tend to think that the Earth is a sphere. In fact, between the 6th cenury BCE and the modern era, this remained the scientific consensus. But thanks to modern astronomy and space travel, scientists have since come to understand that the Earth is actually shaped like a flattened sphere (aka. an oblate spheroid).

This shape is similar to a sphere, but where the poles are flattened and the equator bulges. In the case of the Earth, this bulge is due to our planet's rotation. This means that the measurement from pole to pole is about 43 km less than the diameter of Earth across the equator. Even though the tallest mountain on Earth is Mount Everest, the feature that's furthest from the center of the Earth is actually Mount Chimborazo in Ecuador.

3. Earth is Mostly Iron, Oxygen and Silicon:

If you could separate the Earth out into piles of material, you'd get 32.1 % iron, 30.1% oxygen, 15.1% silicon, and 13.9% magnesium. Of course, most of this iron is actually located at the core of the Earth. If you could actually get down and sample the core, it would be 88% iron. And if you sampled the Earth's crust, you'd find that 47% of it is oxygen.

4. 70% of the Earth's Surface is Covered in Water:

When astronauts first went into the space, they looked back at the Earth with human eyes for the first time. Based on their observations, the Earth acquired the nickname the "Blue Planet:. And it's no surprise, seeing as how 70% of our planet is covered with oceans. The remaining 30% is the solid crust that is located above sea level, hence why it is called the "continental crust".

5. The Earth's Atmosphere Extends to a Distance of 10,000 km:

Earth's atmosphere is thickest within the first 50 km from the surface or so, but it actually reaches out to about 10,000 km into space. It is made up of five main layers - the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. As a rule, air pressure and density decrease the higher one goes into the atmosphere and the farther one is from the surface.

The bulk of the Earth's atmosphere is down near the Earth itself. In fact, 75% of the Earth's atmosphere is contained within the first 11 km above the planet's surface. However, the outermost layer (the Exosphere) is the largest, extending from the exobase - located at the top of the thermosphere at an altitude of about 700 km above sea level - to about 10,000 km (6,200 mi). The exosphere merges with the emptiness of outer space, where there is no atmosphere.

The exosphere is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules - including nitrogen, oxygen and carbon dioxide. The atoms and molecules are so far apart that the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or with the solar wind.

Want more planet Earth facts? We're halfway through. Here come 5 more!

6. The Earth's Molten Iron Core Creates a Magnetic Field:

The Earth is like a great big magnet, with poles at the top and bottom near to the actual geographic poles. The magnetic field it creates extends thousands of kilometers out from the surface of the Earth - forming a region called the "magnetosphere". Scientists think that this magnetic field is generated by the molten outer core of the Earth, where heat creates convection motions of conducting materials to generate electric currents.

Be grateful for the magnetosphere. Without it, particles from the Sun's solar wind would hit the Earth directly, exposing the surface of the planet to significant amounts of radiation. Instead, the magnetosphere channels the solar wind around the Earth, protecting us from harm. Scientists have also theorized that Mars' thin atmosphere is due to it having a weak magnetosphere compared to Earth's, which allowed solar wind to slowly strip it away.

7. Earth Doesn't Take 24 Hours to Rotate on its Axis:

It actually takes 23 hours, 56 minutes and 4 seconds for the Earth to rotate once completely on its axis, which astronomers refer to as a Sidereal Day. Now wait a second, doesn't that mean that a day is 4 minutes shorter than we think it is? You'd think that this time would add up, day by day, and within a few months, day would be night, and night would be day.

But remember that the Earth orbits around the Sun. Every day, the Sun moves compared to the background stars by about 1° - about the size of the Moon in the sky. And so, if you add up that little motion from the Sun that we see because the Earth is orbiting around it, as well as the rotation on its axis, you get a total of 24 hours.

This is what is known as a Solar Day, which - contrary to a Sidereal Day - is the amount of time it takes the Sun to return to the same place in the sky. Knowing the difference between the two is to know the difference between how long it takes the stars to show up in the same spot in the sky, and the it takes for the sun to rise and set once.


8. A year on Earth isn't 365 days:

It's actually 365.2564 days. It's this extra .2564 days that creates the need for a Leap Year once ever four years. That's why we tack on an extra day in February every four years - 2004, 2008, 2012, etc. The exceptions to this rule is if the year in question is divisible by 100 (1900, 2100, etc), unless it divisible by 400 (1600, 2000, etc).

9. Earth has 1 Moon and 2 Co-Orbital Satellites:

As you're probably aware, Earth has 1 moon (aka. The Moon). Plenty is known about this body and we have written many articles about it, so we won't go into much detail there. But did you know there are 2 additional asteroids locked into a co-orbital orbits with Earth? They're called 3753 Cruithne and 2002 AA29, which are part of a larger population of asteroids known as Near-Earth Objects (NEOs).

The asteroid known as 3753 Cruithne measures 5 km across, and is sometimes called "Earth's second moon". It doesn't actually orbit the Earth, but has a synchronized orbit with our home planet. It also has an orbit that makes it look like it's following the Earth in orbit, but it's actually following its own, distinct path around the Sun.


Meanwhile, 2002 AA29 is only 60 meters across and makes a horseshoe orbit around the Earth that brings it close to the planet every 95 years. In about 600 years, it will appear to circle Earth in a quasi-satellite orbit. Scientists have suggested that it might make a good target for a space exploration mission.

10. Earth is the Only Planet Known to Have Life:

We've discovered past evidence of water and organic molecules on Mars, and the building blocks of life on Saturn's moon Titan. We can see amino acids in nebulae in deep space. And scientists have speculated about the possible existence of life beneath the icy crust of Jupiter's moon Europa and Saturn's moon Titan. But Earth is the only place life has actually been discovered.

But if there is life on other planets, scientists are building the experiments that will help find it. For instance, NASA just announced the creation of the Nexus for Exoplanet System Science (NExSS), which will spend the coming years going through the data sent back by the Kepler space telescope (and other missions that have yet to be launched) for signs of life on extra-solar planets.

Giant radio dishes are currently scan distant stars, listening for the characteristic signals of intelligent life reaching out across interstellar space. And newer space telescopes, such as NASA's James Webb Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the European Space Agency's Darwin mission might just be powerful enough to sense the presence of life on other worlds.

But for now, Earth remains the only place we know of where there's life. Now that is an interesting fact!

We have written many interesting articles about planet Earth here on Universe Today. Here's What is the Highest Place on Earth?, What is the Diameter of the Earth?, What is the Closest Planet to Earth?, What is the Surface Temperature of Earth? and The Rotation of the Earth?

Other articles include how fast the Earth rotates, and here's an article about the closest star to Earth. If you'd like more info on Earth, check out NASA's Solar System Exploration Guide on Earth. And here's a link to NASA's Earth Observatory.

And there's even an Astronomy Cast episode on the subject of planet Earth.

The post 10 Interesting Facts About Earth appeared first on Universe Today.

NEPTUNE PLANET - What is the Coldest Planet of Our Solar System?

What is the Coldest Planet of Our Solar System?:

Neptune photographed by Voyage. Image credit: NASA/JPL

The Solar System is pretty huge place, extending from our Sun at the center all the way out to the Kuiper Cliff - a boundary within the Kuiper Belt that is located 50 AU from the Sun. As a rule, the farther one ventures from the Sun, the colder and more mysterious things get. Whereas temperatures in the inner Solar System are enough to burn you alive or melt lead, beyond the "Frost Line", they get cold enough to freeze volatiles like ammonia and methane.

So what is the coldest planet of our Solar System? In the past, the title for "most frigid body" went to Pluto, as it was the farthest then-designated planet from the Sun. However, due to the IAU's decision in 2006 to reclassify Pluto as a "dwarf planet", the title has since passed to Neptune. As the eight planet from our Sun, it is now the outermost planet in the Solar System, and hence the coldest.

Orbit and Distance:

With an average distance (semi-major axis) of 4,504,450,000 km (2,798,935,466.87 mi or 30.11 AU), Neptune is the farthest planet from the Sun. The planet has a very minor eccentricity of 0.0086, which means that its orbit around the Sun varies from a distance of 29.81 AU (4.459 x 109 km) at perihelion to 30.33 AU (4.537 x 109 km) at aphelion.

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it is on Earth.

Average Temperature:

When it comes to ascertaining the average temperature of a planet, scientists rely on temperature variations measured from the surface. As a gas/ice giant, Neptune has no surface, per se. As a result, scientists rely on temperature readings from where the atmospheric pressure is equal to 1 bar (100 kPa), the equivalent to atmospheric pressure at sea level here on Earth.

On Neptune, this area of the atmosphere is just below the upper level clouds. Pressures in this region range between 1 and 5 bars (100 – 500 kPa), and temperature reach a high of 72 K (-201.15 °C; -330 °F). At this temperature, conditions are suitable for methane to condense, and clouds of ammonia and hydrogen sulfide are thought to form (which is what gives Neptune its characteristically dark cyan coloring).

Farther into space, where pressures drop to about 0.1 bars (10 kPa), temperatures decrease to their low of around 55 K (-218 °C; -360 °F). Further into the planet, pressures increase dramatically, which also leads to a dramatic increase in temperature. At its core, Neptune reaches temperatures of up to 7273 K (7000 °C; 12632 °F), which is comparable to the surface of the Sun.

The huge temperature differences between Neptune’s center and its surface (along with its differential rotation) create huge wind storms, which can reach as high as 2,100 km/hour, making them the fastest in the Solar System. The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter.

Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet's northern hemisphere, suggesting that these storms have a shorter lifespan than Jupiter's. The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot.

This nickname first arose during the months leading up to the Voyager 2 encounter in 1989, when the cloud group was observed moving at speeds faster than the Great Dark Spot. The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.

Temperature Anomalies:

Despite being 50% further from the Sun than Uranus - which orbits the Sun at an average distance of 2,875,040,000 km (1,786,467,032.5 mi or 19.2184 AU) - Neptune receives only 40% of the solar radiation that Uranus does. In spite of that, the two planets’ surface temperatures are surprisingly close, with Uranus experiencing an average "surface" temperature of 76 K (-197.2 °C)

And while temperatures similarly increase the further one ventures into the core, the discrepancy is larger. Uranus only radiates 1.1 times as much energy as it receives from the Sun, whereas Neptune radiates about 2.61 times as much. Neptune is the farthest planet from the Sun, yet its internal energy is sufficient to drive the fastest planetary winds seen in the Solar System.

One would expect Neptune to be much colder than Uranus, and the mechanism for this remains unknown. However, astronomers have theorized that  Neptune's higher internal temperature (and the exchange of heat between the core and outer layers) might be the reason for why Neptune isn't significantly colder than Uranus.

As already noted, Pluto's surface temperatures do get to being lower than Neptune's. Between its greater distance from the Sun, and the fact that it is not a gas/ice giant (so therefore doesn't have extreme temperatures at its core) means that it experiences temperatures between a high of 55 K (-218 °C; -360 °F)and a low of 33 K (-240 °C; -400 °F). However, since it is no longer classified as a planet (but a dwarf planet, TNO, KBO, plutoid, etc.) it is no longer in the running. Sorry, Pluto!

We've written many articles about Neptune here at Universe Today. Here's Who Discovered Neptune?, What is the Surface Temperature of Neptune?, What is the Surface of Neptune Like?, 10 Interesting Facts about Neptune, The Rings of Neptune, How Many Moons Does Neptune Have?

If you'd like more information on Neptune, take a look at Hubblesite's News Releases about Neptune, and here's a link to NASA's Solar System Exploration Guide to Neptune.

We've also recorded an entire episode of Astronomy Cast all about Neptune. Listen here, Episode 63: Neptune.

The post What is the Coldest Planet of Our Solar System? appeared first on Universe Today.

THE UNIVERSE - Life On Kepler-62f?

Life On Kepler-62f?:

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

A team of astronomers suggests that an exoplanet named 62f could be habitable. Kepler data suggests that 62f is likely a rocky planet, and could have oceans. The exoplanet is 40% larger than Earth and is 1200 light years away.

62f is part of a planetary system discovered by the Kepler mission in 2013. There are 5 planets in the system, and they orbit a star that is both cooler and smaller than our Sun. The target of this study, 62f, is the outermost of the planets in the system.

Kepler can't tell us if a planet is habitable or not. It can only tell us something about its potential habitability. The team, led by Aomawa Shields from the UCLS department of physics and astronomy, used different modeling methods to determine if 62f could be habitable, and the answer is, maybe.

According to the study, much of 62f's potential habitability revolves around the CO2 component of its atmosphere, if it indeed has an atmosphere. As a greenhouse gas, CO2 can have a significant effect on the temperature of a planet, and hence, a significant effect on its habitability.

Earth's atmosphere is only 0.04% carbon dioxide (and rising.) 62f would likely need to have much more CO2 than that if it were to support life. It would also require other atmospheric characteristics, .

The study modelled parameters for CO2 concentration, atmospheric density, and orbital characteristics. They simulated:

  • An atmospheric thickness from the same as Earth's up to 12 times thicker.
  • Carbon dioxide concentrations ranging from the same as Earth's up to 2500 times Earth's level.
  • Multiple different orbital configurations.

It may look like the study casts its net pretty wide in order to declare a planet potentially habitable. But the simulations were pretty robust, and relied on more than a single, established modelling method to produce these results. With that in mind, the team found that there are multiple scenarios that could make 62f habitable.

“We found there are multiple atmospheric compositions that allow it to be warm enough to have surface liquid water,” said Shields, a University of California President’s Postdoctoral Program Fellow. “This makes it a strong candidate for a habitable planet.”

As mentioned earlier, CO2 concentration is a big part of it. According to Shields, the planet would need an atmospheric entirely composed of CO2, and an atmosphere five times as dense as Earth's to be habitable through its entire year. That means that there would be 2500 times more carbon dioxide than Earth has. This would work because the planet's orbit may take it far enough away from the star for water to freeze, but an atmosphere this dense and this high in CO2 would keep the planet warm.

But there are other conditions that would make 62f habitable, and these include the planet's orbital characteristics.

“But if it doesn’t have a mechanism to generate lots of carbon dioxide in its atmosphere to keep temperatures warm, and all it had was an Earth-like amount of carbon dioxide, certain orbital configurations could allow Kepler-62f’s surface temperatures to temporarily get above freezing during a portion of its year,” said Shields. “And this might help melt ice sheets formed at other times in the planet’s orbit.”

Shields and her team used multiple modelling methods to produce these results. The climate was modelled using the Community Climate System Model and the Laboratoire de Me´te´orologie Dynamique Generic model. The planet's orbital characteristics were modelled using HNBody. This study represents the first time that these modelling methods were combined, and this combined method can be used on other planets.

Shields said, "This will help us understand how likely certain planets are to be habitable over a wide range of factors, for which we don’t yet have data from telescopes. And it will allow us to generate a prioritized list of targets to follow up on more closely with the next generation of telescopes that can look for the atmospheric fingerprints of life on another world."

There are over 2300 confirmed exoplanets, and many more candidates yet to be confirmed. Only a handful of them have been confirmed as being in the habitable zone around their host star. Of course, we don't know if life can exist on other planets, even if they do reproduce the same kind of habitability that Earth has. We just have no way of knowing, yet.

That will change when instruments like the James Webb Space Telescope are able to peer into the atmospheres of exoplanets and tell us something about any bio-markers that might be present.

But until then, and until we actually visit another world with a probe of some design, we need to use modelling like the type employed in this study, to get us closer to answering the question of life on other worlds.

The post Life On Kepler-62f? appeared first on Universe Today.

MARS PLANET - How Long is a Year on Mars?

How Long is a Year on Mars?:

Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech

Mars and Earth have quite a few things in common. Both are terrestrial planets, both are located within the Sun's habitable zone, both have polar ice caps, similarly tilted axes, and similar variations in temperature. And according to some of the latest scientific data obtained by rovers and atmospheric probes, it is now known that Mars once had a dense atmosphere and was covered with warm, flowing water.

But when it comes to things like the length of a year, and the length of seasons, Mars and Earth are quite different. Compared to Earth, a year on Mars lasts almost twice as long - 686.98 Earth days. This is due to the fact that Mars is significantly farther from the Sun and its orbital period (the time it takes to orbit the Sun) is significantly greater than that of Earth's.

Orbital Period:

Mars average distance (semi-major axis) from the Sun is 227,939,200 km (141,634,852.46 mi) which is roughly one and half times the distance between the Earth and the Sun (1.52 AU). Compared to Earth, its orbit is also rather eccentric (0.0934 vs. 0.0167), ranging from 206.7 million km (128,437,425.435 mi; 1.3814 AU) at perihelion to 249.2 million km (154,845,701 mi; 1.666 AU) at aphelion. At this distance, and with an orbital speed of 24.077 km/s, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a orbit around the Sun.

This eccentricity is one of the most pronounced in the Solar System, with only Mercury having a greater one (0.205). However, this wasn't always the case. Roughly 1.35 million years ago, Mars had an eccentricity of just 0.002, making its orbit nearly circular. It reached a minimum eccentricity of 0.079 some 19,000 years ago, and will peak at about 0.105 in about 24,000 years from now.

But for the last 35,000 years, the orbit of Mars has been getting slightly more eccentric because of the gravitational effects of the other planets. The closest distance between Earth and Mars will continue to mildly decrease for the next 25,000 years. And in about 1,000,000 years from now, its eccentricity will once again be close to what it is now – with an estimated eccentricity of 0.01.

Earth Days vs. Martian "Sols":

Whereas a year on Mars is significantly longer than a year on Earth, the difference between an day on Earth and a Martian day (aka. "Sol") is not significant. For starters, Mars takes 24 hours 37 minutes and 22 seconds to complete a single rotation on its axis (aka. a sidereal day), where Earth takes just slightly less (23 hours, 56 minutes and 4.1 seconds).

On the other hand, it takes 24 hours, 39 minutes, and 35 seconds for the Sun to appear in the same spot in the sky above Mars (aka. a solar day), compared to the 24 hour solar day we experience here on Earth. This means that, based on the length of a Martian day, a Martian year works out to 668.5991 Sols.

Seasonal Variations:

Mars also has a seasonal cycle that is similar to that of Earth's. This is due in part to the fact that Mars also has a tilted axis, which is inclined 25.19° to its orbital plane (compared to Earth's axial tilt of approx. 23.44°). It's also due to Mars orbital eccentricity, which means it will periodically receive less in the way of the Sun's radiance during at one time of the year than another. This change in distance causes significant variations in temperature.

While the planet’s average temperature is -46 °C (51 °F), this ranges from a low of -143 °C (-225.4 °F) during the winter at the poles to a high of 35 °C (95 °F) during summer and midday at the equator. This works out to a variation in average surface temperature that is quite similar to Earth’s – a difference of 178 °C (320.4 °F) versus 145.9 °C (262.5 °F). This high in temperatures is also what allows for liquid water to still flow (albeit intermittently) on the surface of Mars.

In addition, Mars' eccentricity means that it travels more slowly in its orbit when it is further from the Sun, and more quickly when it is closer (as stated in Kepler's Three Laws of Planetary Motion). Mars' aphelion coincides with Spring in its northern hemisphere, which makes it the longest season on the planet - lasting roughly 7 Earth months. Summer is second longest, lasting six months, while Fall and Winter last 5.3 and just over 4 months, respectively.

In the south, the length of the seasons is only slightly different. Mars is near perihelion when it is summer in the southern hemisphere and winter in the north, and near aphelion when it is winter in the southern hemisphere and summer in the north. As a result, the seasons in the southern hemisphere are more extreme and the seasons in the northern are milder. The summer temperatures in the south can be up to 30 K (30 °C; 54 °F) warmer than the equivalent summer temperatures in the north.

Weather Patterns:

These seasonal variations allow Mars to experience some extremes in weather. Most notably, Mars has the largest dust storms in the Solar System. These can vary from a storm over a small area to gigantic storms (thousands of km in diameter) that cover the entire planet and obscure the surface from view. They tend to occur when Mars is closest to the Sun, and have been shown to increase the global temperature.

The first mission to notice this was the Mariner 9 orbiter, which was the first spacecraft to orbit Mars in 1971, it sent pictures back to Earth of a world consumed in haze. The entire planet was covered by a dust storm so massive that only Olympus Mons, the giant Martian volcano that measures 24 km high, could be seen above the clouds. This storm lasted for a full month, and delayed Mariner 9‘s attempts to photograph the planet in detail.

And then on June 9th, 2001, the Hubble Space Telescope spotted a dust storm in the Hellas Basin on Mars. By July, the storm had died down, but then grew again to become the largest storm in 25 years. So big was the storm that amateur astronomers using small telescopes were able to see it from Earth. And the cloud raised the temperature of the frigid Martian atmosphere by a stunning 30° Celsius.


These storms tend to occur when Mars is closest to the Sun, and are the result of temperatures rising and triggering changes in the air and soil. As the soil dries, it becomes more easily picked up by air currents, which are caused by pressure changes due to increased heat. The dust storms cause temperatures to rise even further, leading to Mars' experiencing its own greenhouse effect.

Given the differences in seasons and day length, one is left to wonder if a standard Martian calendar could ever be developed. In truth, it could, but it would be a bit of a challenge. For one, a Martian calendar would have to account for Mars' peculiar astronomical cycles, and our own non-astronomical cycles like the 7-day week work with them.

Another consideration in designing a calendar is accounting for the fractional number of days in a year. Earth’s year is 365.24219 days long, and so calendar years contain either 365 or 366 days accordingly. Such a formula would need to be developed to account for the 668.5921-sol Martian year. All of this will certainly become an issue as human beings become more and more committed to exploring (and perhaps colonizing) the Red Planet.

We have written many interesting articles about Mars here at Universe Today. and How Long is a Year on Other Planets?, How Long is a Day on Mars?, How Long Does it Take Mars to Orbit the Sun?, Mars Compared to Earth, and Does Mars Have Seasons?

For more information, check out NASA's Solar System Exploration page on Mars.

Astronomy Cast also has several interesting episodes on the subject. Like Episode 52: Mars, and Episode 91: The Search for Water on Mars.

The post How Long is a Year on Mars? appeared first on Universe Today.

Thursday, May 26, 2016

ALIENS - Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve?

Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve?:

The face of a jumping spider

Is it likely that human level intelligence and technological civilization has evolved on other worlds? If so, what kinds of sensory and cognitive systems might extraterrestrials have? This was the subject of the workshop ‘The Intelligence of SETI: Cognition and Communication in Extraterrestrial Intelligence’ held in Puerto Rico on May 18, 2016. The conference was sponsored by the newly founded METI International (Messaging to ExtraTerrestrial Intelligence). One of the organization’s central goals is to build an interdisciplinary community of scholars concerned with designing interstellar messages that can be understood by non-human minds.

At present, the only clues we have to the nature of extraterrestrial minds and perception are those that can be garnered by a careful study of the evolution of mind and perception here on Earth. The workshop included nine speakers from universities in the United States and Sweden, specializing in biology, psychology, cognitive science, and linguistics. It had sessions on the evolution of cognition and the likely communicative and cognitive abilities of extraterrestrials.

Doug Vakoch, a psychologist and the founder and president of METI International, notes that astronomers and physicists properly concern themselves largely with the technologies needed to detect alien intelligence. However, finding and successfully communicating with aliens may require attention to the evolution and possible nature of alien intelligence. “The exciting thing about this workshop”, Vakoch writes, “is that the speakers are giving concrete guidelines about how to apply insights from basic research in biology and linguistics to constructing interstellar messages”. In this, the first installment dealing with the conference, we’ll focus on the question of whether the evolution of technological societies on other planets is likely to be common, or rare.

We now know that most stars have planets, and rocky planets similar to or somewhat larger than the Earth or Venus are commonplace. Within this abundant class of worlds, there are likely to be tens of billions with conditions suitable for sustaining liquid water on their surfaces in our galaxy. We don’t yet know how likely it is that life will arise on such worlds. But suppose, as many scientists suspect, that simple life is abundant. How likely is it that alien civilizations will appear; civilizations with which we could communicate and exchange ideas, and which could make their presence known to us by signaling into space? This was a central question explored at the conference.

In addressing such questions, scientists have two main sets of clues to draw on. The first comes from the study of the enormous diversity of behavior and nervous and sensory systems of the animal species that inhabit our Earth; an endeavor that has been called cognitive ecology. The second set of clues come from modern biology’s central principle; the theory of evolution. Evolutionary theory can provide scientific explanations of how and why various senses and cognitive systems have come to exist here on Earth, and can guide our expectations about what might exist elsewhere.

The basics of the electrochemical signalling that make animal nervous systems possible have deep evolutionary roots. Even plants and bacteria have electrochemical signalling systems that share some basic features with those in our brains. Conference presenter Dr. Anna Dornhaus studies how social insects make decisions collectively as an associate professor at the University of Arizona. She defines cognitive ability as the ability to solve problems with a nervous system, and sometimes also by social cooperation. An animal is more ‘intelligent’ if its problem solving abilities are more generalized. Defined this way, intelligence is widespread among animals. Skills traditionally thought to be the sole province of primates (monkeys and apes, including human beings) have now been shown to be surprisingly common.

For example, cognitive skills like social learning and teaching, generalizing from examples, using tools, recognizing individuals of one’s species, making plans, and understanding spatial relationships have all been shown to exist in arthropods (an animal group consisting of insects, spiders, and crustaceans). The evidence shows the surprising power of the diminutive brains of insects, and indicates that we know little of the relationship between brain size and cognitive ability.

But different animals often have different sets of cognitive skills, and if a species is good at one cognitive skill, that doesn’t necessarily mean it will be good at others. Human beings are special, not because we have some specific cognitive ability that other animals lack, but because we possess a wide range of cognitive abilities that are more exaggerated and highly developed than in other animals.

Although the Earth, as a planet, has existed for 4.6 billion years, complex animals with hard body parts don’t appear in the fossil record until 600 million years ago, and complex life didn’t appear on land until about 400 million years ago. Looking across the animal kingdom as a whole, three groups of animals, following separate evolutionary paths, have evolved especially complex nervous systems and behaviors. We’ve already mentioned arthropods, and the sophisticated behaviors mediated by their diminutive yet powerful brains.

Molluscs, a group of animals that includes slugs and shellfish, have also produced a group of brainy animals; the cephalopods. The cephalopods include octopuses, squids, and cuttlefish. The octopus has the most complex nervous system of any animal without a backbone. As the product of a different evolutionary path, the octopus’s sophisticated brain has a plan of organization that is completely alien to that of more familiar animals with backbones.

The third group to have produced sophisticated brains are the vertebrates; animals with backbones. They include fishes, amphibians, reptiles, birds, and mammals, including human beings. Although all vertebrate brains bear a family resemblance, complex brains have evolved from simpler brains many separate times along different paths of vertebrate evolution, and each such brain has its own unique characteristics.

Along one path, birds have evolved a sophisticated forebrain, and with it, a flexible and creative capacity to make and use tools, an ability to classify and categorize objects, and even a rudimentary understanding of numbers. Following a different path, and based on a different plan of forebrain organization, mammals have also evolved sophisticated intelligence. Three groups of mammals; elephants, cetaceans (a group of aquatic mammals including dophins, porpoises, and whales), and primates (monkeys and apes, including human beings) have evolved the most complex brains on Earth.

Given the evidence that intelligent problem solving skills of various sorts have evolved many times over, along many different evolutionary pathways, in an amazing range of animal groups, one might suspect that Dornhaus believes that human-style cognitive abilities and civilizations are widespread in the universe. In fact, she doesn’t. She thinks that humans with their exaggerated cognitive abilities and unique ability to use language to express complex and novel sorts of information are a quirky and unusual fluke of evolution, and might, for all we know, be wildly improbable. Her argument that alien civilizations probably aren’t widespread resembles one stated by the imminent and influential American evolutionary biologist Ernst Mayr in his 1988 book Towards a New Philosophy of Biology.

There are currently more than 10 million different species of animals on Earth. All but one have failed to evolve the human level of intelligence. This makes the chance of evolving human intelligence less than one in 10 million. Over the last six hundred million years since complex life has appeared on Earth, there have been tens of million different animal species, each existing for roughly 1-10 million years. But, so far as we know, only one of them, Homo sapiens, ever produced a technological society. The human lineage diverged from that of other great ape species about 8 million years ago, but we don’t see evidence of distinctly human innovation until about 50,000 years ago, which is, perhaps, another indication of its rarity.

Despite the apparent improbability of human level intelligence evolving in any one lineage, Earth, as a whole, with its vast array of evolutionary lineages, has nonetheless produced a technological civilization. But that still doesn’t tell us very much. For the present, Earth is the only habitable planet that we know much of anything about. And, since Earth produced us, we are working with a biased sample. So we can’t be at all confident that the presence of human civilization on Earth implies that similar civilizations are likely to occur elsewhere.

For all we know, the quirky set of events that produced human beings might be so wildly improbable that human civilization is unique in a hundred billion galaxies. But, we don’t know for sure that alien civilizations are wildly improbable either. Dornhaus freely concedes that neither she nor anybody has a good idea of just how improbable human intelligence might be, since the evolution of intelligence is still so poorly understood.

Most current evolutionary thinking, following in the footsteps of Mayr and others, holds that human civilization was not the inevitable product of a long-term evolutionary trend, but rather the quirky consequence of a particular and improbable set of evolutionary events. What sort of events might those have been, and just how improbable were they? Dornhaus supports a popular theory proposed by Dr. Geoffrey Miller, an evolutionary psychologist who is an associate professor in the Department of Psychology at the University of New Mexico and who also spoke at the METI institute workshop.

In our next installment we’ll explore Miller's theories in a bit more detail, and see why the abundance of extraterrestrial civilizations might depend on whether or not aliens think big brains are sexy.

For further reading:

Baluska, F. and Mancuso, S. (2009) Deep evolutionary origins of neurobiology. Communicative and Integrative Biology, 2:1, 60-65.

Chittka, L. and Niven, J. (2009) Are bigger brains better?, Current Biology. 19:21 p. R995-R1008.

Margonelli, L. (2014) Collective mind in the mound: How do termites build their huge structures. National Geographic.

Mayr, E. (1988) The probability of extraterrestrial intelligent life. In Towards a New Philosophy of Biology, Harvard University Press, Cambridge, MA.

Patton, P. E. (2015) Who speaks for Earth? The controversy over interstellar messaging. Universe Today.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Tonn, S. (2015) Termites are teaching architects to design super-efficient skyscrapers. Wired Magazine.

The post Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve? appeared first on Universe Today.